充电系统的制作方法

文档序号:5945275阅读:85来源:国知局
专利名称:充电系统的制作方法
技术领域
本发明涉及通过充电电缆连接充电器和电动车辆,从而对搭载于电动车辆的蓄电装置进行充电的充电系统。
背景技术
近年来,作为动力源而具有电动发动机的电动车辆的开发工作不断取得进展。在对搭载于电动车辆的电池等蓄电装置充电时,从充电器延伸出来的充电电缆连接到电动车辆的充电口(例如,参照专利文献I)。此外,在作为动力源而具有引擎和电动发动机的混合型电动车辆中,也正在开发可通过充电器对蓄电装置充电的所谓插入连接(Plug-in)方式的混合型电动车辆。专利文献I :日本特开2009-83670号公报 然而,由充电器对电动车辆供应的电力具有高电压和高容量,因此为了预先防止漏电等而确保充电时的安全性,需要监视绝缘不良和充电电缆的断线等。作为绝缘不良等的监视方法,可以举出比较充电器侧的供应电压和电动车辆侧的接收电压的方法和比较充电器侧的供应电流和电动车辆侧的接收电流的方法。当供应电压和接收电压相差很大时,或者当供应电流和接收电流相差很大时,可以推测到电力还流向电动车辆之外的地方,因此判定发生了绝缘不良等现象。如此地检测绝缘不良等现象时,将会使用由电压传感器或电流传感器输出的电压数据或电流数据,而在使用这些数据时通常进行移动平均处理等滤波处理而排除噪声影响。但是,滤波处理后的电压数据和电流数据会发生时间延迟,因此单纯地比较充电器侧和电动车辆侧的电压数据等,是引起绝缘不良等的错误判定的重要原因。也就是说,当充电器侧和电动车辆侧的延迟时间存在差异,且充电器侧和电动车辆侧的数据没有被同步时,可以设想到会存在虽然没有发生绝缘不良等,但是双方的数据相差很大,或者虽然发生了绝缘不良等,但是双方的数据却不发生差异的情况。

发明内容
本发明的目的在于准确判定充电器和电动车辆之间的通电状态是否正常。本发明的充电系统,通过充电电缆连接充电器和电动车辆,对搭载于所述电动车辆的蓄电装置进行充电,其特征在于,所述充电系统包括供应侧处理模块,对所述充电器内的供应电压、供应电流或供应功率进行预定的滤波处理而计算出供应侧处理数据;接收侧处理模块,对所述电动车辆内的接收电压、接收电流或接收功率进行预定的滤波处理而计算出接收侧处理数据;特征赋予模块,改变供应电压、供应电流、接收电压和接收电流中的至少一个而在所述供应侧处理数据和所述接收侧处理数据上赋予特征点;数据同步模块,基于所述供应侧处理数据和所述接收侧处理数据的特征点,同步所述供应侧处理数据和所述接收侧处理数据;判定模块,比较进行了同步的所述供应侧处理数据和所述接收侧处理数据,判定所述充电器和所述电动车辆之间的通电状态是否正常。
本发明的充电系统,其特征在于所述供应侧处理模块所进行的滤波处理和所述接收侧处理模块所进行的滤波处理是不同的。本发明的充电系统,其特征在于具备充电控制模块,该充电控制模块具有以第一供应功率为上限对所述蓄电装置充电的正式充电模式和以小于所述第一供应功率的第二供应功率为上限对所述蓄电装置充电的预充电模式,在所述正式充电模式之前进行的所述预充电模式中,所述特征赋予模块在所述供应侧处理数据和所述接收侧处理数据上赋予特征点。本发明的充电系统,其特征在于所述特征赋予模块改变供应电流或接收电流而在所述供应侧处理数据和所述接收侧处理数据上赋予特征点。本发明的充电系统,其特征在于所述数据同步模块基于特征点计算所述供应侧处 理数据和所述接收侧处理数据之间的时间延迟,基于时间延迟同步所述供应侧处理数据和所述接收侧处理数据。本发明的充电系统,其特征在于所述供应侧处理模块、所述接收侧处理模块、所述特征赋予模块、所述数据同步模块和所述判定模块设置在所述充电器中。本发明的充电系统,其特征在于所述电动车辆内的接收电压、接收电流或接收功率通过所述充电电缆内的通信线被发送到所述接收侧处理模块。根据本发明,通过改变供应电压、供应电流、接收电压和接收电流中的至少一个而在供应侧处理数据和接收侧处理数据上赋予特征点,因此可以基于特征点同步供应侧处理数据和接收侧处理数据。据此,可以恰当地比较供应侧处理数据和接收侧处理数据,可以准确判定充电器和电动车辆之间的通电状态是否正常。


图I为表不本发明的一个实施方式所提供的充电系统的充电状况的概略图;图2为表示组成充电系统的电动车辆的内部结构的概略图;图3为表示组成充电系统的充电器的内部结构的概略图;图4为表示对电动车辆的充电口连接充电器的充电电缆的状态的概略图;图5的(a)至(C)为表示伴随漏电和发热的不良状态的一例的说明图;图6为表示滤波处理对接收电压和供应电压产生的影响的说明图;图7为表示预充电模式以及正式充电模式中的充电器侧数据和车辆侧数据的变动状态的线图。符号说明10:充电系统11:电动车辆12:充电器13:电池(蓄电装置)14:充电电缆47 :通信线48 :充电控制单元(供应侧处理模块、接收侧处理模块、特征赋予模块、数据同步模块、判定模块、充电控制模块)
Vs :供应电压Vr:接收电压Is :供应电流
Ir :接收电流Ws :供应功率Wr :接收功率Ds :充电器侧数据(供应侧处理数据)Dr :车辆侧数据(接收侧处理数据)a I、a 2:特征点T :时间延迟
具体实施例方式以下,参照附图来详细说明本发明的实施方式。图I为表示本发明的一个实施方式所提供的充电系统10的充电状况的概略图。并且,图2为表示组成充电系统10的电动车辆11的内部结构的概略图。而且,图3为表示组成充电系统10的充电器12的内部结构的概略图。首先,如图I所示,电动车辆11中作为蓄电装置搭载有电池13,在对该电池13充电时,充电器12的充电电缆14连接到电动车辆11的充电口 15。而且,充电器12—边控制供应给电动车辆11的充电电流和充电电压,一边将电池13充电至预定的充电状态S0C。如图2所示,电动车辆11具有作为动力源的电动发电机20,电动发电机20通过驱动轴21连接到驱动轮22。并且,电动发电机20和电池13通过对直流电和交流电进行双向变换的变换器23进行连接。在此,连接电池13和变换器23的通电线24、25上设有主继电器26。并且,车体侧部的充电口 15上设置有受电连接器27,受电连接器27上设有一对受电端子27a、27b。其中一个受电端子27a通过受电线28连接于正极侧的通电线24,另一个受电端子27b通过受电线29连接于负极侧的通电线25。并且,电动车辆11中设有用于检测受电线28、29的电压,即接收电压Vr的电压传感器30,同时设有用于检测受电线28的电流,即接收电流Ir的电流传感器31。进一步地,受电连接器27上设有信号端子27c,该信号端子27c上连接有通信线32。并且,电动车辆11上设有对整个车辆进行综合控制的车辆控制单元33、控制电池13的电池控制单元34、控制变换器23的电机控制单元35。这些控制单元33 35通过通信网络36相互连接。在此,各控制单元33 35通过CPU和存储器等构成。如图3所示,充电器12中设有将来自外部电源40的交流电变换为充电用的直流电的电力变换部41。该电力变换部41通过整流电路、变压器、开关电路等而构成。并且,设在充电器12的充电电缆14的前端处设有相对受电连接器27可自由装卸的供电连接器42。该供电连接器42上设有与受电连接器27的受电端子27a、27b对应的一对供电端子42a、42b。其中一个供电端子42a通过供电线43连接于电力变换部41的正极端子41a,另一个供电端子42b通过供电线44连接于电力变换部41的负极端子41b。并且,充电器12中设有用于检测供电线43、44的电压,即供应电压Vs的电压传感器45,同时设有用于检测供电线43的电流,即供应电流Is的电流传感器46。进一步地,供电连接器42上设有信号端子42c,该信号端子42c上连接有通信线47。并且,充电器12中设有通过CPU和存储器等构成的充电控制单元48,由充电控制单元48对电力变换部41输出控制信号。在此,图4为表示对电动车辆11的充电口 15连接充电器12的充电电缆14的状态的概略图。如图4所示,通过在充电口 15的受电连接器27上连接充电电缆14的供电连接器42,变成通过供电线43、44和受电线28、29连接电力变换部41和电池13的状态。并且,通过在充电口 15的受电连接器27上连接充电电缆14的供电连接器42,变成经由通信线32、47连接车辆控制单元33和充电控制单元48的状态。如此,充电器12和电动车辆11被连接而进行充电时,从电池控制单元34向车辆控制单元33发送各种电池信息(电流指令值、电压指令值、实际电流值、实际电压值、电池单元温度、充电状态SOC等),同时这些电池信息从车辆控制单元33经由通信线32、47发送到充电控制单元48。而且,充电控制单元48向电力变换部41输出控制信号,以得到对应于电流指令值的供应电流Is和对应于电压指令值的供应电压Vs,并对电池13充电直至达到预定的充电状态S0C。在此,在前述的说明中,是从电动车辆11向充电器12指示了充电电流等,但是不限于此,可以基于充电状态 SOC等由充电器12的充电控制单元48设定充电电流等。在这种充电情形下,从充电器12向电动车辆11供应具有高电压和高容量的电力(例如,DC400VU00A),因此非常重要的一点是监视绝缘不良和供电线43、44的断线等而预先防止漏电和发热等。因此,充电控制单元48在充电过程中比较判定接收电压Vr和供应电压Vs。而且,当接收电压Vr和供应电压Ns超过预定量而相差很大时,充电控制单元48判定为发生了如图5(a)所示的供电线43、44的断线和连接器27、42的连接不良等现象而中止充电。并且,充电控制单元48在充电过程中比较判定接收电流Ir和供应电流Is。而且,当接收电流Ir和供应电流Is超过预定量而相差很大时,充电控制单元48判定为发生了如图5(b)和图5(c)所示的供电线43、44的短路和接地故障等现象而中止充电。在此,图5的(a)至(c)为表示伴随漏电和发热的不良状态的一例的说明图。如此地,起到判定模块的功能的充电控制单元48在比较接收电压Vr和供应电压Vs的同时比较接收电流Ir和供应电流Is,由此判定充电器12和电动车辆11之间的通电状态是否正常。但是,在利用通过电压传感器30、45和电流传感器31、46检测出的接收电压Vr、供应电压Vs、接收电流Ir、供应电流Is时,需要进行移动平均处理和加权平均处理等滤波处理而排除噪声的影响。在此,图6为表示滤波处理对接收电压Vr和供应电压Vs产生的影响的说明图。在此,虽然图6中表示滤波处理对接收电压Vr和供应电压Vs产生的影响,但是滤波处理对接收电流Ir和供应电流Is也产生相同的影响。如图6所示,对通过电压传感器30、45检测出的实测数据进行滤波处理,从而由实测数据加工出滤波处理后的判定用数据时,实测数据和判定用数据之间会发生时间延迟。该伴随滤波处理的时间延迟的长度根据滤波处理的内容而变化。即,当对电动车辆侧的接收电压Vr和接收电流Ir实施的滤波处理和对充电器侧的供应电压Vs和供应电流Is实施的滤波处理不相同时,在基于接收电压Vr和接收电流Ir的车辆侧数据(接收侧处理数据)Dr和基于供应电压Vs和供应电流Is的充电器侧数据(供应侧处理数据)Ds之间将会发生时间延迟。由此,为了比较车辆侧数据Dr和充电器侧数据Ds而判定绝缘不良和断线等,需要在掌握时间延迟而同步车辆侧数据Dr和充电器侧数据Ds的基础上相互比较。在此,充电控制单元48起到计算车辆侧数据Dr的接收侧处理模块的功能,同时还起到计算充电器侧数据Ds的供应侧处理模块的功能。在电动车辆侧检测出的接收电压Vr和接收电流Ir从车辆控制单元33通过通信线32、47发送到充电控制单元48。因此,起到充电控制模块的功能的充电控制单元48在执行以第一供应功率为上限对电池13充电的正式充电模式之前,先执行以小于第一供应功率的第二供应功率为上限对电池13充电的预充电模式。也就是说,充电控制单元48在执行以小供应功率进行充电的预充电模式之后,执行以大供应功率进行充电的正式充电模式。而且,充电控制单元48在预充电模式中检测出供应侧处理数据和接收侧处理数据之间的时间延迟,并在之后的正式充电模式中在基于时间延迟对供应侧处理数据和接收侧处理数据进行同步的基础上进行比较。在此,图7为表示预充电模式以及正式充电模式中的充电器侧数据Ds和车辆侧数据Dr的变动状态的线图。如图7所示,起到特征赋予模块的功能的充电控制单元48在预充电模式中使用电力变换部41对供应电压Vs暂时性地进行升降。在此,由于受电线28、29和供电线43、44发生连接,如图7的放大部分所不,接收电压Vr也与供应电压Vs联动而按照相同的时序暂时性地发生变化。据此,对供应电压Vs进行滤波处理的充电器侧数据Ds 呈现为向上方突出的曲线,同时对接收电压Vr进行滤波处理的车辆侧数据Dr也呈现为向上方突出的曲线。即,通过改变供应电压Vs,在充电器侧数据Ds上赋予特征点a I的同时,在车辆侧数据Dr上赋予特征点a 2。在此,作为改变供应电压Vs的方法,可以举出利用电力变换部41有计划地改变供应电流Is的方法。如此,由于在充电器侧数据Ds上赋予的特征点a I和在车辆侧数据Dr上赋予的特征点a 2意味着相同的时间点,因此起到数据同步模块的功能的充电控制单元48计量特征点a I和特征点ci2的时间间隔,计算因滤波处理而引起的充电器侧数据Ds与车辆侧数据Dr的时间延迟T(例如,0.5秒)。而且,在正式充电模式中判定绝缘不良和断线等时,考虑时间延迟T而比较充电器侧数据Ds (符号¢1)和车辆侧数据Dr(符号02)。S卩,若单纯比较在相同时间点输出的充电器侧数据Ds(符号¢1)和车辆侧数据Dr(符号¢3),则会错误判定为充电器侧数据Ds和车辆侧数据Dr存在很大差距AV2。对此,通过基于时间延迟T来同步车辆侧数据Dr和充电器侧数据Ds,能够比较充电器侧数据Ds (符号P I)和车辆侧数据Dr (符号0 2)。据此,可以恰当地识别充电器侧数据Ds和车辆侧数据Dr的差距A VI,能够准确判定绝缘不良和断线等。在前述说明中,在预充电模式通过有计划地改变供应电压Vs来使接收电压Vr被动地改变,但是不限于此,也可以通过有计划地改变接收电压Vr来使供应电压Vs被动改变。此时,可以暂时启动设在电动车辆11的电加热器等电气负载,从而有计划地改变电动车辆侧的接收电压Vr。并且,在前述的说明中,使供应电压Vs暂时性地发生了升降,但是不限于此,也可以将供应电压Vs抬高之后维持该水平。并且,在前述的说明中,抬高了供应电压Vs和接收电压Vr,但是不限于此,也可以拉低供应电压Vs和接收电压Vr。并且,在前述的说明中,将充电器侧数据Ds和车辆侧数据Dr所呈现的拐点捕捉为特征点a I、a 2,但是不限于此,可以将预定的电压变化量和电压变化速度以上(以下)的位置捕捉为特征点,也可以将预定的电压值以上(以下)的位置捕捉为特征点。进一步地,即使不改变供应电压而改变供应电流,也可以改变供应电压而发现拐点。例如,进行将供应电流在较短时间内提升至预定的电流值,然后保持一定值等操作,并监视供应电压的上升情况,由此同样也可以发现拐点。并且,在图7所示的情形中,比较了对供应电压Vs进行滤波处理的充电器侧数据Ds和对接收电压Vr进行滤波处理的车辆侧数据Dr,但是不限于此,如前所述,可以比较对供应电流Is进行滤波处理的充电器侧数据Ds和对接收电流Ir进行滤波处理的车辆侧数据Dr。此时,为了在充电器侧数据Ds和车辆侧数据Dr上赋予特征点,可以改变供应电流Is和接收电流Ir,也可以改变供应电压Vs和接收电压Vr。进一步地,在前述的说明中,为了判定绝缘不良和断线等,比较了对电动车辆侧的接收电压Vr和接收电流Ir进行滤波处理的车辆侧数据Dr和对充电器侧的供应电压Vs和供应电流Is进行滤波处理的充电器侧数据Ds,但是不限于此,可以比较对电动车辆侧的接收功率Wr( = IrXVr)进行滤波处理的车辆侧数据Dr和对充电器侧的供应功率Ws ( = IsXVs)进行滤波处理的充电器侧数据Ds0此时,在充电器侧数据Ds和车辆侧数据Dr上赋予特征点时,同样既可以改变供应电流 Is和接收电流Ir,也可以改变供应电压Vs和接收电压Vr。本发明不限于前述的实施方式,可以在不脱离其主旨的范围内进行各种变更。在前述的说明中,充电器12内的充电控制单元48起到供应侧处理模块、接收侧处理模块、特征赋予模块、数据同步模块、判定模块和充电控制模块的功能,但是不限于此。例如,可以使电动车辆11内的车辆控制单元33起到供应侧处理模块、接收侧处理模块、特征赋予模块、数据同步模块、判定模块和充电控制模块的功能。并且,供应侧处理模块、接收侧处理模块、特征赋予模块、数据同步模块、判定模块和充电控制模块这些模块可以由充电控制单元48和车辆控制单元33分担。并且,作为计算车辆侧数据Dr时的滤波处理和计算充电器侧数据Ds时的滤波处理,可以列举移动平均处理和加权平均处理,但是不限于这些处理方法。并且,可以利用电路进行硬件性的滤波处理,也可以使用程序进行软件性的滤波处理。并且,图示的电动车辆11为作为驱动源而只具备电动发电机20的电动车辆,但是也可以是作为驱动源而具备电动发电机20和引擎的混合型电动车辆。并且,作为蓄电装置,采用了锂离子二次电池和镍氢二次电池等电池13,但是不限于此,作为蓄电装置可以使用锂离子电容器和双电层电容器等电容器。需要说明的是,在前述的说明中,使用了在充电电缆14具备接触式的供电连接器42的导电方式的充电器12,但是不限于此,可以使用在充电电缆具备非接触式的供电连接器的感应方式的充电器。
权利要求
1.一种充电系统,通过充电电缆连接充电器和电动车辆,对搭载于所述电动车辆的蓄电装置进行充电,其特征在于,所述充电系统包括 供应侧处理模块,对所述充电器内的供应电压、供应电流或供应功率进行预定的滤波处理而计算出供应侧处理数据; 接收侧处理模块,对所述电动车辆内的接收电压、接收电流或接收功率进行预定的滤波处理而计算出接收侧处理数据; 特征赋予模块,改变供应电压、供应电流、接收电压和接收电流中的至少一个而在所述供应侧处理数据和所述接收侧处理数据上赋予特征点; 数据同步模块,基于所述供应侧处理数据和所述接收侧处理数据的特征点,同步所述供应侧处理数据和所述接收侧处理数据; 判定模块,比较进行了同步的所述供应侧处理数据和所述接收侧处理数据,判定所述 充电器和所述电动车辆之间的通电状态是否正常。
2.根据权利要求I所述的充电系统,其特征在于所述供应侧处理模块所进行的滤波处理和所述接收侧处理模块所进行的滤波处理是不同的。
3.根据权利要求I或2所述的充电系统,其特征在于具备充电控制模块,该充电控制模块具有以第一供应功率为上限对所述蓄电装置充电的正式充电模式和以小于所述第一供应功率的第二供应功率为上限对所述蓄电装置充电的预充电模式, 在所述正式充电模式之前进行的所述预充电模式中,所述特征赋予模块在所述供应侧处理数据和所述接收侧处理数据上赋予特征点。
4.根据权利要求I或2所述的充电系统,其特征在于所述特征赋予模块改变供应电流或接收电流而在所述供应侧处理数据和所述接收侧处理数据上赋予特征点。
5.根据权利要求I或2所述的充电系统,其特征在于所述数据同步模块基于特征点计算所述供应侧处理数据和所述接收侧处理数据之间的时间延迟,基于时间延迟同步所述供应侧处理数据和所述接收侧处理数据。
6.根据权利要求I或2所述的充电系统,其特征在于所述供应侧处理模块、所述接收侧处理模块、所述特征赋予模块、所述数据同步模块和所述判定模块设置在所述充电器中。
7.根据权利要求6所述的充电系统,其特征在于所述电动车辆内的接收电压、接收电流或接收功率通过所述充电电缆内的通信线被发送到所述接收侧处理模块。
全文摘要
本发明公开一种充电系统,用于准确判定充电器和电动车辆之间的通电状态。将充电器的充电电缆连接到电动车辆,对充电器侧的供应电压暂时性地进行升降。由于充电器和电动车辆发生连接,电动车辆侧的接收电压也与供应电压联动而升降。据此,在对供应电压进行滤波处理的充电器侧数据上赋予特征点,在对接收电压进行滤波处理的车辆侧数据上赋予特征点。而且,基于特征点计算因滤波处理而引起的充电器侧数据和车辆侧数据之间的时间延迟。在判定充电器和电动车辆之间的绝缘不良等时,在基于时间延迟同步充电器侧数据和车辆侧数据的基础上进行比较。据此,能够恰当地比较数据,能够准确判定绝缘不良等。
文档编号G01R31/00GK102729833SQ20121009112
公开日2012年10月17日 申请日期2012年3月30日 优先权日2011年3月31日
发明者大伴洋祐 申请人:富士重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1