光电编码器及其光电转化芯片与定光栅的贴合结构的制作方法

文档序号:12188199阅读:1414来源:国知局
光电编码器及其光电转化芯片与定光栅的贴合结构的制作方法与工艺

本实用新型涉及光电编码器领域,具体而言,涉及一种光电编码器及其光电转化芯片与定光栅的贴合结构。



背景技术:

光电编码器是一种光学、机械与电子紧密结合的数字化传感器,其利用光电原理将直线运动或转角运动的运动特征参数转化为数字量,从而完成对运动位移、位置、速度的精密测量。

光电编码器包括以一定结构形式设计的码盘、定光栅和通用的光电转化芯片之间,且必须确保这三者之间的相对位置精度。其中,定光栅和光电转化芯片之间的光栅贴合精度是关键点,它影响着光电编码器最原始的光电信号的质量。

在通用的光电转化芯片上排列着一定数量的矩形“光窗”,当光照射到光窗上时,对应的光敏二极管阵列(PD)便产生电信号,这些光窗分散排列在光电转化芯片的接收端面上。相应地,在定光栅上则分布着等量的一定结构形式的透光“狭缝”。光栅贴合就是要将光电转化芯片的接收端面和定光栅贴合在一起,同时保证其上的“光窗”和“狭缝”的位置配合精度。

由于光电转化芯片和定光栅的物理尺寸较小,并且在通用的光电转化芯片上没有任何的位置标记,因此“光窗”和透光“狭缝”的相对位置的贴合精度很难保证,增加了生产难度;同时,如果这两者之间的位置配合无法保证,将影响着编码器的工作性能和测量精度。



技术实现要素:

本实用新型实施例中提供一种光电编码器及其光电转化芯片与定光栅的贴合结构,以解决现有技术中光栅贴合精度不高,从而影响光电编码器的测量精度和工作可靠性的问题。

为实现上述目的,本实用新型实施例提供一种光电转化芯片与定光栅的贴合结构,包括第一定位标记和用于在贴合时与所述第一定位标记对位的第二定位标记,所述第一定位标记形成在所述光电转化芯片上,所述第二定位标记形成在所述定光栅上,第一定位标记由光电转化芯片的多个增量码道之间的光窗分界线构成。

作为优选,所述第一定位标记与所述第二定位标记几何相似。

作为优选,所述第一定位标记的尺寸大于所述第二定位标记的尺寸。

作为优选,所述第一定位标记包括纵向标记线A和与所述纵向标记线A交叉设置的横向标记线A。

作为优选,所述第二定位标记包括纵向标记线B和与所述纵向标记线B交叉设置的横向标记线B。

作为优选,所述纵向标记线A和所述纵向标记线B为直线,所述横向标记线A和所述横向标记线B为弧线。

作为优选,所述纵向标记线A的长度大于所述纵向标记线B的长度、和/或所述横向标记线A的长度大于所述横向标记线B的长度。

作为优选,所述第二定位标记沿所述定光栅的多组增量码道之间的光窗分界线设置。

作为优选,所述定光栅的各绝对码道在所述定光栅的纵向方向上交错地设置。

本实用新型还提供了一种光电编码器,包括上述的光电转化芯片与定光栅的贴合结构。

当光电转化芯片与定光栅之间进行贴合时,只需要将第一定位标记与第二定位标记几何重合,即便实现两者之间的精确贴合,进而保证了光电编码器的测量精度和工作可靠性,具有结构简单、成本低的特点。

附图说明

图1是本实用新型实施例的光电转化芯片的接收端面的结构示意图;

图2是本实用新型实施例的定光栅的结构示意图。

附图标记说明:1、第一定位标记;2、第二定位标记;3、增量码道;4、增量码道;5、绝对码道;6、绝对码道。

具体实施方式

下面结合附图和具体实施例对本实用新型作进一步详细描述,但不作为对本实用新型的限定。

现有技术中,通用的光电转化芯片上没有专门的位置标记,当定光栅要与这样的光电转化芯片进行贴合时,没有任何的位置参照,加工时完全不知道两者的位置是否配合上了或配合到何种程度了,因此,现有技术无法对光电转化芯片与定光栅进行准确的贴合。

本实用新型提供了一种光电转化芯片与定光栅的贴合结构,以解决无位置标记的通用光电转化芯片与定光栅的位置精确贴合问题,从而降低光电转换芯片与定光栅的贴合难度、提高光电编码器的测量精度、保证光电编码器在应用过程中的可靠性。

如图1和图2所示,为了实现准确地贴合,本实用新型中的该贴合结构采用了两个定位标记,即第一定位标记1和第二定位标记2,其中,第一定位标记1形成在光电转化芯片上,第二定位标记2形成在定光栅上。其中,所述第一定位标记1由所述光电转化芯片的多个增量码道3之间的光窗分界线构成,这样本实用新型中的第一定位标记1是由半导体厂商在制作光窗后由其光窗边界自然形成的,无需要另外在光电转化芯片上设置特别的定位标记。贴合时,第一定位标记1与第二定位标记2相互配合使用,只要使这两个定位标记以预定的方式对准,即可实现光电转化芯片与定光栅的准确贴合。

可见,采用上述技术方案,当光电转化芯片与定光栅之间进行贴合时,只需要将第一定位标记1与第二定位标记2几何重合,其中,重合的范围和程度越大,则对应光栅贴合的位置就越准确。当两者重合面积达到最大时,在某种程度上便可认为两者之间的相对位置完成了精确贴合,进而保证了光电编码器的测量精度和工作可靠性,具有结构简单、成本低的特点。

第二定位标记2可以是形成在定光栅上的凹槽或凸起,也可以是印刷在定光栅上的印刷层。

由于第一定位标记1是由半导体厂商在制作光窗后由其光窗边界自然形成的,因此通过第一定位标记1与第二定位标记2的配合,使得可在通用的光电转化芯片上即使没有任何的位置标记,也能保证了光电转化芯片与定光栅的精确位置配合。

为了方便对位,本实用新型优选使第一定位标记1与第二定位标记2的形状几何相似,例如,如果是十字形,那么第一和第二定位标记均为十字形,只是在大小方面不同。当然,也可以采用非几何相似的形状,例如采用凹陷和凸起相配合的结构。显然,第一定位标记1和第二定位标记2也可以采用不同的形状,例如,第一定位标记1采用类十字形,而第二定位标记2则采用圆形等,均属于本实用新型的保护范围。

更为优选地,第一定位标记1的尺寸大于第二定位标记2的尺寸。这样,在对位贴合时,可以将通过将尺寸较小的第二定位标记2完全重叠于尺寸较大的第一定位标记1的范围之内时,则可取得最大的重合面积。如果第二定位标记2的尺寸稍大于第一定位标记1的尺寸,那么该类十字狭缝就会延伸到光窗里面,从而使一些不希望的光入射到光窗内,造成光信号误差。

在一个实施例中,本实用新型的第一定位标记1和第二定位标记2采用十字形或类十字形的结构。第一定位标记1包括纵向标记线A和与纵向标记线A交叉设置的横向标记线A。优选地,第二定位标记2包括纵向标记线B和与纵向标记线B交叉设置的横向标记线B。

在类十字形结构中,优选地,纵向标记线A和纵向标记线B为直线,横向标记线A和横向标记线B为弧线,当然,纵向标记线A和纵向标记线B、横向标记线A和横向标记线B也可均为弧线。在十字形结构中,纵向标记线A和纵向标记线B、横向标记线A和横向标记线B均为直线,且横向标记线A与纵向标记线A垂直、横向标记线B与纵向标记线B垂直。

为了使第一定位标记1的尺寸大于第二定位标记2的尺寸,在上述实施例中,可使纵向标记线A的长度大于纵向标记线B的长度、和/或横向标记线A的长度大于横向标记线B的长度,从而构成两个几何相似的图案。

如图1所示,光电转化芯片包括四个增量码道3的“狭缝”,在增量码道3的上下方分别设置有多个绝对码道6的“狭缝”,其中,这四个增量码道3布置成2X2的矩阵,从而其光窗边界线形成一个类十字形,此时本实用新型中的第一定位标记1可以为该光窗分界线形成的类十字形。

如图2所示,定光栅包括四组增量码道4、以及位于这四组增量码道4的上方及下方的绝对码道5。其中,四组增量码道4形成纵向和横向的光窗分界区域,而第二定位标记2沿定光栅的多组增量码道4之间的光窗分界线设置。

如图2所示,优选地,定光栅的各绝对码道5在定光栅的纵向方向上交错地设置。这样,可避免各个绝对码道之间的相互影响,使各绝对码道分散排列在定光栅几何中心的两侧,而不是集中排列在一条线上。

本实用新型还提供了一种光电编码器,包括上述的光电转化芯片与定光栅的贴合结构。

当然,以上是本实用新型的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型基本原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本实用新型的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1