纳米粒子强化的荧光偏振分析方法

文档序号:5835242阅读:311来源:国知局
专利名称:纳米粒子强化的荧光偏振分析方法
技术领域
本发明涉及医疗、环境、食品的检测分析领域,尤其涉及一种纳米粒子强化 的荧光偏振分析方法。
背景技术
荧光偏振原理于1920建立,以此发展出来的荧光偏振技术广泛应用于分子 间的相互作用的研究,包括DNA-蛋白、蛋白-蛋白、抗原-抗体结合。荧光偏 振检测技术是一种荧光标记检测技术,它把荧光物质标记在特定物质分子,使 原本微弱的反应信号转化成较强的荧光信号,同时在光路的合适位置分别加上 起偏器和检偏器就可测出待测物的偏振荧光强度。在分析分子结合的方法中, 荧光偏振法是一个独特的方法,由于该方法不需分离游离和结合的示踪物,所 有测定都在溶液中进行,可以达到真正的平衡,具有快速、操作简单和准确等 特点。检测灵敏度是最基本的检测性能指标之一,高检测灵敏度也就意味着高 准确度,决定着其最终是否可以被广泛使用。
中国专利授权第ZL 988012847号发明专利提供了一种分析样品中检测对象 的荧光偏振法。所述荧光偏振法包括以下步骤(a)提供蛋白与荧光染料共价结 合的荧光标记蛋白,其中所述蛋白能够特异结合所述检测对象;(b)使所述荧光 标记蛋白和所述检测对象结合;和(c)检测在所述荧光标记蛋白中由于它与所述 检测对象结合而产生的荧光偏振度的变化。
但是上述专利明确指出其适宜于检测高分子量物质,故现有的荧光偏振分 析方法在测定小分子间相互作用时存在灵敏度不高的缺点。

发明内容
本发明的目的在于提供一种灵敏度更高、特异性更强和使用范围更广的荧 光偏振分析方法,本方法中待测样品通过扩散作用进入分子识别元件,经分子 识别,然后与分子识别元件发生特异性结合,其生物或化学反应产生的信号通 过纳米粒子将荧光偏振信号放大,以此达到高灵敏度检测的目的。本发明所述 的技术方案如下所述。
一种纳米粒子强化的荧光偏振分析方法,其包含如下步骤
(1) 提供一种纳米粒子,组装第一识别元件到所述纳米粒子上得到纳米粒 子标记的第一识别元件;
(2) 提供一种指示染料,将所述指示染料标记到第二识别元件上得到指示 染料标记的第二识别元件;
(3) 提供含有待测靶标分子的标准溶液,将所述纳米粒子标记的第一识别 元件及所述指示染料标记的第二识别元件置入所述含有待测靶标分子的标准溶 液中,在第一识别元件和第二识别元件共同作用下引发特异性识别反应,引起 溶液体系的荧光偏振强度发生变化,然后根据所述标准溶液中待测靶标分子的 浓度和相应的荧光偏振强度制作标准工作曲线;
(4) 提供含有待测靶标分子的样本溶液,将所述纳米粒子标记的第一识别 元件及所述指示染料标记的第二识别元件置入所述含有待测靶标分子的样本溶 液中,在第一识别元件和第二识别元件共同作用下引发特异性识别反应,弓l起 溶液体系的荧光偏振强度发生变化,然后根据所述样本溶液中待测靶标分子的 荧光偏振强度推测出待测靶标分子的浓度。
其中,所述纳米粒子是分散性好,均一度高的纳米颗粒,该纳米颗粒的粒 径尺寸范围是l-100nm,所述纳米粒子包括金属纳米粒子、半导体纳米粒子或复 合型纳米粒子,所述金属纳米粒子包括纳米金、纳米银等,所述半导体纳米粒子包括硫化锌、硫化镉或硫化铅等,所述复合型纳米粒子是指高分子材料制成 的纳米粒子。
其中,所述第一识别元件是通过物理吸附、静电吸附、特异性识别或共价 键耦合等方式组装到所述纳米粒子表面上的。所述第一识别元件和第二识别元 件为糖、核酸、酶、脂、多肽、抗原、抗体或蛋白质等生物分子中的一种,所 述第一识别元件和第二识别元件可以相同,也可以不同。
其中,所述生物分子组装在纳米粒子上不会改变其生物活性。
其中,所述指示染料是异硫氰酸荧光素FITC、红色荧光素Cy3或蓝色荧光 素Cy5中的一种。
其中,所述的靶标分子为化学小分子或糖、核酸,多肽、酶、脂、抗原、 抗体或蛋白质等生物分子或汞、铅、镉等金属离子。
本发明选用纳米粒子强化荧光偏振检测信号是因为纳米粒子具有大的比 表面积、量子尺寸效应、化学反应活性和生物共容性等特性,能够通过物理吸 附、静电吸附、特异性识别和共价键耦合等方式固定不同性质的识别元件。因 为荧光偏振技术对研究小分子间的相互作用的精度和灵敏度不高,所以荧光偏 振技术应用范围不广。但是通过引入纳米粒子,即使是研究小分子间的相互作 用,也可以得到很好检测灵敏度。这是由于纳米粒子庞大的表面积和生物共容 性的性质,可以极大地提高识别元件的固载量,并有效地增大识别元件和荧光 素标记的识别元件与耙标分子复合体的体积,从而达到对检测信号的放大,从 而显著提高了检测的灵敏度和稳定度,具有操作简单、灵敏迅速的特点。因为 根据不同的实验目的,其识别元件可以是不同的生物元件,具有很广的适用性。
本发明所提供的纳米粒子强化的荧光偏振分析方法,与传统的荧光偏振方 法比较,本方法具有灵敏度更高,结果准确可靠,检出限更低,适用范围更广, 实时在线检测,干扰因素少和线性范围较宽的特点,是一种简便实用的分析技术。


图1是本发明实施例1中检测流程的示意图; 图2是本发明实施例2中检测流程的示意图。
具体实施例方式
现依据附图并结合实施例,对本发明做进一步的描述。 实施例1 河水中汞离子的测定
请参考图1所示,首先采用柠檬酸三钠还原氯金酸制备分散性好,均一度 高的含纳米金粒子1的溶液,然后将巯基修饰核酸探针2 (序列为 5,-SH-(CH2)6-A1(rGCTTCTGTTCTCTAC-3,)通过形成S-Au共价键,组装到纳 米金粒子1的表面形成纳米金粒子标记的巯基修饰核酸探针3。并制备异硫氰酸 荧光素修饰的核酸探针4 (序列为5,-FAM-(CH2)6-GTTGT GTTCA GTTGC ), 制备过程中用到异硫氰酸荧光素5。
取含汞离子6的河水样本10份,每份5-10毫升,分别采用0.22微米纤维 素酯膜进行过滤。接下来的检验过程中为了减小误差,采用同一块酶标板对标 准汞溶液和水样同时进行检测。将标准汞溶液和水样分别加入已含有纳米金粒 子标记的巯基修饰核酸探针3及异硫氰酸荧光素修饰的核酸探针4的0.1M NaNO"pH 7.2)溶液的酶标板中,混匀,低速离心,室温反应10-15分钟,然后 进行荧光偏振检测。如果采用96孔板,反应总体积为200微升,如果采用384 孔板,反应总体积为20微升。没有汞离子6存在的情况下,核酸探针之间因为 序列不互补,而不能形成杂交双聚体,溶液体系的荧光偏振强度不会发生改变。 在有汞离子6存在的情况下,因为核酸探针各自含有一定数量的胸腺嘧啶核(T),能够特异性结合汞离子,形成T-Hg2+-T复合体7,从而探针之间形成杂 交双聚体,引起溶液体系的荧光偏振强度发生改变。根据标准汞溶液制作汞离 子荧光偏振强度标准工作曲线,然后比对样本的荧光偏振强度,可以计算出河 水样本中的汞离子浓度。
实施例2 核酸分子的测定
首先采用柠檬酸三钠还原氯金酸制备分散性好、均一度高的含纳米金粒子 10的溶液,然后将巯基修饰核酸探针11 (序列为5'-SH-(CH2)6-A10-ATGATCACCATAAG -3')通过Au-S共价键组装到纳米金粒子10的表面形成纳 米金粒子标记的巯基修饰核酸探针12。并制备异硫氰酸荧光素修饰的核酸探针 13 (序列为3"-FAM-(CH2)6-TCAGCAGCGGCAGCA),制备过程中用到异硫氰 酸荧光素14。
将含核酸分子15的待检测样本加入到含有纳米金粒子标记的巯基修饰核酸 探针12和异硫氰酸荧光素修饰的核酸探针13的混合溶液中,该混合溶液中还 含有25mMTris《l(pH7.2),0.3MNaCl,室温反应10-15分钟,然后进行荧光偏 振检测。当待测样本中不含有靶标核酸分子15,则不能形成杂交双聚体,溶液 体系的荧光偏振强度不会发生改变。当溶液系统中含有靶标核酸分子15 (该靶 标核酸分子15的序列为5, -TGCTGCCGCTGCTGAGAGTACGCAAGCGT CTTATGGTGATCAT-3,)时,它能使纳米金粒子标记的巯基修饰核酸探针12 和异硫氰酸荧光素修饰的核酸探针13发生杂交反应,形成杂交双聚体,引起溶 液体系的荧光偏振强度发生改变。根据标准核酸溶液制作核酸分子荧光偏振强 度标准工作曲线,然后比对样本的荧光偏振强度,可以计算出河水样本中的核 酸分子浓度。
权利要求
1、一种纳米粒子强化的荧光偏振分析方法,其包含如下步骤(1)提供一种纳米粒子,组装第一识别元件到所述纳米粒子上得到纳米粒子标记的第一识别元件;(2)提供一种指示染料,将所述指示染料标记到第二识别元件上得到指示染料标记的第二识别元件;(3)提供含有待测靶标分子的标准溶液,将所述纳米粒子标记的第一识别元件及所述指示染料标记的第二识别元件置入所述含有待测靶标分子的标准溶液中,在第一识别元件和第二识别元件共同作用下引发特异性识别反应,引起溶液体系的荧光偏振强度发生变化,然后根据所述标准溶液中待测靶标分子的浓度和相应的荧光偏振强度制作标准工作曲线;(4)提供含有待测靶标分子的样本溶液,将所述纳米粒子标记的第一识别元件及所述指示染料标记的第二识别元件置入所述含有待测靶标分子的样本溶液中引发特异性识别反应,引起溶液体系的荧光偏振强度发生变化,然后根据所述样本溶液中待测靶标分子的荧光偏振强度推测出待测靶标分子的浓度。
2、 如权利要求1所述的荧光偏振分析方法,其特征在于,所述纳米粒子是分散性好,均一度高的纳米颗粒,该纳米颗粒的尺寸范围是l-100nm。
3、 如权利要求1或2所述的荧光偏振分析方法,其特征在于,所述纳米粒子包括金属纳米粒子、半导体纳米粒子或复合型纳米粒子。
4、 如权利要求3所述的荧光偏振分析方法,其特征在于,所述金属纳米粒子包括纳米金、纳米银,所述半导体纳米粒子包括硫化锌、硫化镉或硫化铅,所述复合型纳米粒子是由高分子材料制成的纳米粒子。
5、 如权利要求1所述的荧光偏振分析方法,其特征在于,所述第一识别元件是通过物理吸附、静电吸附、特异性识别或共价键耦合方式组装到所述纳米粒子表面上的。
6、 如权利要求1、 2、 4、 5任意一项所述的荧光偏振分析方法,其特征在于,所述第一识别元件和第二识别元件为糖、核酸、酶、脂、多肽、抗原、抗体或蛋白质等生物分子中的一种。
7、 如权利要求6所述的荧光偏振分析方法,其特征在于,所述第一识别元件和第二识别元件相同,或者第一识别元件和第二识别不相同。
8、 如权利要求6所述的荧光偏振分析方法,其特征在于,所述生物分子组装在纳米粒子上不会改变其生物活性。
9、 如权利要求1、 2、 4、 5、 7、 8任意一项所述的荧光偏振分析方法,其特征在于,所述指示染料是异硫氰酸荧光素FITC、红色荧光素Cy3或蓝色荧光素Cy5中的一种。
10、 如权利要求l、 2、 4、 5、 7、 8任意一项所述的荧光偏振分析方法,其特征在于,所述的耙标分子为化学小分子或糖、核酸,多肽、酶、脂、抗原、抗体或蛋白质等生物分子或汞、铅、镉等金属离子。
全文摘要
本发明提供一种灵敏度更高、特异性更强和使用范围更广的荧光偏振分析方法,本方法中待测样品通过扩散作用进入分子识别元件,经分子识别,然后与分子识别元件发生特异性结合,其生物或化学反应产生的信号通过纳米粒子将荧光偏振信号放大,以此达到高灵敏度检测的目的。本发明所提供的纳米粒子强化的荧光偏振分析方法,与传统的荧光偏振方法比较,本方法具有灵敏度更高,结果准确可靠,检出限更低,适用范围更广,实时在线检测,干扰因素少和线性范围较宽的特点,是一种简便实用的分析技术。
文档编号G01N21/76GK101639444SQ20081004116
公开日2010年2月3日 申请日期2008年7月29日 优先权日2008年7月29日
发明者叶邦策, 尹斌成 申请人:华东理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1