一种基于CORS网络差分定位的无人机飞控系统的制作方法

文档序号:11916432阅读:725来源:国知局

本实用新型涉及GNSS接收机测量领域,具体涉及到一种基于CORS网络差分定位的无人机飞控系统。



背景技术:

随着信息技术的发展,无人机已经由军工领域进入到消费电子领域,尤其是旋翼类无人机市场近几年呈现出井喷式增长,相应的测绘、航拍等专业领域对无人机的需求也愈来愈强烈。不同于玩具无人机的手动操控,高端消费无人机、专业测绘无人机等对无人机的自动化、飞行精度要求愈来愈高,而飞控系统对位置信息的精确计算就成了其关键。

目前,无人机定位通常采用GPS单点定位,定位精度在米级,远远达不到专业测绘厘米级位置精度的要求。采用RTK差分的飞控系统,无疑成了当下高精度定位的最佳方案。目前市场上现有的RTK差分飞控系统,多采用自架基站,电台传输差分数据的RTK差分定位方案,需要地面高精度RTK基站支持,也具有远距离定位精度降低、电台通信距离有限的弊端。随着CORS基站国内覆盖率的不断提高,无人机通过3G(或2G/4G)移动网络,获取CORS网络差分数据解算高精度位置信息成为可能。



技术实现要素:

本实用新型提供了一种基于CORS网络差分定位的无人机飞控系统,包括:

MEMS传感单元,用于采集角速度、线速度、气压和磁场数据;

GNSS定位单元,用于获取GNSS定位数据;

网络通讯单元,用于获取CORS差分数据;

姿态/导航控制单元,用于控制无人机的姿态和导航;

主控单元,所述主控单元包括第一解算模块、第二解算模块、第三解算模块,

所述第一解算模块连接所述MEMS传感单元,用于根据接收到的角速度、线速度、气压和磁场数据进行姿态、方向和高度解算;

所述第二解算模块连接所述GNSS定位单元和所述网络通讯单元,用于根据接收到的定位数据和CORS差分数据进行RTK位置解算;

所述第三解算模块连接所述第一解算模块和所述第二解算模块,用于根据所述第一解算模块和所述第二解算模块的解算数据输出姿态/导航控制指令至所述姿态/导航控制单元。

上述的基于CORS网络差分定位的无人机飞控系统,其中,所述MEMS传感单元包括加速度计、陀螺仪、电子罗盘、气压计。

上述的基于CORS网络差分定位的无人机飞控系统,其中,所述网络通讯单元为2G、3或4G通讯单元。

上述的基于CORS网络差分定位的无人机飞控系统,其中,所述无人机飞控系统还包括无线遥控单元,与所述主控单元连接,所述无线遥控单元用于接收外部遥控器发送的遥控指令,并将遥控指令传输到主控单元,主控单元对遥控指令进行转换后发送至姿态/导航控制单元。

上述的基于CORS网络差分定位的无人机飞控系统,其中,所述无人机飞控系统还包括扩展IO端,所述扩展IO端与所述主控单元的功能扩展模块相连;

通过所述扩展IO端将外接的扩展设备接入到无人机飞控系统。

上述的基于CORS网络差分定位的无人机飞控系统,其中,无人机飞控系统还包括监控模块,所述监控模块与所述主控单元相连;

所述监控模块设有摄像头。

本实用新型利用3G移动网络,获取CORS基站差分数据,实现飞控系统的RTK差分定位,可以满足高端消费无人机、专业测绘无人机厘米级定位精度的需求。相比自架基站,电台传输差分数据的RTK差分定位方案,采用CORS网络获取差分更加快捷、高效,也消除了电台传输方式远距离定位精度降低、电台通信距离有限的弊端,也符合未来RTK差分数据网络化的发展趋势。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本实用新型及其特征、外形和优点将会变得更明显。在全部附图中相同的标记指示相同的部分。并未刻意按照比例绘制附图,重点在于示出本实用新型的主旨。

图1为本实用新型提供的一种基于CORS网络差分定位的无人机飞控系统的示意图。

具体实施方式

在下文的描述中,给出了大量具体的细节以便提供对本实用新型更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本实用新型可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本实用新型发生混淆,对于本领域公知的一些技术特征未进行描述。

为了彻底理解本实用新型,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本实用新型的技术方案。本实用新型的较佳实施例详细描述如下,然而除了这些详细描述外,本实用新型还可以具有其他实施方式。

本实用新型提供了一种基于CORS网络差分定位的无人机飞控系统,包括:

MEMS传感单元2,用于采集角速度、线速度、气压和磁场数据;

GNSS定位单元3,用于获取GNSS定位数据;用于获取GNSS定位数据,与从CORS网络获取的差分数据进行RTK解算,以获取厘米级高精度的定位信息;

网络通讯单元4,用于实现无人机的网络通讯,登录CORS系统,获取差分数据,此外,在实际应用中,也可根据需要利用移动网络扩展远程监控功能;

姿态/导航控制单元5,用于控制无人机的姿态和导航;通过导航控制单元用于控制无人机电机、舵机转速、转角,实现对无人机的导航控制;

主控单元1,所述主控单元1包括第一解算模块1a、第二解算模块1b、第三解算模块1c;

所述第一解算模块1a连接所述MEMS传感单元2,用于根据接收到的角速度、线速度、气压和磁场数据进行姿态、方向和高度解算;

所述第二解算模块1b连接所述GNSS定位单元3和所述网络通讯单元4,用于根据接收到的定位数据和CORS差分数据进行RTK位置解算;

所述第三解算模块1c连接所述第一解算模块1a和所述第二解算模块1b,用于根据所述第一解算模块1a和所述第二解算模块1b的解算数据输出姿态/导航控制指令至所述姿态/导航控制单元5。

在本实用新型一可选的实施例中,所述MEMS传感单元2包括加速度计、陀螺仪、电子罗盘、气压计。

在本实用新型一可选的实施例中,所述网络通讯单元4为2G、3或4G通讯单元。

在本实用新型一可选的实施例中,所述无人机飞控系统还包括无线遥控单元1d,与所述主控单元1连接,所述无线遥控单元1d用于接收外部遥控器6发送的遥控指令,并将遥控指令传输到主控单元1,主控单元1对遥控指令进行转换后发送至姿态/导航控制单元5。

在本实用新型一可选的实施例中,所述无人机飞控系统还包括扩展IO端1e,所述扩展IO端1e与所述主控单元1的功能扩展模块相连;通过所述扩展IO端1e将外接的扩展设备7接入到无人机飞控系统,例如拓展航拍、植保等其他设备。

在本实用新型一可选的实施例中,无人机飞控系统还包括监控模块(未示出),所述监控模块与所述主控单元1相连,用于在无人机航行过程中采集监控数据,其中,所述监控模块设有摄像头。

本实用新型利用3G移动网络,获取CORS基站差分数据,实现飞控系统的RTK差分定位,可以满足高端消费无人机、专业测绘无人机厘米级定位精度的需求。相比自架基站,电台传输差分数据的RTK差分定位方案,采用CORS网络获取差分更加快捷、高效,也消除了电台传输方式远距离定位精度降低、电台通信距离有限的弊端,也符合未来RTK差分数据网络化的发展趋势。

以上对本实用新型的较佳实施例进行了描述。需要理解的是,本实用新型并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本实用新型技术方案范围情况下,都可利用上述揭示的方法和技术内容对本实用新型技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例,这并不影响本实用新型的实质内容。因此,凡是未脱离本实用新型技术方案的内容,依据本实用新型的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本实用新型技术方案保护的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1