压力传感器的制作方法

文档序号:5969984阅读:115来源:国知局
专利名称:压力传感器的制作方法
技术领域
本发明涉及一种压力传感器,它将压力从一个压力导入部导入到一个被容置在一个壳体内的传感部,并在该压力导入部通过一个密封环被安装到一个被测量件上。本发明能够被应用于压力传感器,用以检测比如EGR系统中EGR管内的压力。
背景技术
近年来,已经严格限制废气的排放,柴油机所产生的NOX和PM(颗粒物质)必须减少。一种EGR(废气再循环)系统对此已经逐渐引起重视,特别是用作一种减少NOX的系统。
该系统将废气的一部分返回到一个进口侧并降低氧浓度以减少NOX。在该系统中,重要的是控制从排气侧到进口侧的返回量,压力传感器被用作检测流速的装置。
一种压力传感器包括一个用于检测压力的传感部、一个用于容置该传感部的壳体以及一个用于将压力从壳体外部导入到传感部的压力导入部,人们已经提出了这种压力传感器(比如,参见日本未审查专利公开说明书No.2002-221462)。
当这样一个压力传感器被安装到作为被测量件的EGR管上时,压力传感器通常通过设在压力导入部的一个环形密封环(O形环)被装配到EGR管上。
图9为一个示意截面图,示出压力传感器900安装到EGR管200上的装配程序的普通实例。图10A至10C示出图9所示压力传感器900上的压力导入部12b和13b的安装面(即,密封面)以及密封环(O形环)130的形状。
这里,图10A是压力导入部12b和13b的截面图。图10B是安装面12c和13c的平面图。图10C示出一个被形成于安装面12c,13c上的凹槽140与密封环130之间的尺寸关系。
在该压力传感器900中,一个用于检测压力的传感部(未示出)被容置在一个壳体10中,如图9所示。具有开口的压力导入部12b和13b被形成于壳体10上。压力传感器900采用螺纹连接方式通过一个支架110被安装到一根EGR管200上。
压力导入部12b和13b通过密封环130被安装到EGR管200上,密封环由一种弹性材料比如橡胶制成。从而,来自EGR管200内部的压力P1和P2通过压力导入部12b和13b的开口被没有泄漏地导入到壳体10内并被导向到上述传感部。
如图10A至10C所示,在每一个压力导入部12b和13b的安装面12c和13c上形成一个环形凹槽140,用于容置所述密封环130。
为了测量EGR的流速,通常是在EGR管200内设置一个节流孔210并检测在该节流孔210的前面与后面部分之间的压力差,如图9所示。换言之,图9所示的压力传感器900被构造成一种压力差(相对压力)检测型压力传感器900。
顺便提及,EGR管200在与压力传感器900的连接部的内部结构包括一个用于释放节流孔210的上游侧压力P1的上游侧压力释放通路220和一个用于释放节流孔210的下游侧压力P2的下游侧压力释放通路230,如图9所示。
上游侧压力释放通路220通过密封环130与压力传感器900的其中一个压力导入部12b连通,而下游侧压力释放通路230通过密封环130与压力传感器900的另一个压力导入部13b连通。
至于检测压力,排气压力的跳动峰值达到最大值300kPa,其决定于排气量和有/无涡轮机。因而,普通的橡胶管不能被用来连接压力传感器和EGR管,而是采用一种使用一个密封环130的装配结构,即所谓的“直接安装结构”,如图9所示。
然而,根据该直接安装结构,当压力传感器900被放置到EGR管200的安装部上时,密封环130朝向下。因而,在通常的O形环密封结构中,密封环130的外径D1小于凹槽140的外径D2,如图10C所示,密封环130从凹槽140中跌落。
为了防止在安装所述被测量件时密封环130的跌落,过去已经采用一种具有矩形横截面形状的密封环130,如图11A所示。
图11A至11C示出一种压入结构,将现有技术的具有矩形横截面形状的密封环130压入凹槽140。图11A示出密封环130与凹槽140的尺寸关系。图11B示出密封环130已被压入凹槽140后的状态。图11C示出压力传感器900已被安装到被测量件200上后的状态。
如图11A所示,现有技术所采用的结构是,密封环130具有矩形横截面,且整个密封环130的外径大于凹槽140的外径。
从而,密封环130作为一个整体被压入凹槽140并与之接触的状态,即密封环130作为一个整体被轻轻地压入凹槽140的结构,能被建立,因而密封环130被凹槽140保持并且防止了跌落。
然而,根据该结构,具有这样的可能性,当密封环130被压入凹槽140时,密封环130的远端从凹槽140中横向膨胀,如图11B所示。
然后,密封环130的远端部分被夹持在安装面12c,13c与被测量件200的安装部分之间,如图11C所示。换言之,密封环130发生了膨胀,密封环130被损坏了。
在采用这种直接安装装配结构的压力传感器中,上述问题是一个普遍的问题,在此结构中,压力导入部通过环形密封环被安装到被测量件上,并且压力传感器被装配到作为被测量件的EGR管上。

发明内容
鉴于上述问题,本发明的目的是在将密封环安装到一个被测量件上时防止密封环的跌落和损坏,在压力传感器中,压力是从一个压力导入部被导入到一个传感部的,该传感部被容置在一个壳体中,压力导入部通过密封环被安装到被测量件上。
为了实现上述目的,本发明的一个方面提供一种压力传感器,包括用于检测压力的传感部(20);压力导入部(12b,13b),通过一个环形密封环(130)被安装到一个被测量件(200)上,用于将被测量件(200)的压力导入到所述传感部(20);以及环形凹槽(140),用于容置所述密封环(130),被形成于压力导入部(12b,13b)与被测量件(200)的安装面(12c,13c)上;其中,所述密封环(130)的一部分被压入所述凹槽(140),该密封环(130)被保持在凹槽(140)内。
根据此结构,密封环(130)的一部分被压入凹槽(140),密封环(130)被保持在凹槽(140)内。因而,即使密封环(130)被向下折转,密封环(130)也不会从凹槽(140)中跌落出来。
由于仅仅需要将密封环(130)的一部分压入凹槽(140),凹槽(140)的外部尺寸相对于在除了压入部分的其它部分上的密封环(130)的外部形状可以具有一个足够的边缘。因而,可以防止现有技术中已经发生的密封环膨胀现象。
因此,根据本发明的压力传感器能够防止在安装到被测量件(200)上时发生密封环(130)的跌落和损坏。
在本发明中,在侧面上形成有一个突出部(141),其从凹槽(140)的一个侧面上突出,密封环(130)的一部分被在该突出部(141)压入到凹槽(140)中。
因为密封环(130)的一部分被压入凹槽(140),就可以适当地形成一个将密封环(130)保持在凹槽(140)内的结构。
在上述压力传感器中,形成于凹槽(140)侧面上的所述突出部(141)的一个表面具有一个凸曲线形状。
根据此结构,在突出部(141)上不存在角,可以理想地防止被压入该突出部(141)的密封环130被损坏。
在本发明中,形成于在安装面(12c,13c)侧面上的凹槽(140)的侧面上的所述突出部(141)的一个表面是一个锥形表面(141a),其从该突出部(141)的根部向一个远端逐渐地远离安装面(12c,13c)。
根据此结构,如上所述,形成于在安装面(12c,13c)侧面上的凹槽(140)的侧面上的所述突出部(141)的所述表面是锥形表面(141a)。因而,当密封环(130)保持与突出部(141)接触时,就有可能防止密封环(130)被压入凹槽的部分被夹持,同时在安装面(12c,13c)与被测量件(200)之间膨胀,就是说,能够防止将密封环(130)截住在突出部(141)处。
由于安装面(12c,13c)侧面上的突出部(141)的表面是锥形表面(141a),将密封环(130)安装到凹槽(140)中就变得平滑,从而改善了密封环(130)的安装性能。
在本发明中,形成于凹槽(140)侧面上的突出部(141)的数量最好是两个或者更多。
在本发明中,在密封环(130)的一个表面上形成有一个突出部(131),以从该表面突出,密封环(130)在该突出部(131)被压入凹槽(140)。
因而,密封环(130)的一部分被压入凹槽(140)以及密封环(130)被保持在凹槽(140)内的一种结构能被适当地实现。
在本发明中,形成于密封环(130)表面上的突出部(131)的数量最好是两个或者更多。
在本发明中,从凹槽(140)的一个侧面突出的一个突出部(141)是被形成在该侧面上,从密封环(130)的一个表面上突出的一个突出部(131)是被形成在该表面上,密封环(130)在形成于凹槽(140)侧面上的突出部(141)处以及在形成于密封环(130)表面上的突出部(131)处被压入凹槽(140)。
因而,密封环(130)的一部分被压入凹槽(140)以及密封环(130)被保持在凹槽(140)内的一种结构能被适当地实现。
在本发明中,密封环(130)的形状是一个理想的圆形,而凹槽(140)的形状是椭圆形。
在本发明中,密封环(130)的形状是椭圆形,而凹槽(140)的形状是一个理想的圆形。
在这些情形下,密封环(130)的一部分被压入凹槽(140)以及密封环(130)被保持在凹槽(140)内的一种结构也能被适当地实现。
根据本发明的另一方面,提供一种压力传感器,包括用于检测压力的传感部(20);压力导入部(12b,13b),通过一个环形密封环(130)被安装到一个被测量件(200)上,用于将被测量件(200)的压力导入到所述传感部(20);以及一个环形凹槽(140),用于容置所述密封环(130),被形成于压力导入部(12b,13b)与被测量件(200)的安装面(12c,13c)上;其中,所述密封环(130)被粘结并保持在凹槽(140)内。
根据此结构,所述密封环(130)被粘结并保持在凹槽(140)内。因而,即使密封环(130)在一个向下方向上被翻转,密封环(130)也不会从凹槽(140)中跌落。
因为密封环(130)仅仅需要被粘结到凹槽(140)上,凹槽(140)的外部尺寸相对于密封环(130)的外部形状可以具有一个足够的边缘。因而,能够尽可能地防止现有技术中已经发生的密封环从凹槽中膨胀出来的现象。
因而,根据本发明的压力传感器能够防止在安装到被测量件(200)上时发生密封环的跌落和损坏。
在本发明中,密封环(130)被粘结到凹槽(140)上。因而,如上所述,能够以同样的方式防止在安装到被测量件(200)上时发生密封环的跌落。
顺便提及,圆括号内的参考数字表示与下面实施例中所描述的具体装置一致的例子。


根据结合附图对本发明的一个优选实施例所作的如下所述的描述,将能够更加全面地理解本发明。
在这些附图中图1示出根据本发明第一实施例的压力传感器的示意横截面结构;图2是从图1中箭头A的方向看时,用于示出结构的一个部分剖视截面图;图3A至3D以放大图示出图1所示压力传感器中在一个压力导入部附近的一部分的详细结构;图4是图1所示压力传感器的一个分解图;图5A和5B示出第一实施例的改进实施例;
图6A至6D示出根据本发明第二实施例的密封环的结构;图7A和7B示出根据本发明第三实施例的密封环和凹槽的平面结构;图8A和8B示出根据本发明第四实施例的压力导入部和密封环的示意横截面结构;图9是一个示意截面图,示出一个传统的传感器安装到一个EGR管上的普通实例;图10A至10C示出图9所示压力传感器上的一个压力导入部的安装面以及一个密封环的形状,其中,图10A是压力导入部的截面图,图10B是安装面的平面图,而图10C示出一个被形成于安装面上的凹槽与密封环之间的尺寸关系;图11A至11C是示意截面图,示出密封环的一种压入式结构,将根据现有技术的一个具有矩形横截面形状的密封环压入一个凹槽,其中,图11A示出该密封环与该凹槽的尺寸关系,图11B示出该密封环在已被压入凹槽后的状态,而图11C示出传感器安装后的状态。
具体实施例方式
下面将结合附图对本发明的优选实施例进行解释,为了使解释简化的目的,相同的附图标记将被指定用来表示相同部分或者等同部分。
第一实施例图1示出根据本发明第一实施例的一种压力差检测型压力传感器S1的示意横截面结构。图2是从图1中箭头A的方向看时,一个用于示出压力传感器S1结构的部分剖视截面图,并在压力传感器S1被安装到一个被测量件200上的状态下旋转90度。
该实施例能够适用于一种压力差(相对压力)检测型压力传感器,它被安装到一个作为被测量件的EGR管200上,该EGR管是汽车柴油机的EGR系统中的管道,尽管不特别局限于此,以与图9所示方式相同的方式,检测设置于该EGR管200中的一个节流孔前面和后面的压力差。
参见图1,一个壳体10限定了压力传感器S1的一个主体,它是由一种树脂材料制成,比如PBT(聚丁烯对苯二酸脂),PPS(聚苯硫醚),等等。
壳体10包括一个连接器壳体部(传感器芯片安装部)11,一个接线端10a被与之插入式模制,以及被安装到所述连接器壳体部11上的第一和第二出口部12和13。壳体10上的这些部分11至13每一个都是通过模制树脂而形成的。
在壳体10的连接器壳体部11处在其中一个表面(图1中是上表面)上形成一个第一凹口部11a,而在相对表面(图1中是下表面)上形成一个与第一凹口部11a相连通的第二凹口部11b。一个用于压力检测的传感器芯片20被设置在第一凹口部11a内,以便能够切断第一与第二凹口部11a和11b之间的连通部。
传感器芯片20被构成一个传感部并产生一个电信号,该电信号的电平与所施加的压力值相一致。此实施例的传感器芯片20是一个半导体膜片(semiconductor diaphragm)型传感器芯片,其具有一个膜片(图中未示出)作为一个半导体衬底比如一个硅衬底上的一个减小厚度部。
由玻璃或者类似物制成的一个基座30被粘结并与传感器芯片20成为整体。通过基座30,利用一种粘结剂比如一种有机硅型粘结剂(图中未示出),传感器芯片20被粘结、储存和固定到连接器壳体部11的第一凹口部11a的底面上。
在基座30上形成一个通孔31,它与第二凹口部11b相连通。换言之,第二凹口部11b一直延伸到基座30的通孔31,但是其延伸被传感器芯片20切断,第一和第二凹口部11a和11b被彼此切断,传感器芯片20是其分界面。
与连接器部11插入模制的接线端10a用于从传感器芯片20中取出信号并且由一种导电材料比如铜制成。接线端10a的一端被暴露到第一凹口部11a中且邻近于传感器芯片20,并通过一根铝或金导线40被电连接到传感器芯片20上。
在所述接线端10a的被暴露于第一凹口部11a内的其中一端周围设置一个密封材料50,用于使在接线端10a与连接器壳体部11之间的空间密封。该密封材料50由树脂或者类似材料制成。
接线端10a这样设置,以便在一个平行于壳体10中传感器芯片20的安装面的方向上从传感器芯片20延伸,就是说,连接器壳体部11的第一凹口部11a的底面,在与带有导线40的连接部相对的侧面上的端部被暴露到壳体10(连接器壳体部11)的外部。
该接线端10a的暴露端部能够利用连接器壳体部11被连接到一个外部接线元件(未示出)上,从而传感器芯片20通过导线40和接线端销10a能够与一个外部电路(比如汽车的ECU)交换信号。
壳体10的连接器壳体部11被以上述方式构造成一个传感器芯片安装部,传感器芯片20被安装于其中。第一和第二出口部12和13分别设置有压力导入孔12a和13a,如图1中双点划线所示。
所述连接器壳体部11和出口部12和13被用螺纹连接件螺杆和螺母61和62相互连接。
螺母61与连接器壳体部11插入模制在一起。在连接器壳体部11与第一和第二出口部12和13被用螺杆60和螺母61螺纹连接之后,它们被螺母62固定。顺便提及,也可以采用铆钉来代替螺纹连接件60至62。
油70比如氟型油或者硅树脂型油被注入壳体10的连接器壳体部11的第一和第二凹口部11a和11b内。
一个第一膜片81被固定在连接器壳体部11与第一出口部12之间,一个第二膜片82被固定在连接器壳体部11与第二出口部13之间。
在此实施例中,第一和第二膜片82和81是金属膜片,由一种具有高耐蚀性和高耐热性的金属比如Cr或Ni制成,例如,能够由一种具有由(Cr+3.3Mo+20N)所表示的值至少为50的微孔腐蚀指数并包含至少30wt%Ni的材料制成。
第一膜片81被如此设置以便覆盖第一凹口部11a并将油70密封在第一凹口部11a内,如图1所示。另一方面,第二膜片82被如此设置以便覆盖第二凹口部11b并将油70密封在第二凹口部11b内。
第一和第二膜片81和82被用一种粘结剂分别连接到第一和第二出口部12和13上,粘结剂由一种氟硅氧烷型树脂或者一种氟树脂制成。顺便提及,在后面所示的图4中,该粘结剂用参考标记100标识。
在连接器壳体部11上设置有O形环90,第一和第二膜片81和82被推靠在其上以便通过第一和第二膜片81和82进一步将油70可靠地密封。
在图1所示的压力传感器S1中,在第一膜片81的侧面上布设的油70的量和在第二膜片82的侧面上布设的油70的量最好是彼此相等,而传感器芯片20是它们的分界面。通过考虑第一凹口部11a的容量、第二凹口部11b的容量以及传感器芯片20和基座30的体积,据此设计压力传感器S1,就能够满足这一要求。
在壳体10的第一和第二出口部12和13内分别形成压力导入部12b和13b,每一个压力导入部具有一个开口用于导入压力,如图2所示。
图1所示的第一出口部12的压力导入孔12a和第二出口部13的压力导入孔13a分别与第一和第二出口部12和13的压力导入部12b和13b相连通,如图2所示。
例如,第一出口部12的压力导入部12b被连接到所述EGR管200的一个上游侧压力释放管220上,而第二出口部13的压力导入部13b被连接到一个下游侧压力释放管230上,如图2所示。
这里,如图1和2所示,一个支架110作为一个安装件通过一个螺纹连接件120被安装在压力传感器S1的壳体10周围。该支架110由树脂或者金属制成。当螺纹连接件120被用螺母61固定时,支架110就被固定到壳体10上了。
如图2所示,当支架110被螺纹连接到作为被测量件的EGR管200上时,压力传感器S1就被安装到EGR管200上了。
顺便提及,通过支架110将压力传感器S1安装到EGR管200上的安装情形与图9所示的情形类似。换言之,在压力传感器S1的连接部位置上EGR管200的内部结构方面,所述节流孔被设置在所述上游侧压力释放管220与下游侧压力释放管230之间,与图9所示方式相同,尽管在图2中省略了部分结构。
当此压力传感器S1被安装并固定到EGR管200上时,压力传感器S1的压力导入部12b和13b通过环形密封环130被安装到EGR管(被测量件)200上。
该密封环130由一种弹性材料比如橡胶或树脂制成。在此实施例中,密封环130是一个具有矩形横截面形状的矩形环,但是也可以采用具有圆形横截面、C形横截面或者X形横截面的环。这也适用于后面所述的实施例。
在安装到EGR管200上的压力传感器S1的每一个压力导入部12b,13b的每一个安装面12c,13c上,形成一个环形凹槽140,密封环130被容置和保持在凹槽140内。
当密封环130开始与EGR管200紧密接触时,压力导入部12b和13b的连接部和EGR管200被气密地密封。从而,EGR管200内的压力P1和P2能够从压力导入部12b和13b被导入到壳体10内而没有泄漏。
EGR管200内的节流孔的上游侧压力P1从压力导入部12b通过第一出口部12内的压力导入孔12a被导入第一膜片81。另一方面,EGR管200内的节流孔的下游侧压力P2从压力导入部13b通过第二出口部13内的压力导入孔13a被导入第二膜片82。
传感器芯片20作为传感部接收通过油70被施加到第一和第二膜片81和82上的压力P1和P2。传感器芯片20检测从第一膜片81侧接收到的压力P1与从第二膜片82侧接收到的压力P2之间的压力差。
在此实施例中采用上述压力导入形式,一个膜片(未示出)的正面从第一膜片81侧接收节流孔的上游侧压力P1,而该膜片的背面从第二膜片82侧接收节流孔的下游侧压力P2。
由于在两个压力P1与P2之间存在压力差,传感器芯片20的膜片遭受变形,据此变形所产生的信号从传感器芯片20的接线端10a通过导线40被输出到外部。以此方式实现了压力检测。
在此实施例中,压力传感器S1中的密封环130和凹槽140的结构具有下面的独特特点。图3A至3D为放大图,示出在压力传感器S1的压力导入部12b和13b附近的部分。
图3A为压力导入部12b和13b、密封环130和EGR管200的示意横截面图。图3B为形成于压力导入部12b和13b的安装面12c和13c上的凹槽140的平面图。图3C为沿着图3B的截面线III-III截取的示意横截面图。图3D为凹槽140的透视图。
突出部141被如此形成在凹槽140的圆周侧面上,以致从该侧面上突出。这里,最好是形成至少两个突出部141,在此实施例中形成四个突出部141。
在密封环130被存储在凹槽140中的状态下,密封环130的与所述突出部141保持接触的部分被压入凹槽140并由凹槽140保持。
更具体地,突出部141的突出长度可以确定成,使从凹槽140外圆周的侧面突出的每一突出部141的远端进入由密封环130的外径所确定的假想圆。从而,能够实现密封环130压入突出部141内的状态。每一个突出部141从凹槽140的侧面上突出的距离是这样,当密封环130被压入并安装到EGR管200中时,密封环130不会从凹槽140中膨胀出来,如图11C所示。
换言之,此实施例具有一个独特的结构,即当密封环130的一部分被压入凹槽140时,密封环130被保持在凹槽140内。
在此实施例的一个优选方式中,每一个突出部141的表面具有一个凸曲线形状,如图3B和3D所示。换言之,突出部141的表面具有一个曲线形状,在其上不存在角。
在此实施例的另一优选方式中,每一突出部141的在每一安装面12c,13c的侧面上的表面是一个锥形面141a,其从突出部141的根部侧向远端侧逐渐地远离安装面12c,13c,如图3C所示。
接下来,将结合图4对压力传感器S1的制作方法进行描述。图4是图1所示压力传感器S1的每一部分的一个分解图,除了支架110和用于将支架110固定到传感器主体上的螺纹连接件120之外。
被暴露在第一凹口部11a内的接线端10a的端部之一被用密封件50密封在连接器壳体部11内,接线端10a和螺母61被插入模制。
然后,与基座30形成整体的传感器芯片20被粘结并固定到连接器壳体部11的第一凹口部11a上,而传感器芯片20和接线端10a通过引线接合法用导线连接。
接着,利用粘结剂100将第一膜片81粘结到第一出口部12上,油70被注入连接器壳体部11的第一凹口部11a内。之后,将O形环90放置到连接器壳体部11上。
利用真空方法将连接器壳体部11与第一出口部12制成一体,同时用螺杆60和螺母61将它们螺纹固定,以将油70密封。这里,螺纹固定是采用螺杆60,以免在油70中形成气泡。
此后,第二出口部13用真空法通过螺母62被螺纹安装到连接器壳体部11上,同时,用与第一出口部12相同的方式插入第二膜片82,油70和O形环90。
在执行性能调整和测试之后,支架110通过螺纹连接件120被安装并固定到壳体10上,如图1所示。最后,密封环130被压入并保持在压力导入部12b和13b的凹槽140内。这样,就构成了如图1所示的压力传感器S1。
所构成的压力传感器S1被设置到EGR管200的安装部上,同时EGR管200被定位在下面,而压力传感器S1被定位在上面,密封环130朝向下,如图2所示。
支架110通过螺纹连接件等(未示出)被固定到EGR管200上。以此方式,就形成了将压力传感器S1安装到EGR管200上的安装结构,而且利用该压力传感器S1能够实现压力检测。
在所述压力传感器中,包括用作检测压力的传感部的传感器芯片20,用于将来自EGR管200的压力导入到传感器芯片20的压力导入部12b和13b,其通过环形密封环130被装配到作为被测量件的EGR管200上,以及用于容置密封环130的环形凹槽140,其被形成在压力导入部12b和13b的安装面12c和13c上,此实施例提供的压力传感器S1,其主要特征在于,密封环130的一部分被压入凹槽140并被保持在凹槽140内部。
根据此实施例,因为密封环130的一部分被压入凹槽140并被保持在凹槽140内部,即使当密封环130在向下方向上翻转时,密封环130也不会从凹槽140中跌落。
因为仅仅需要将密封环130的一部分压入凹槽140,凹槽140的外部尺寸在除了该压入部分的其它部分上可以具有一个足够的边缘。
更具体地,凹槽140的宽度相对于密封环130的不与突出部141保持接触的那部分的大小而言,能被足够地放大,如图3A至3D所示。因而,能够防止在现有技术中所发生的密封环从凹槽中胀出的现象(参见图11C)。
根据此实施例的压力传感器S1,当密封环130安装到作为被测量件的EGR管200上时,能够防止密封环130的跌落和损坏。
因而,根据此实施例,通过在凹槽140的侧面上形成所述突出部141并且将密封环130的一部分在该突出部141处压入凹槽140内,就能够适当地实现将密封环130的一部分压入凹槽140的状态。
根据上述优选方式,突出部141的表面是凸曲线表面(参见图3)。因为以此方式消除了突出部141上的角,就可以理想地防止密封环130被压入突出部141时发生损坏。
在另一个更优选的方式中,突出部141在安装面12c和13c一侧的表面是锥形面141a,其从该突出部141的根部侧向它的远端逐渐地远离安装面12c,13c(参见图3A至3D)。
因为以此方式突出部141在安装面12c和13c一侧的表面是锥形面141a,所以,在组装EGR管200时,密封环130的开始与突出部141接触并被突出部141压入的部分能够被防止胀出并且能够被防止夹持在安装面12c,13c与EGR管200之间。换言之,能够防止将密封环130截住在突出部141处。
由于在安装面12c,13c侧面上的突出部141的表面是锥形表面141a,将密封环130插入到凹槽140中就变得平滑,从而改善了密封环130的安装性能。
改进实施例图5A和5B示出本发明的改进实施例并且是凹槽140的平面图。
在图3A至3D中所示的突出部141是被形成在凹槽140外圆周的侧面上。然而,突出部141可以被形成在凹槽140内圆周侧的侧面上,如图5A所示,或者可以被形成在其内圆周侧和外圆周侧的侧面上,如图5B所示。
具体地,在突出部141从凹槽140内圆周侧的侧面上突出的情形下,突出部141的突出长度可以这样确定,即突出部141的远端从由密封环130的内径所确定的假想圆中突出。这样,能够实现密封环130压入该突出部141内的压入状态。
在此实施例中,在凹槽140的侧面上最好是形成至少两个突出部141,但是突出部141的数量可以是仅仅一个,只要密封环130被保持在凹槽140中的保持力足够就行。
第二实施例图6示出了本发明第二实施例的主要部分并且示出了根据此实施例的密封环130的特征。在图6A至6D中,图6B和6D示出一个平面结构。图6A是沿图6B中的截面线VI1-VI1截取的示意横截面图,而图6C是沿图6D中的截面线VI2-VI2截取的示意横截面图。
在前述实施例中,突出部141被形成在凹槽140的侧面上。然而,在此实施例中,从密封环130的表面上突出的突出部131是形成在该表面上但不是在凹槽140上。
在图6A和6B所示的实施例中,密封环130的突出部131被如此形成以致围绕密封环130在圆周方向上延伸。在图6C和6D所示的实施例中,密封环130的突出部131形成在密封环130的外圆周侧面上的多个位置上。
当按照在图6C和6D所示实施例那样设置突出部131时,最好是形成至少两个突出部131,在此实施例中是形成四个突出部131。而且,当突出部被设置在密封环130上时,突出部可以被形成在密封环130的内圆周侧的侧面上,或者可以被形成在其内圆周侧和外圆周侧的侧面上。
当突出部131从密封环130外圆周侧的侧面上突出的时候,突出部131的突出长度可以这样确定,即它的远端从由凹槽140的外径所确定的假想圆中突出。当突出部131从密封环130的侧面上突出时,突出部131的突出长度是这样的长度,即当密封环130被压入并被安装到EGR管200上时,密封环130不会从凹槽140中膨胀出来,如图11C所示。
另一方面,当突出部131从密封环130内圆周侧面上突出时,突出部131的突出长度可以这样确定,即它的远端进入由凹槽140的内径所确定的假想圆中。从而,能够在该突出部131处实现密封环130的压入状态。
根据此实施例,采用这样一种具有突出部131的密封环130,密封环130被在密封环130的突出部131处压入凹槽140并且相对于凹槽140被保持。
换言之,还是在此实施例中,密封环130的一部分被压入凹槽140并且密封环130被保持在凹槽140内部。
还是在此情形下,必须建立密封环130的突出部131被压入凹槽140的状态。因而,相对于密封环130的外部形状而言,凹槽140的外部尺寸在除了该压入部的其它部分上可以具有一个足够的边缘。
更具体地,凹槽140的宽度能被设定成相对于在除了密封环130的突出部131之外的其它部位处密封环130的厚度而言具有一个足够大的值。因而,在现有技术中所发生的密封环从凹槽中膨胀出的现象(如图11C所示)能被减小到最小值。
因而,在根据此实施例的压力传感器中,当安装到作为被测量件的EGR管200上时,可以用与前述实施例相同的方式,避免密封环130的跌落和损坏。
在如图6C和6D所示实施例中,在密封环130的侧面上最好是形成至少两个突出部,但是突出部130的数量可以是仅仅一个,只要密封环130被保持在凹槽140中的保持力足够就行。
第三实施例图7A和7B示出了本发明的主要部分并且示出了密封环130与凹槽140的平面结构。顺便提及,为了方便和识别的目的,密封环130的表面被画上了阴影线。
前述每一个实施例具有的结构是,密封环130的一部分被压入凹槽140并且被保持在凹槽140中,而突出部被设置在凹槽140上或者密封环130上。
作为密封环130的一种保持结构,通过将密封环130的一部分压入凹槽140中,此实施例采用的结构是,密封环130的形状是一个理想的圆形,而凹槽140的形状是椭圆形,如图7A所示,或者相反,密封环130的形状是椭圆形,而凹槽140的形状是一个理想的圆形,如图7B所示。
所述圆形不必是一个完全的理想圆形。在如图7A所示的实施例中,比如,与凹槽140的形状是椭圆形相比,密封环130的环形状可以是一个近似于理想圆形。
因而,就形成了使密封环130的侧面的一部分与凹槽140的侧面的一部分相互保持接触的部分,密封环130在该部分被压入凹槽140并被保持在凹槽140中。
在此情形下,相对于在除了位于密封环130与凹槽140之间的压入部之外的其它部分上密封环130的外部形状而言,凹槽140的外部尺寸可以用与前述实施例相同的方式具有一个足够的边缘。
因而,在根据此实施例的压力传感器中,当安装到作为被测量件的EGR管200上时,可以用与前述实施例相同的方式,防止密封环130的跌落和损坏。
第四实施例图8A和8B示出了本发明第四实施例的主要部分,并且示出了此实施例的压力导入部12b和13b以及密封环130的示意横截面结构。
每一个前述实施例采用的结构是,当密封环130的一部分被压入凹槽140时,密封环130被保持在凹槽140内。然而,此实施例采用一种结构,即密封环130被保持在凹槽140内,因为它被粘结到凹槽140上,如图8A和8B所示。
更具体地,如图8A所示,有可能向凹槽140施加一种粘结剂150以便将密封环130粘结并保持在凹槽140内,或者与之相反,向密封环130施加所述粘结剂150以便将密封环130粘结并保持在凹槽140内,如图8B所示。
在此实施例中,没有必要在凹槽140上或者密封环130上设置突出部131和141并且使凹槽140和密封环130其中之一成形为理想的圆形而另一个是椭圆形,而且凹槽140和密封环130的形状可以与现有技术的具有相同的形状。
根据此实施例,当密封环130被粘结到凹槽140上并被保持在凹槽140内时,即使当密封环130被在向下方向上翻转时,密封环130也不会从凹槽140中跌落。
由于仅仅需要将密封环130粘结到凹槽140上,与密封环130的外部形状相比较,凹槽140的外部形状可以具有一个足够的边缘。因而,可以尽可能地防止现有技术中已经发生的密封环130从凹槽140中膨胀出来的现象。
根据此实施例的压力传感器,当被安装到作为被测量件的EGR管200上时,可以用与前述实施例相同的方式,防止密封环130的跌落和损坏。
顺便提及,很显然,此实施例能够适用于与如前述每一个实施例所述的结构相组合,其中密封环130的一部分被压入凹槽140。
其它实施例在上述第一和第二实施例中,所述突出部131和141被设置在凹槽140和密封环130的其中之一上。然而,所述突出部可以被设置在凹槽140和密封环130两者上。
上述压力差检测型压力传感器S1能被应用为一个用于检测发动机的进气管内的进气压力或者排气管内的排气压力的传感器。
比如,该压力传感器能被应用为一个压力差检测型压力传感器,其被安装到排气管上以检测被设置在汽车柴油机的排气管中的DPF(柴油机微粒过滤器)的压力损失,以便检测在DPF之前和之后排气管的压力差。
另外,本发明可以被应用于一种压力传感器,用于检测除了压力差(相对压力)检测型压力传感器之外的一种绝对压力传感器,只要它采用了一种直接安装结构,其包括一个传感部和压力导入部,其中压力导入部通过一个密封环被直接安装到所述被测量件上。
更具体地,在压力差型压力传感器中,传感部的两个表面都接收测量压力。在用于检测绝对压力类型的压力传感器中,传感部的其中一个表面保持一个基准压力(比如,大气压力),而另一个表面接收测量压力。
尽管为了说明的目的,已经结合所选的具体实施例对本发明进行了描述,但是,应当知道,本领域的技术人员可以在不背离本发明的基本概念和保护范围的条件下进行多种修改。
权利要求
1.一种压力传感器,包括用于检测压力的传感部;压力导入部,其通过一个环形密封环被安装到一个被测量件上,用于将来自所述被测量件的压力导入到所述传感部;以及环形凹槽,用于容置所述密封环,被形成在所述压力导入部与所述被测量件的一个安装面上;其中,所述密封环的一部分被压入所述凹槽,所述密封环被保持在所述凹槽内。
2.按照权利要求1所述的压力传感器,其特征在于从所述凹槽的一个侧面上突出的一个突出部141被形成在所述侧面上,所述密封环的一部分被在所述突出部压入所述凹槽内。
3.按照权利要求2所述的压力传感器,其特征在于形成于所述凹槽的侧面上的所述突出部的一个表面具有一个凸曲线形状。
4.按照权利要求2所述的压力传感器,其特征在于在所述安装面的侧面上的所述凹槽的侧面上形成的所述突出部的一个表面是一个锥形表面,它从所述突出部的根部侧向其远端逐渐地远离所述安装面。
5.按照权利要求2所述的压力传感器,其特征在于形成于所述凹槽的侧面上的所述突出部的数量至少是两个。
6.按照权利要求1所述的压力传感器,其特征在于在所述密封环的一个表面上这样形成有突出部,以从该表面突出,所述密封环在所述突出部被压入所述凹槽。
7.按照权利要求6所述的压力传感器,其特征在于形成于所述密封环的表面上的所述突出部的数量至少是两个。
8.按照权利要求1所述的压力传感器,其特征在于一个从所述凹槽的一个侧面上突出的一个突出部被形成在所述侧面上,一个从所述密封环的一个表面上突出的一个突出部被形成在所述侧面上,所述密封环在被形成于所述凹槽侧面上的所述突出部处以及在被形成于所述密封环的表面上的所述突出部处被压入所述凹槽。
9.按照权利要求1所述的压力传感器,其特征在于所述密封环的形状是一个理想的圆形,而所述凹槽的形状是椭圆形。
10.按照权利要求1所述的压力传感器,其特征在于所述密封环的形状是椭圆形,而所述凹槽的形状是一个理想的圆形。
11.按照权利要求8所述的压力传感器,其特征在于形成于所述凹槽的侧面上的所述突出部的突出长度以及形成于所述密封环的表面上的所述突出部的突出长度是这样的,当所述密封环被压入所述凹槽以及所述压力导入部被安装到所述被测量件上时,所述密封环不会从所述凹槽中膨胀出来并且不被卡住。
12.一种压力传感器,包括用于检测压力的传感部;压力导入部,其通过一个环形密封环被安装到一个被测量件上,用于将来自所述被测量件的压力导入到所述传感部;以及环形凹槽,用于容置所述密封环,其被形成在所述压力导入部与所述被测量件的一个安装面上;其中,所述密封环被粘结到并被保持在所述凹槽内。
13.按照权利要求1所述的压力传感器,其特征在于所述密封环被粘结到所述凹槽上。
全文摘要
本发明涉及一种压力传感器。在压力导入部(12b和13b)的安装面(12c和13c)上形成一个用于容置一个密封环(130)的环形凹槽(140),用于将来自一个被测量件(200)的压力导入到一个传感部。压力导入部(12b和13b)通过密封环(130)被安装到被测量件(200)上。突出部(141)被形成在凹槽(140)的侧面上,密封环(130)的一部分被在这些突出部(141)处压入凹槽(140)。从而密封环(130)被保持在凹槽(140)内。
文档编号G01F1/34GK1621793SQ20041009538
公开日2005年6月1日 申请日期2004年11月24日 优先权日2003年11月25日
发明者马场广伸 申请人:株式会社电装
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1