光谱仪及其组装方法与流程

文档序号:32976808发布日期:2023-01-17 21:26阅读:50来源:国知局
光谱仪及其组装方法与流程

1.本技术涉及光学测量装置的技术领域,尤其涉及一种光谱仪及其组装方法。


背景技术:

2.光谱仪是应用光学原理,将成分复杂的光分解为光谱线的科学仪器。光谱仪可对物质的结构和成分进行观测、分析和处理,且具有分析精度高、测量范围大、速度快和样品用量少等优点。因此,举凡分子特性的分辨、浓度的量测、物质的鉴定、天体光谱的量测等都需要光谱仪的协助。此外,光谱仪更是广泛地被运用于冶金、地质、石油化工、医药卫生、环境保护、资源和水文勘测等各领域。
3.然而,现有的光谱仪大多具有体积庞大、构造复杂、价格昂贵等缺点。因此,如何将光谱仪微小化、集成化成为光谱仪发展中最大的课题。


技术实现要素:

4.本发明提供一种光谱仪及其组装方法,能够缩小体积以及减少热涨冷缩对光学效果的影响。
5.本发明提供一种光谱仪,包括机座、光输入模块、第一凹面镜、第一弹性件、绕射光栅以及影像感测模块。机座具有第一定位部。光输入模块设置于机座。第一凹面镜设置于机座,其中第一凹面镜以其功能侧朝向第一定位部。第一弹性件设置于机座与第一凹面镜之间,其中第一弹性件的弹性力使第一凹面镜以其功能侧承靠于第一定位部。绕射光栅设置于机座,其中绕射光栅的功能侧包括绕射区。影像感测模块设置于机座,其中影像感测模块的功能侧包括影像感测区。
6.在本发明的一实施例中,第一凹面镜的功能侧包括准直区与聚焦区,其中准直区与聚焦区位于同一圆弧面,准直区用以接收来自光输入模块的光学信号并据以提供准直光给绕射光栅,绕射光栅用以将准直光分离成多个光谱分量,聚焦区用以将这些光谱分量聚焦在影像感测模块,使影像感测模块产生光谱信号。
7.在本发明的一实施例中,第一凹面镜的功能侧包括第一承靠区以及光学区。第一承靠区包括第一承靠面以及第二承靠面,位于第一凹面镜的两侧,第一承靠区是第一凹面镜在制作过程所留下来的平整面,光学区是以平整面为基准所制作,第一承靠面与第二承靠面共平面,第一弹性件的弹性力分散于第一承靠区与第二承靠区。
8.在本发明的一实施例中,光谱仪更包括第二凹面镜以及第二弹性件。第二凹面镜设置于机座。第二弹性件设置于机座与第二凹面镜之间。第二弹性件的弹性力使第二凹面镜以其功能侧承靠于机座的第二定位部。第一凹面镜为准直镜,第二凹面镜为聚焦镜,光输入模块光学连接第一凹面镜,第一凹面镜光学连接绕射光栅,绕射光栅光学连接第二凹面镜,第二凹面镜光学连接影像感测模块。
9.在本发明的一实施例中,光谱仪更包括第二弹性件,设置于机座与绕射光栅之间。绕射光栅的功能侧更包括第二承靠区,机座具有第二定位部,且第二弹性件的弹性力使绕
射光栅以第二承靠区承靠于第二定位部。
10.在本发明的一实施例中,机座更具有壁体,形成容置空间。第一凹面镜、第一弹性件以及绕射光栅位于容置空间中,且其中光输入模块以及影像感测模块自壁体之外部承靠于壁体,并暴露于容置空间。
11.在本发明的一实施例中,光谱仪更包括固定胶,将第一弹性件固定于壁体或第一凹面镜。
12.在本发明的一实施例中,光输入模块包括调整机构、狭缝元件以及第三弹性件。调整机构连接于狭缝元件以及壁体之间,用以调整狭缝元件以及壁体的间距。第三弹性件设置于狭缝元件与壁体之间,以弹性力使狭缝元件远离或靠近壁体。在另一实施例中,光输入模块包括调整机构、狭缝元件以及第三弹性件。调整机构连接于狭缝元件以及壁体之间,用以调整狭缝元件以及壁体的间距。第三弹性件设置于狭缝元件与壁体之间,以弹性力使狭缝元件远离或靠近壁体而保持在上述间距。
13.本发明再提供一种光谱仪,包括机座、光输入模块、凹面光栅、第一弹性件以及影像感测模块。机座具有第一定位部。光输入模块设置于机座。凹面光栅设置于机座,其中凹面光栅以其功能侧朝向第一定位部。第一弹性件设置于机座与凹面光栅之间。第一弹性件的弹性力使凹面光栅以其功能侧承靠于第一定位部。影像感测模块设置于机座且与凹面光栅相对应,其中影像感测器模块的功能侧包括影像感测区。
14.在本发明的一实施例中,光谱仪更包括反射镜,配置于光输入模块与凹面光栅之间。
15.本发明另提供一种光谱仪的组装方法,包括下列步骤。组装上述实施例所述之光谱仪。提供光学信号,通过光输入模块、反射式光学元件与影像感测模块,使影像感测模块产生光谱信号。依据光谱信号调整光输入模块及/或影像感测模块的位置。
16.本发明又提供一种光谱仪的组装方法,包括下列步骤。提供机座,其中机座具有第一定位部与第二定位部。设置光输入模块于机座。设置凹面镜于机座,使得凹面镜以其功能侧朝向第一定位部,其中凹面镜的功能侧包括第一承靠区、准直区与聚焦区。利用第一弹性件的弹性力使凹面镜以第一承靠区承靠于第一定位部,其中第一弹性件设置于机座与凹面镜之间。设置绕射光栅于机座,使得绕射光栅以其功能侧朝向第二定位部,其中绕射光栅的功能侧包括第二承靠区与绕射区。利用第二弹性件的弹性力使绕射光栅以第二承靠区承靠于第二定位部,其中第二弹性件设置于机座与绕射光栅之间。设置影像感测模块于机座。输入光学信号,使光学信号依序通过光输入模块、准直区、绕射区、聚焦区与影像感测模块,使影像感测模块产生光谱信号。依据光谱信号调整光输入模块及/或影像感测模块的位置。
17.本发明更提供一种光谱仪,包括机座、光输入模块、反射式光学元件、弹性件以及影像感测模块。机座一体成形,具有第一定位部、第二定位部与第三定位部。光输入模块通过第一定位部设置于机座的外侧。反射式光学元件通过第二定位部设置于机座的内侧,反射式光学元件的功能侧朝向第二定位部,功能侧用以接收光学信号。弹性件设置于机座与反射式光学元件之间,其中弹性件的弹性力使反射式光学元件以功能侧承靠于第二定位部。影像感测模块通过第三定位部设置于机座的外侧。
18.本发明亦提供一种光谱仪的组装方法,包括下列步骤。提供机座,其中机座一体成形,具有第一定位部、第二定位部与第三定位部,第一定位部与第三定位部位于机座的外
侧,第二定位部位于机座的内侧。设置光输入模块于第一定位部。设置反射式光学元件于第二定位部,使得反射式光学元件以其功能侧朝向机座的定位部,其中功能侧用以接收光学信号。利用弹性件的弹性力使反射式光学元件承靠于第二定位部,其中弹性件设置于机座与反射式光学元件之间。设置影像感测模块于机座。提供光学信号,通过光输入模块、反射式光学元件与影像感测模块,使影像感测模块产生光谱信号。依据光谱信号调整光输入模块及/或影像感测模块的位置。
19.本发明并提供一种光谱仪,包括:机座,一体成形,具有第一定位部、第二定位部与第三定位部;光输入元件,通过第一定位部设置于机座的内侧;反射式光学元件,通过第二定位部设置于机座的内侧,反射式光学元件的功能侧朝向第二定位部,功能侧用以接收光学信号;第一弹性件,设置于机座与光输入元件之间,其中弹性件的弹性力使光输入元件承靠于第一定位部;第二弹性件,设置于机座与反射式光学元件之间,其中弹性件的弹性力使反射式光学元件以功能侧承靠于第二定位部;以及影像感测模块,通过第三定位部设置于机座的外侧。
20.本发明还提供一种光谱仪,包括:机座,一体成形,具有第一定位部、第二定位部与第三定位部;光输入模块,通过第一定位部设置于机座的外侧;反射式光学元件,通过第二定位部设置于机座的内侧,反射式光学元件的功能侧朝向第二定位部,功能侧用以接收光学信号;第一弹性件,设置于机座与反射式光学元件之间,其中第一弹性件的弹性力使反射式光学元件以功能侧承靠于第二定位部;以及影像感测器,通过第三定位部设置于机座的内侧;以及第二弹性件,设置于机座与影像感测器之间,其中第二弹性件的弹性力使影像感测器承靠于第三定位部。
21.本发明提供一种光谱仪,包括机座、光输入模块、第一凹面镜、第一弹性件、绕射光栅以及影像感测模块。机座具有第一定位部。光输入模块设置于机座。第一凹面镜设置于机座,其中第一凹面镜以其功能侧朝向第一定位部。第一弹性件设置于机座与第一凹面镜之间,其中第一弹性件的弹性力使第一凹面镜以其功能侧承靠于第一定位部。绕射光栅设置于机座,其中绕射光栅的功能侧包括绕射区。影像感测模块设置于机座,其中影像感测模块的功能侧包括影像感测区。影像感测模块包括调整机构、影像感测器以及第二弹性件。调整机构连接于影像感测器以及机座之间,用以调整影像感测器以及机座的间距。第二弹性件设置于影像感测器与机座之间,以弹性力使影像感测器远离或靠近机座。
22.基于上述,本发明上述实施例之光谱仪及其组装方法,能够通过第一弹性件的弹性力使凹面镜以其功能侧承靠于机座的第一定位部,即可完成定位。因此,凹面镜的组装不须额外通过安装座(mounting element)来进行,使整体体积得以缩小。此外,由于凹面镜是受到第一弹性件的弹性力使其功能侧承靠于机座的第一定位部。因此,即使凹面镜受到温度变化而热涨冷缩,第一弹性件能够吸收凹面镜的形变量,使凹面镜的功能侧仍可维持与第一定位部的定位,而能维持凹面镜的光学效果。
23.底下通过具体实施例配合所附的图式详加说明,当更容易了解本发明之目的、技术内容、特点及其所达成之功效。
附图说明
24.此处所说明的附图用来提供对本技术的进一步理解,构成本技术的一部分,本申
请的示意性实施例及其说明用于解释本技术,并不构成对本技术的不当限定。在附图中:
25.图1绘示为本发明一实施例之光谱仪的爆炸状态的立体图;
26.图2绘示为图1之光谱仪的组合状态的立体图;以及
27.图3绘示为图1之光谱仪的组合状态的剖视图;
28.图4绘示为本发明另一实施例之光谱仪的剖视图;
29.图5绘示为本发明又一实施例之光谱仪的剖视图;以及
30.图6绘示为本发明再一实施例之光谱仪的剖视图。
具体实施方式
31.下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
32.图1绘示为本发明一实施例之光谱仪的爆炸立体图,图2绘示为图1之光谱仪的组合立体图。请参考图1与图2,光谱仪100包括机座110、光输入模块120、凹面镜130、第一弹性件140、绕射光栅150以及影像感测模块160。光谱仪100的波段例如为200~850nm,但亦可为380~1050nm、400~1050nm或是800~1050nm的近红外光(可用于水果甜度、物品量测)。机座110具有第一定位部112,且可为一体成形。光输入模块120设置于机座110。凹面镜130设置于机座110,其中凹面镜130以其功能侧132朝向第一定位部112。第一弹性件140设置于机座110与凹面镜130之间,其中第一弹性件140的弹性力使凹面镜130以其功能侧132承靠于第一定位部112。绕射光栅150设置于机座110且与凹面镜130相对应,其中绕射光栅150的功能侧152包括绕射区152a。影像感测模块160设置于机座110且与绕射光栅150相对应。影像感测模块160的功能侧162包括影像感测区162a,其上可根据需要设置二阶滤波片164。
33.值得一提的是,光谱仪100能够通过第一弹性件140的弹性力使凹面镜130以其功能侧132承靠于机座110的第一定位部112a,即可完成定位。一般而言,习知是通过具有第一固定部以及第二固定部的安装座来安装凹面镜等光学元件。第一固定部用来固定光学元件,第二固定部用来固定于机座。由于机座会预留调整空间,让第二固定部能够可调式地固定于机座上,使光学元件能够被调整在最佳位置,因此安装座不但会在光谱仪中占用额外的空间外,光谱仪还必须要另外保留调整的空间,使得空间无法有效利用。因此,相较于习知安装座组装光学元件的方式,本实施例之凹面镜130的组装不须额外通过安装座来进行,所以虽然牺牲了调整凹面镜130的功能,但可减少安装座所占用以及调整安装座所需的空间,使得整体体积得以缩小,成本也得以降低。此外,由于凹面镜130是受到第一弹性件140的弹性力使其功能侧132承靠于机座110的第一定位部112。因此,即使凹面镜130受到温度变化而热涨冷缩,第一弹性件140能够吸收凹面镜130大部分的形变量,使凹面镜130的功能侧132仍可维持与第一定位部112的定位,而能维持凹面镜130的光学效果。
34.更进一步来说,凹面镜130的功能侧132包括第一承靠区132a、准直区132b与聚焦区132c。换句话说,准直区132b与聚焦区132c构成光学区。准直区132b与聚焦区132c位于同一圆弧面。准直区132b用以接收来自光输入模块120的光学信号并据以提供准直光给绕射光栅150。绕射光栅150用以将准直光分离成多个光谱分量。聚焦区132c用以将这些光谱分
量聚焦在影像感测模块160,使影像感测模块160产生光谱信号。凹面镜130以第一承靠区132a承靠于第一定位部112。在本实施例中,第一承靠区132a可包括第一承靠面132a1以及第二承靠面132a2,位于准直区132b与聚焦区132c的两侧。
35.在制作凹面镜130时,可先提供具有基准平面的块状玻璃胚料,再以钻石车削、钻石研磨或杯形钻石磨轮等方式于基准平面上形成同一球面上内凹的准直区132b与聚焦区132c,并于准直区132b与聚焦区132c的两侧留下部分的基准平面来做为第一承靠面132a1以及第二承靠面132a2。值得一提的是,由于凹面镜130是利用基准平面的一部分来做承靠,且准直区132b与聚焦区132c也都是根据基准平面来做加工。换句话说说,第一承靠区132a是凹面镜130在制作过程第一道加工所留下来的平整面,准直区132b与聚焦区132c(光学区)是以此平整面为基准的第二道加工所制作。因此,相较于以第二道加工或后续加工出来的表面定位的方式,本实施例通过以第一道加工的平整面进行承靠的方式,精度最高,而不会有累积公差的问题,使得光学定位更加地精准。从另一角度来说,凹面镜130是以具有功能侧的前方承靠于机座110的第一定位部112。因此热涨冷缩对光学效果的影响仅从第一承靠区132a起算,直到准直区132b与聚焦区132c(光学区)的厚度范围,即加工的深度。由于此厚度范围相较于准直区132b与聚焦区132c(光学区)到后方的厚度范围小得多,且厚度范围越大表示受到热涨冷缩影响的体积也越大。因为体积越大受到热涨冷缩改变的尺寸也越明显。所以,相较于从后方(非功能侧)承靠的方式,本实施例以具有功能侧的前方承靠的方式,能够有效地降低热涨冷缩对光学效果的影响。
36.进一步而言,第一承靠面132a1与第二承靠面132a2共平面。第一弹性件140的弹性力分散于第一承靠区132a1与第二承靠区132a1。相较于单侧承靠定位的方式,本实施例通过第一承靠区132a1与第二承靠区132a1来承靠定位的方式,不易偏斜,使得凹面镜130的定位更加准确。在另一未绘示的实施例中,根据不同的制程或是设计,第一承靠区132a亦可为单一的平面,位于准直区132b与聚焦区132c的上方或下方,同样可以达到承靠定位以及解决热涨冷缩所造成形变的问题,在此不作限制。
37.另外,光谱仪100更可包括第二弹性件170,设置于机座110与绕射光栅150之间。第一弹性件140与第二弹性件179可为线性形变可压缩弹性体,例如以硅胶等弹性材料所构成。绕射光栅150例如平面光栅,其功能侧152更包括第二承靠区152b。机座110具有第二定位部114,且第二弹性件170的弹性力使绕射光栅150以第二承靠区152b承靠于第二定位部114。在本实施例中,第二承靠区152b是位绕射区152a的两侧,且绕射区152a与第二承靠区152b上都可形成绕射结构。由于绕射结构非常小,所以即使第二承靠区152b承靠于第二定位部114时,可能会崩坏一部分,但对于定位精度的影响几乎可以忽略。换句话说,可于制程中通过钻石刀(未示意)的切割一次性地形成绕射区152a与第二承靠区152b,而能同时兼顾制程简化以及定位精度。当然,在另一未绘示的实施例中,第二承靠区152b也可不形成绕射结构,而在第二承靠区152b留下平整的基准面,使得定位精度更佳,并不以此为限。
38.更详细来说,机座110具有壁体116,形成容置空间116a。凹面镜130、第一弹性件140、绕射光栅150以及第二弹性件170皆位于容置空间116a中。光输入模块120以及影像感测模块160则自壁体116之外部承靠于壁体116,并暴露于容置空间116a。举例来说,壁体116可形成与容置空间116a相连通的开口116b以及开口116c,以分别暴露光输入模块120以及影像感测模块160。壁体116上更可形成机座110的第三定位部118以及第四定位部119,分别
用以承靠与定位光输入模块120以及影像感测模块160。在本实施例中,由于位于容置空间116a中的凹面镜130以及绕射光栅150,是分别通过第一弹性件140、以及第二弹性件170承靠定位于第一定位部112以及第二定位部114,所以容置空间116a不需要额外放大来容置调整凹面镜130以及绕射光栅150的治具,也不需要保留凹面镜130以及绕射光栅150的调整空间(直接适配凹面镜130以及绕射光栅150于机座110上即可)。此外,光输入模块120可沿着箭头a1的方向移动调整。影像感测模块160可沿着垂直于箭头a1且彼此垂直的箭头a2、a3的方向移动,并沿着箭头a4的方向转动调整。须留意的是,光输入模块120与影像感测模块160的调整是等效的,因此可根据需求给定光输入模块120与影像感测模块160不同的调整方向。值得一提的是,由于光谱仪100的容置空间116a不需要额外保留空间来容置调整凹面镜130以及绕射光栅150的治具,也不需要保留凹面镜130以及绕射光栅150的调整空间,更不需要对凹面镜130以及绕射光栅150设置安装座,因此光谱仪100的体积与工序也大幅减少。再者,光输入模块120以及影像感测模块160是从外部进行调整,因此使用治具来调整不会影响光谱仪100的体积。
39.虽然上述实施例是以同时具有准直区132b与聚焦区132c的单一凹面镜130进行说明,但在另一未绘示的实施例中,光谱仪可设置两个凹面镜来达到等效的光学配置。例如,光谱仪包括第一凹面镜以及第二凹面镜,分别为准直镜以及聚焦镜。光输入模块光学连接第一凹面镜,第一凹面镜光学连接绕射光栅,绕射光栅光学连接第二凹面镜,第二凹面镜光学连接影像感测模块。当然,还可分别设置弹性件于机座与第一凹面镜之间以及机座与第二凹面镜之间。弹性件的弹性力使第一、第二凹面镜以其功能侧承靠于机座的两个定位部上。此外,本领域的普通技术人员亦可理解,凹面镜130可以其他类型之反射式光学元件所取代实施,皆不以此为限。
40.图3绘示为图1之光谱仪的组合状态的剖视图。请参考图1与图3,光输入模块120包括调整机构122、狭缝元件124以及第三弹性件126。调整机构122连接于狭缝元件124以及壁体116之间。第三弹性件126例如为弹簧,设置于狭缝元件124与壁体116之间,以第三弹性件126受到压缩所产生的弹性力使狭缝元件124远离壁体116。在本实施例中,调整机构122包括二螺丝122a以及设置在机座110的二导杆122b,以通过螺丝122a调整狭缝元件124与壁体116间距。机座110上形成有对应二螺丝122a的二螺孔116d。狭缝元件124上形成有内径略大于螺丝122a之螺杆部外径的贯孔124a,以让螺丝122a之螺杆部无干涉地穿过贯孔124a而螺锁于螺孔116d中。此外,狭缝元件124上更形成有两导孔124b,以分别容置且适配二导杆122b,使得狭缝元件124沿平行二导杆122b的方向移动。在本实施例中,两贯孔124a与两导孔124b分别位于狭缝元件124的相对两对角处,但不以此为限。在另一未绘示的实施例中,由于光输入模块120与影像感测模块160的调整是等效的,因此调整机构122也可以根据需求改设置于影像感测模块160上,并不以此为限。此外,在又一未绘示的实施例中,调整机构122可根据需求改变其等效结构,并不限定一定是螺丝122a与导杆122b的组合。举例来说,可将机座110上的二螺孔116d分别改成螺杆(未示意),分别穿过贯孔124a并突出于狭缝元件124外侧,再分别以螺帽(未示意)自狭缝元件124外侧锁固于螺杆,以通过旋转螺帽来调整狭缝元件124与壁体116的间距。
41.为了进一步说明光谱仪100的组装方法,请配合参考图1~3。光谱仪100的组装方法包括下列步骤(组装方向可参考图1各元件的组装线)。首先,提供机座110。接着,从上往
下设置光输入模块120于机座110。然后,从上往下设置凹面镜130于机座110,使得凹面镜130以其功能侧132朝向第一定位部112。之后,从上往下将第一弹性件140设置于机座110与凹面镜130之间,以利用第一弹性件140的弹性力使凹面镜130以第一承靠区132承靠于第一定位部112。在另一实施例中,第一弹性件140可先通过双面胶等一固定胶固定于凹面镜130,再将凹面镜130与第一弹性件140一起从上往下设置于机座110与第一定位部112之间。也就是说,本实施例并不限定各步骤一定要分开执行,也不限定各步骤的先后顺序要完全一样。值得一提的是,通过双面胶将第一弹性元件140固定于凹面镜130或机座110,可防止第一弹性元件140自凹面镜130脱落或产生位移而使其施加在凹面镜130的弹性力不均匀而影响光学效果。
42.接着,从上往下设置绕射光栅150于机座110,使得绕射光栅150以其功能侧152朝向第二定位部114。再来,从上往下将第二弹性件170设置于机座110与绕射光栅150之间,以利用第二弹性件170的弹性力使绕射光栅150以第二承靠区152承靠于第二定位部114。当第一弹性件140与第二弹性件170藉其弹性力,使凹面镜130与绕射光栅150承靠定位后,还可通过对凹面镜130与绕射光栅150件170点胶的方式,来让凹面镜130与绕射光栅150保持在分别承靠于第一定位部112与第二定位部114的状态。之后,设置影像感测模块160于机座110。在另一实施例中,第二弹性件170亦可先通过双面胶(未示意)等方式固定于绕射光栅150,再将绕射光栅150与第二弹性件170一起从上往下设置于机座110与第二定位部114之间。
43.接着,输入光学信号l1,使光学信号l1依序通过光输入模块120(转换为光学信号l2)、准直区32b(准直为光学信号l3)、绕射区152a(分光为光学信号l4)、聚焦区132c(聚焦为光学信号l5)与影像感测模块160,使影像感测模块160产生光谱信号。再来,依据光谱信号的状态,沿着箭头a1调整光输入模块120及/或沿着箭头a2~a4调整影像感测模块160的位置,重复调整直到达到所需的光学效果。待调整完成后,还可对光输入模块120及/或影像感测模块160进行点胶固定。
44.需说明的是,上述组装方法虽然是以包括凹面镜140的光谱仪100为例进行说明。但在另一实施例中,上述组装方法亦可应用于包括凹面光栅等反射式光学元件的光谱仪。举例如下,首先提供机座,其中机座一体成形,具有第一定位部、第二定位部与第三定位部,第一定位部与第三定位部位于机座的外侧,第二定位部位于机座的内侧。接着,设置光输入模块于第一定位部。然后,设置反射式光学元件于第二定位部,使得反射式光学元件以其功能侧朝向机座的定位部,其中功能侧用以接收光学信号。之后,利用弹性件的弹性力使反射式光学元件承靠于第二定位部,其中弹性件设置于机座与反射式光学元件之间。然后,设置影像感测模块于机座。再来,提供光学信号,通过光输入模块、反射式光学元件与影像感测模块,使影像感测模块产生光谱信号。接着,依据光谱信号调整光输入模块及/或影像感测模块的位置。本领域的普通技术人员可以了解,上述元件的功能以及结构皆可参照图1~3的实施例进行变换与实施,在此不再赘述。
45.从另一角度来说,上述组装方法亦可归纳出另一种光谱仪的组装方法,包括下列步骤。首先,提供机座,其中机座一体成形,具有第一定位部、第二定位部与第三定位部,第一定位部与第三定位部位于机座的外侧,第二定位部位于机座的内侧。接着,设置一光输入模块于第一定位部。然后,设置反射式光学元件于第二定位部,使得反射式光学元件以其功
能侧朝向机座的定位部,其中功能侧用以接收光学信号。之后,利用弹性件的弹性力使反射式光学元件承靠于第二定位部,其中弹性件设置于机座与反射式光学元件之间。然后,设置影像感测模块于机座。之后,提供光学信号,通过光输入模块、反射式光学元件与影像感测模块,使影像感测模块产生光谱信号。接着,依据光谱信号调整光输入模块及/或影像感测模块的位置。同样地,本领域的普通技术人员可以了解,上述元件的功能以及结构皆可参照图1~3的实施例进行变换与实施,在此不再赘述。
46.图4绘示为本发明另一实施例之光谱仪的剖视图。请参考图4与图3,光谱仪200与光谱仪100的结构相类似,图4仅示意地表现有差异的部分,并以相似标号标是类似的元件,在此不再赘述。就差异而言,光谱仪100仅包含单一的弹性材料构成的第一弹性件140,而光谱仪200包括成对的二第一弹性件240,分别包括第一垫片242、弹簧244以及第二垫片246。弹簧244连接于第一垫片242。在本实施例中,弹簧244常态为压缩状态,当组装凹面镜230时,凹面镜230带动第二垫片246,使得弹簧244伸张,以利用弹簧244弹性力使凹面镜230承靠于第一定位部212。需留意的是,本实施例并不限定弹簧244为常态压缩或是常态伸张状态,也不限定一定要配合第垫片242以及第二垫片246才能实施,本领域的普通技术人员可根据需求进行改变,皆不以此为限。
47.图5绘示为本发明又一实施例之光谱仪的剖视图。请对照参考图1、3,光谱仪300与光谱仪100的结构相类似,图5仅示意地表现有差异的部分,并以相似标号标是类似的元件,在此不再赘述。相较于光谱仪100在机座110上形成螺孔116d,光谱仪300是直接在光输入模块320之狭缝元件324上形成螺孔324a,使得调整机构322之螺丝的螺杆部螺锁于螺孔324a后穿出而抵靠于机座310,以调整狭缝元件324与机座310的间隙。此外,相较于光谱仪100是在狭缝元件124内设置第三弹性件126,本实施例是在狭缝元件324的外部与治具50(或其他止挡结构)之间设置第三弹性件326(例如为弹簧),以通过压缩第三弹性件326所产生的弹性力使狭缝元件324朝机座310靠近而定位。待定位与后续调整完成后,即可点胶固定狭缝元件324,而移除治具50及/或第三弹性件326。在另一未绘示的实施例中,第三弹性件326亦可设置于其他能够抵靠狭缝元件324的地方,在此亦不做限制。
48.图6绘示为本发明再一实施例之光谱仪的剖视图。请参考图6,光谱仪400包括机座410、光输入模块420、凹面光栅430、第一弹性件440、影像感测模块460以及第二弹性件470。机座410具有第一定位部412。光输入模块420设置于机座410。凹面光栅430设置于机座410,其中凹面光栅430以其功能侧432朝向第一定位部412。第一弹性件440设置于机座410与凹面光栅430之间。第一弹性件440的弹性力使凹面光栅430以其功能侧432承靠于第一定位部412。影像感测模块460设置于机座410且与凹面光栅430相对应,其中影像感测器模块460的功能侧462包括影像感测区。第二弹性件470的弹性力使影像感测器模块460以其功能侧462承靠于第二定位部414。由于图6光谱仪400与图1光谱仪100的组装方法相类似,在此不再赘述。进一步来说,本实施例是将光输入模块420、凹面光栅430以及影像感测模块460都设在机座110内部,且凹面光栅430以及影像感测模块460分别受第一弹性件440以及第二弹性件470的弹性力而分别承靠于第一定位部412以及第二定位部414。此外,由于凹面光栅430以及影像感测模块460都已固定不可调,因此光输入模块420可配置调整机构(未示意)或直接搭配六轴调整治具(未示意)进行调整。需说明的是,本实施例并不限定光输入模块420与影像感测模块460一定都要设在机座410内部,亦可选择性地设置于外部,也不限定一定要以
第二弹性件470来让影像感测模块460承靠定位。当然,由于光输入模块420与影像感测模块460的调整是等效的,故可视需要将对二者其中之一或是二者都设置调整机构(可参考图1搭配弹簧的调整机构122的实施例),亦或者直接通过六轴调整治具调整后点胶固定,皆不以此为限。换句话说,未设置调整机构的光输入模块420可为狭缝元件等光输入元件,而未设置调整机构的影像感测模块460则可为ccd或是cmos等影像感测器。
49.此外,在本实施例中,光谱仪400更可包括反射镜480,配置于光输入模块420与凹面光栅440之间。在上述组装过程中,亦可输入光学信号到光输入模块420,并根据影像感测模块460所接收的光学信号进行调整。首先,当光学信号l6经过光输入模块420之后,光学信号l7经反射镜480反射为光学信号l8后,送到凹面光栅440。接着,光学信号l8经过凹面光栅440上的绕射结构(未示意)分光成光学信号l9到影像感测模块460。此时,即可根据影像感测模块460所接收到光学信号l9的状态调整光输入模块420的位置。
50.综上所述,上述实施例的之光谱仪及其组装方法,能够通过弹性件的弹性力使至少一光学元件以其功能侧承靠于机座的第一定位部,即可完成定位。因此,此至少一光学元件的组装不须额外通过安装座来进行,使整体体积得以缩小,成本也得以降低。此外,由于此至少一光学元件是受到弹性件的弹性力使其功能侧承靠于机座的定位部。因此,即使此至少一光学元件受到温度变化而热涨冷缩,弹性件能够吸收此至少一光学元件的形变量,使此至少一光学元件的功能侧仍可维持与定位部的定位,而能维持此至少一光学元件的光学效果。
51.需要说明的是,在本文中,术语“包含”、“包括”或者其任何其他变体意在涵盖非排他性的包括,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括所述要素的过程、方法、物品或者装置中还存在另外的相同要素。
52.上面结合附图对本技术的实施例进行了描述,但是本技术并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本技术的启示下,在不脱离本技术宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本技术的保护的内容。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1