一种应用于补偿器的激光诱导微沟槽表面纳米化检测方法与流程

文档序号:17558618发布日期:2019-04-30 18:49阅读:192来源:国知局
一种应用于补偿器的激光诱导微沟槽表面纳米化检测方法与流程

本发明属于材料检测领域,具体涉及一种应用于补偿器的激光诱导微沟槽表面纳米化检测方法。



背景技术:

波纹补偿器属于一种补偿元件,由主体波纹管(一种弹性元件)和端管、支架、法兰及导管等附件组成,主要用于各种管道中.其工作原理是利用自身的弹性变形,补偿管道由于热变形、机械变形和各种机械振动而产生的轴向、角向、侧向及其组合位移,补偿器具有耐压、密封、耐腐蚀、耐高温、耐冲击及减振降噪的功能,从而起到降低管道变形和提高管道使用寿命的作用.不锈钢波纹管补偿器作为敏感元件、减震元件、补偿元件、密封元件、阀门元件及管路连接件,广泛应用于自动控制和测量仪表、真空技术、机械工业、电力工业、交通运输及原子能工业等领域中.由于补偿器可靠性是通过设计、制造、安装、运行管理等多个环节来保证的,任何一个环节的失控都会导致其寿命的降低甚至失效。国际上,补偿器生产技术主要在欧美国家发展较为成熟,使用寿命7-10年,由于多种因素在我国工业管道上很少应用进口产品。因此,确保波纹管的强度、硬度、疲劳强度对于安全性能的提高,寿命的延展均有重要作用。

引入激光相变硬化技术,在波纹管的加工成形后,通过激光相变硬化技术获得足够的硬度和强度。同时研发调节激光光斑大小与靶材定位的装置及方法,探究不锈钢材料相变激光能量临界阈值及其实现条件,提升激光相变优化地效率研发扫描宽度100mm相变硬化工艺。为确保加工效果,必须采用破坏性试验对抽样材料拍摄透射电镜判断其是否产生纳米晶。

目前,国内尚无针对补偿器中关键部位的纳米晶检测宏观检测方法,只能通过对试样进行透射电镜的拍摄进行局部晶粒尺寸的观察,同时通过电子衍射,当其衍射花样呈现同心圆环的形式时,可以断言试样在所观察的区域形成纳米晶,但这种方法存在检测周期过长、破坏材料表面、偶然性较大、测量晶粒尺寸误差较大等缺陷,故上述检测方法存在在实际生产中无法得到运用,因此实际生产过程中急需一种新的检测方法用于检测材料表面是否有纳米晶的形成。



技术实现要素:

本发明要解决的技术问题是提供一种应用于补偿器的激光诱导微沟槽表面纳米化检测方法,以解决现有补偿器关键表面纳米晶检测技术中检验周期长、破坏材料表面、偶然性较大、测量晶粒尺寸误差较大的技术问题。

为解决上述技术问题,本发明的实施例提供一种应用于补偿器的激光诱导微沟槽表面纳米化检测方法,其特征在于,包括以下具体过程:

s1、制备若干块440c不锈钢试样;将若干块440c不锈钢试样分为5组并分别进行激光微沟槽工艺,对每一组440c不锈钢试样以不同的激光冲击功率,制备成多组补偿器的激光诱导微沟槽表面样品;基于光学原理对原有光斑进行二次变换,使之聚焦并得到均匀的方形光斑,保证焦点处方光斑宽度为300μm;激光冲击后,在每一组补偿器的激光诱导微沟槽表面样品形成宽度为300μm的微沟槽;

s2、采用光功率计对沟槽表面进行检测,波形平滑处随机取测点3个,并检测振荡对应的点(由于激光冲击采用的是脉冲激光,表面存在搭接,当表面处理不均匀处散射率较高,从而出现振荡),保证整个沟槽纳米晶检测的覆盖率,进而保证测量结果的完备性和准确性;利用x射线衍射仪残余应力测试仪中测量激光冲击区域表面残余应力,获得不同冲击次数下激光冲击后的一组残余压应力;对每一组经激光冲击强化后的补偿器的激光诱导微沟槽表面样品,以x射线应力仪(xstress3000)中直径为0.3mm的毛细管进行x射线衍射,每个测点在0°,45°以及90°三个方向各测1次,获得各测试点处的残余压应力,得到一组残余应力测试结果并获得相应的半高宽值;

s3、对一组残余压应力图中不同方向进行分析,计算出每种工艺参数下不同方向的残余压应力均值;

s4、建立激光冲击强化过程中不同冲击功率与不同方向的残余压应力均值的二维坐标系,绘制均值随工艺参数变化的曲线图验证激光功率为3gw/cm2时三个方向残余应力差值不超过10%,半高宽阈值2.67°,深度为10μm时,e690高强钢表面形成纳米晶,;

s5、使用三维形貌仪对微沟槽深度进行测量,在激光冲击作用下,微沟槽深度为10μm时,半高宽达到2.67°,此时三个方向的残余应力趋于一致;再次增加冲击次数对残余应力影响不大,三个方向的残余应力值仍保持差值不超过10%,此时判断有纳米晶生成;

s6、通过透射电镜及电子衍射实验,验证半高宽阈值2.67°处所对应的激光冲击强化的冲击功率为440c不锈钢表面形成纳米晶的最小工艺参数;当冲击微造型对应的工艺参数超过其最小工艺参数时,440c不锈钢表面形成纳米晶。

进一步的,步骤s1中,制备成多组补偿器的激光诱导微沟槽表面样品过程,具体包括,采用440c不锈钢,通过线切割将材料加工成30mm×25mm×5mm的440c不锈钢试样;采用砂纸对440c不锈钢试样表面打磨抛光,并对440c不锈钢试样的表面处理并吹干;采用厚0.1mm的3m铝膜作为吸收保护层,便于粘贴和清除,采用去离子水作为约束层;分别以冲击功率为1.33gw/cm2、2.34gw/cm2、3gw/cm2、5.53gw/cm2、7.96gw/cm2对每一组440c不锈钢试样,制备成多组补偿器的激光诱导微沟槽表面样品;并将多组补偿器的激光诱导微沟槽表面样品分为样品组一、样品组二、样品组三、样品组四和样品组五。

其中,所述440c不锈钢试样表面处理的过程具体包括以下步骤:a.采用纯乙醇或丙酮清洗剂对样品进行浸泡清洗,浸泡清洗时间为3-10min;b.对浸泡清洗后的样品进行超声清洗,超声清洗时间为1-5min,确保样品表面无残留杂质。

进一步的,步骤s1中,基于光学原理对原有光斑进行二次变换包括以下步骤:采用多面反射镜搭建光路缩小光斑范围,并使光斑形状变为方形,确保微沟槽的质量。

进一步的,所述透射电镜及电子衍射实验包括以下步骤:先对x射线衍射后的多组补偿器的激光诱导微沟槽表面样品进行fib制样后分别拍摄透射电镜图,对局部晶粒尺寸的检测;后对拍摄电镜图后的多组补偿器的激光诱导微沟槽表面样品分别进行电子衍射,当其电子衍射图中花样呈现同心圆环的形状时,表明晶粒取向随机,纳米晶分布均匀,即所观察的区域存在分布均匀的纳米晶粒。

本发明的上述技术方案的有益效果如下:本发明的一种应用于补偿器的激光诱导微沟槽表面纳米化检测方法,验证了440c不锈钢表面形成纳米晶的方法的可靠性,通过采用超过440c不锈钢表面形成纳米晶的最小工艺参数的工艺参数进行的极端塑性应变,能够产生在440c不锈钢表面形成纳米晶,无需破坏440c不锈钢材料表进行检测,适用于实际生产过程。

附图说明

图1为本发明中微沟槽示意图;

图2为本发明的实施例中针对不同方向的残余压应力均值随冲击次数变化曲线图;

图3为本发明实施例中不同激光冲击功率密度下三个方向的半高宽值;

图4为本发明实施例中样品组五在功率密度为7.96gw/cm2条件下激光冲击后的tem形貌和电子衍射花样图;

图5为光功率计检测结果;

图6为实验装置示意图;

图7为本发明中微沟槽深度折线图。

具体实施方式

为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。

在本发明的描述中,需要说明的是,术语“中心”、“上”“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。

在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作为广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。

一种应用于补偿器的激光诱导微沟槽表面纳米化检测方法,包括以下具体过程:

s1、制备若干块440c不锈钢试样;将若干块440c不锈钢试样分为5组并分别进行激光微沟槽工艺,对每一组440c不锈钢试样以不同的激光冲击功率,制备成多组补偿器的激光诱导微沟槽表面样品;激光冲击后,在每一组补偿器的激光诱导微沟槽表面样品形成宽度为300μm的微沟槽;基于光学原理对原有光斑进行二次变换,使之缩小并得到均匀的方形光斑,如图1所示;基于光学原理对原有光斑进行二次变换包括以下步骤:采用多面反射镜搭建光路缩小光斑范围,并使光斑形状变为方形,确保微沟槽的质量。

制备成多组补偿器的激光诱导微沟槽表面样品过程,具体包括,采用440c不锈钢,通过线切割将材料加工成30mm×25mm×5mm的440c不锈钢试样;采用砂纸对440c不锈钢试样表面打磨抛光,并对440c不锈钢试样的表面处理并吹干;采用厚0.1mm的3m铝膜作为吸收保护层,便于粘贴和清除,采用去离子水作为约束层;分别以冲击功率为1.33gw/cm2、2.34gw/cm2、3gw/cm2、5.53gw/cm2、7.96gw/cm2对每一组440c不锈钢试样,制备成多组补偿器的激光诱导微沟槽表面样品;其扫描速度可选用50mm/s、75mm/s和100mm/s。并将多组补偿器的激光诱导微沟槽表面样品分为样品组一、样品组二、样品组三、样品组四和样品组五;激光冲击具体工艺参数如表1所示。

表1激光冲击具体工艺参数表

其中,所述440c不锈钢试样表面处理的过程具体包括以下步骤:a.采用纯乙醇或丙酮清洗剂对样品进行浸泡清洗,浸泡清洗时间为3-10min;b.对浸泡清洗后的样品进行超声清洗,超声清洗时间为1-5min,确保样品表面无残留杂质。

s2、采用光功率计对沟槽表面进行检测,采用图5所示的光功率计,检测原理如图6所示,检测结果如图7所示,波形平滑处随机取测点3个,并检测振荡对应的点(由于激光冲击采用的是脉冲激光,表面存在搭接,当表面处理不均匀处散射率较高,从而出现振荡),保证整个沟槽纳米晶检测的覆盖率,进而保证测量结果的完备性和准确性;利用x射线衍射仪(xstress3000)中测量激光冲击区域表面残余应力,获得不同冲击次数下激光冲击后的一组残余压应力;对每一组经激光冲击强化后的补偿器的激光诱导微沟槽表面样品,以x射线衍射仪(xstress3000)中直径为0.3mm的毛细管进行x射线衍射,以保证测量结果符合每个测点在0°,45°以及90°三个方向各测1次,获得各测试点处的残余压应力,得到一组残余应力测试结果并获得相应的半高宽值,不同激光冲击功率密度下三个方向的半高宽值(fwhm)如图2所示。

s3、对步骤s2中所得的一组残余压应力图中不同方向进行分析,计算出每种工艺参数下不同方向的残余压应力均值,不同方向的残余压应力均值随冲击次数变化趋势如图3所示;对一组残余压应力图中不同方向进行分析,计算出每种工艺参数下不同方向的残余压应力均值。因此,440c不锈钢表面发生极端塑形变形时,其半高宽的宽化程度完全由晶粒细化的程度决定,所以用半高宽表征纳米晶的形成程度是合理的。

s4、建立激光冲击强化过程中不同冲击功率与不同方向的残余压应力均值的二维坐标系,绘制均值随工艺参数变化的曲线图,验证激光功率为3gw/cm2时三个方向残余应力近似相等(三个方向的残余应力值差值不超过10%),半高宽阈值2.67°,深度为10μm时,e690高强钢表面形成纳米晶。

s5、使用三维形貌仪对微沟槽深度进行测量,在激光冲击作用下,微沟槽深度为10μm时,半高宽达到2.67°,此时三个方向的残余应力趋于一致;再次增加冲击次数对残余应力影响不大,三个方向的残余应力值仍保持相近状态(三个方向的残余应力值差值不超过10%),此时判断有纳米晶生成。

s6、通过透射电镜及电子衍射实验,验证半高宽阈值2.67°处所对应的激光冲击强化的冲击功率为440c不锈钢表面形成纳米晶的最小工艺参数;当冲击微造型对应的工艺参数超过其最小工艺参数时,440c不锈钢表面形成纳米晶。其中,所述透射电镜及电子衍射实验包括以下步骤:先对x射线衍射后的多组补偿器的激光诱导微沟槽表面样品进行fib制样后分别拍摄透射电镜图,对局部晶粒尺寸的检测;后对拍摄电镜图后的多组补偿器的激光诱导微沟槽表面样品分别进行电子衍射,当其电子衍射图中花样呈现同心圆环的形状时,表明晶粒取向随机,纳米晶分布均匀,即所观察的区域存在分布均匀的纳米晶粒。样品组五在功率密度为7.96gw/cm2条件下激光冲击后的tem形貌和电子衍射花样图,如图4所示,其中图4中左侧图为样品组五在功率密度为7.96gw/cm2条件下激光冲击后的tem形貌图,图4中右侧图为样品组五在功率密度为7.96gw/cm2条件下激光冲击后的电子衍射花样图。由上,验证阈值所在点2.67°处所对应的激光冲击强化工艺的功率密度5.53gw/cm2为440c不锈钢表面形成纳米晶的最小功率密度;当激光冲击强化工艺的功率密度超过其最小功率密度时,440c不锈钢表面形成纳米晶。

本发明的440c不锈钢表面形成纳米晶的检测方法,验证了440c不锈钢表面形成纳米晶的方法的可靠性,通过采用超过440c不锈钢表面形成纳米晶的最小工艺参数的工艺参数进行的极端塑性应变,能够产生在440c不锈钢表面形成纳米晶,无需破坏440c不锈钢材料表进行检测,适用于实际生产过程。

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1