一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法

文档序号:10651939阅读:521来源:国知局
一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法
【专利摘要】本发明涉及一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法。该方法为:以食源性微生物为研究对象,构建一套荧光显微高光谱成像技术,通过合成多色上转换纳米材料,构造一个具有特异性识别食源性微生物的多色纳米荧光探针,对复杂体系下的多种微生物进行多靶标标记;在荧光显微成像模式下,针对获取待测对象的荧光光谱图像数据,提取感兴趣区域(ROI)的荧光光谱,通过数据降维手段,优选特定尺度下的特征光谱图像,并借助图像处理手段,实现物理场胁迫下的食源性微生物的分布、迁移、代谢、凋亡等过程的可视化分析,该方法适用于食品安全、环境监测等技术领域。
【专利说明】
一种基于纳米荧光显微高光谱成像技术的食源性微生物可视 化分析方法
技术领域
[0001] 本发明涉及一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析 方法,具体涉及将高光谱成像技术、显微成像技术和纳米晶体的独特光学性质相结合,采用 纳米荧光显微高光谱成像检测新思路,建立快速、灵敏、多靶标和高通量的食源性微生物可 视化分析方法。
【背景技术】
[0002] 食源性致病菌是引起食源性疾病的首要原因,对人类健康造成很大危害,是食品 安全的重大隐患。常用的食源性致病菌分析方法目前主要有传统的微生物检验技术、分子 生物学技术、仪器分析技术和免疫学技术。现有的这些分析方法虽各有优势,但都存在一定 的局限性,或者前处理步骤复杂、时间长,或者仪器设备庞大昂贵、不能对微生物进行可视 化分析等。鉴于
【申请人】在食品无损检测领域积累了良好的工作基础,特别是在高光谱成像 检测领域所做的深入技术的研究,本项目拟构建一套显微高光谱成像技术,深入研究快速、 灵敏、高通量的物理场胁迫下食源性微生物可视化分析方法,为开创食品安全检测新途径 提供理论基础。
[0003] 目前,用纳米荧光显微高光谱成像技术对食源性微生物进行可视化分析方法仍未 见报道。本发明作为一种新兴的食源性微生物可视化方法,从一定程度上实现了物理场胁 迫下的食源性微生物的分布、迀移、代谢、凋亡等过程的可视化分析。

【发明内容】

[0004] 本发明的目的是提供了一种基于纳米荧光显微高光谱成像技术的食源性微生物 可视化分析方法,其灵敏度高、可靠性强、检测速度快,实现对物理场胁迫下食源性微生物 的分布、迀移、代谢、凋亡等过程的可视化分析,适用于食品安全、环境监测等技术领域。
[0005] 为了实现上述目的,本发明采用的技术方案:构建一套荧光显微高光谱成像系统, 通过合成多色上转换纳米材料,构造一个具有特异性识别食源性微生物的多色纳米荧光探 针,对复杂体系下的多种微生物进行多靶向标记;在荧光显微成像模式下,针对获取待测对 象的荧光光谱图像数据,提取感兴趣区域(R0I)的荧光光谱,通过数据降维手段,优选特定 尺度下的特征光谱图像,并借助图像处理手段,实现物理场胁迫下的食源性微生物的分布、 迀移、代谢、凋亡等进行可视化分析。
[0006] 上述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法, 所述的纳米荧光显微高光谱成像技术是将高光谱成像技术、显微成像技术和纳米晶体的独 特光学性质相结合,同时,荧光显微高光谱成像系统是以功率可调的980nm激光器作为光源 辐照待检测样品,系统上的扩束器增加激光器对样品的辐照面积,瞬时视场下的样品条带 通过显微镜的目镜和C-Mount接口最后到达成像光谱仪的狭缝,再经过光谱分光组件后,样 品条带发出的光在样品条带垂直方向发生散射最后投射到EMCCD成像平面,最终得到一个 线阵的荧光光谱数据。。
[0007] 上述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法, 所述的多色上转换纳米材料(UCNPs),主要以油酸作为表面活性剂,通过添加钆(Gd 3+)稀土 元素调节纳米材料表面的晶体生长,在合适的反应条件30%Gd3+掺杂浓度、300°C反应温度、 lh反应时间下合成晶型六相的、大小< 1 OOnm、形貌均匀、分散性好、荧光效率高的UCNPs。
[0008] 上述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法, 所述的多色纳米荧光探针,所述的多色纳米荧光探针,是将多色上转换纳米材料与相应微 生物发生特异性应答的免疫球蛋白或寡核苷酸结合。
[0009] 上述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法, 所述的一种相似角阈值的感兴趣区域(R0I)提取方法,将任一像元在不同波长下的光谱数 据组合成一个多维空间矢量,利用解析方法计算未知区域的像元矢量和与目标区域像元矢 量之间的夹角,根据夹角的大小来确定未知区域像元的归属,以对荧光光谱图像数据中R0I 的有效分割。
[0010]上述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法, 所述的数据降维手段本发明涉及的数据降维手段主要通过目、标导向筛选出几个最优区间 组合,剔除全光谱区域内大量与检测目标无关的变量;接着,应用智能搜索方法,从最优区 间组合中对变量进行进一步优选,剔除相邻波长间具有高度共线性的冗余变量,从而优选 出特定尺度下的特征光谱图像。
[0011] 上述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法, 该方法包括如下具体步骤:
[0012] 1)物理场胁迫微生物:取培养好的微生物,在一定条件下进行物理场胁迫。
[0013] 2)多色上转换纳米材料制备:采用高温裂解法制备上转换纳米颗粒,所制备的为 油酸包裹的纳米颗粒。2ml甲醇溶解的稀土氯化物(0.2M,RE = Y/Gd (78 % ),Yb (20 % ),Er (2 % )、Tm( 2% )或Ho(2 % )),与3ml油酸,7ml 1-十八烯,均加入到50ml的烧瓶。搅拌上述溶 液并加热到160°C,持续30min,然后冷却到室温。随后加入5ml甲醇溶解的NH4F( 1.6mmol)和 NaOH(lmm〇l),搅拌30min。待甲醇完全蒸发,上述溶液在氩气保护下加热到280-300°C,并持 续1.5h。待溶液冷却至室温,离心,其上层液体,获得的沉淀用甲醇和乙醇清洗数次,最后将 沉淀置于真空干燥箱中干燥,得到多色上转换纳米颗粒白色粉末储存备用。
[0014] 3)多色纳米荧光探针制备:上转换纳米颗粒与食源性微生物特异性免疫球蛋白或 寡核苷酸的共辄连接采用NHS/EDC化学连接法连接。首先利用EDC(25yl,2mg/mlWPNHS (12.5μ1,2mg/ml)将上转换纳米颗粒(lmg,5mg/ml)在室温下活化3h。然后以9350g,15min离 心活化的上转换纳米颗粒,所得沉淀溶于lml超纯水。接着,向上述溶液中加入100yg的 E. col i抗体,在4°C摇床上培养过夜。以6000g,5min离心去除未偶联的上转换纳米颗粒,并 将沉淀用超纯水清洗数次,最后溶于lml超纯水,置于4°C冰箱中储存备用。
[0015] 4)荧光光谱图像采集:进行图像扫描之前,需要提前将显微高光谱成像技术打开 进行预热30分钟;同时,将多色纳米荧光探针与微生物混合样本置于显微镜的载物台上,在 外接激光光源980nm激光器的照射下,进行显微高光谱数据获取。扫描速度为O.Olmm/s。样 本成像以〇.〇lmm/ s的移动速度单个有序地通过成像光谱仪的狭缝视野,X的移动范围为8-20mnuEMC⑶相机的曝光时间设置为3000ms。
[0016] 5)数据处理及分析:首先,对显微高光谱成像技术获得的荧光图像数据进行感兴 趣区域(R0I)提取,然后进行数据降维,得到特征光谱图像,通过对特征光谱图像进行数据 分析,实现对物理场胁迫下的食源性微生物的分布、迀移、代谢、凋亡等过程的可视化分析。
[0017] 与现有的技术相比,本发明的优点在于:
[0018] 本发明所构建的纳米荧光显微高光谱成像技术是将高光谱成像技术、显微成像技 术和纳米晶体的独特光学性质相结合,同时,荧光显微高光谱成像系统是以功率可调的 980nm激光器作为光源辐照待检测样品,系统上的扩束器增加激光器对样品的辐照面积,瞬 时视场下的样品条带通过显微镜的目镜和C-Mount接口最后到达成像光谱仪的狭缝,再经 过光谱分光组件后,样品条带发出的光在样品条带垂直方向发生散射最后投射到EMCCD成 像平面,最终得到一个线阵的荧光光谱数据。
[0019] 本发明涉及的基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方 法易于操作,灵敏度高,检测速度快,在食品安全、环境监测等技术领域广泛应用。
[0020] 本发明涉及的多色上转换纳米材料(UCNPs),主要以油酸作为表面活性剂,通过添 加钆(Gd3+)稀土元素调节纳米材料表面的晶体生长,在合适的反应条件30%Gd 3+掺杂浓度、 300°C反应温度、lh反应时间下合成晶型六相的、大小<100nm、形貌均匀、分散性好、荧光效 率高的UCNPs,至少包括上转换荧光纳米颗粒NaY/GdF4: Yb3+,Er3+(UCNPsEr),NaY/GdF4: Yb3+, Tm3+(UCNPsTm),NaY/GdF4:Yb3+,Ho 3+(UCNPsH〇)。
[0021] 本发明涉及的一种相似角阈值的感兴趣区域(ROI)提取方法,将任一像元在不同 波长下的光谱数据组合成一个多维空间矢量,利用解析方法计算未知区域的像元矢量和与 目标区域像元矢量之间的夹角,根据夹角的大小来确定未知区域像元的归属,以对荧光光 谱图像数据中R0I的有效分割。
[0022] 本发明涉及的数据降维手段主要通过目标导向筛选出几个最优区间组合,剔除全 光谱区域内大量与检测目标无关的变量;接着,应用智能搜索方法,从最优区间组合中对变 量进行进一步优选,剔除相邻波长间具有高度共线性的冗余变量,从而优选出特定尺度下 的特征光谱图像。
【附图说明】
[0023] 图1为多色纳米荧光探针制备方法示意图;
[0024]图2为荧光显微高光谱成像系统装置图。
【具体实施方式】 实施实例1
[0025]为了进一步验证本发明所述方法对食源性微生物可视化分析的作用,本发明实 例,以大肠杆菌(E. col i)及金黄色葡萄球菌(S. aureus)为例,具体操作步骤如下:
[0026] (1)物理场胁迫微生物:取培养好的大肠杆菌和金黄色葡萄球菌,分别在100W磁场 下进行物理胁迫。
[0027] (2)多色上转换纳米材料制备:采用高温裂解法制备上转换纳米颗粒,所制备的为 油酸包裹的纳米颗粒。2ml甲醇溶解的稀土氯化物(0.2M,RE = Y/Gd (48%,30%),Yb(20%), Er (2 % )、Tm( 2 % )),与3ml油酸,7ml 1-十八烯,均加入到50ml的烧瓶。搅拌上述溶液并加热 至lj 160 °C,持续3Om i η,然后冷却到室温。随后加入5m 1甲醇溶解的NH4F (1.6mmo 1)和NaOH (lmmol),搅拌30min。待甲醇完全蒸发,上述溶液在氩气保护下加热到300°C,并持续1.5h。 待溶液冷却至室温,离心,其上层液体,获得的沉淀用甲醇和乙醇清洗数次,最后将沉淀置 于真空干燥箱中干燥,得到多色上转换纳米颗粒白色粉末储存备用。
[0028] (3)多色纳米荧光探针制备:上转换纳米颗粒与大肠杆菌及金黄色葡萄球菌特异 性抗体的共辄连接采用NHS/EDC化学连接法连接(如图1)。首先利用EDC( 25μ1,2mg/ml)和 冊3(12.5以1,211^/1111)将上转换纳米颗粒(111^,511^/1111)在室温下活化311。然后以9350 8, 15min离心活化的上转换纳米颗粒,所得沉淀溶于lml超纯水。接着,向上述溶液中加入100μ g的E. col i抗体及100yg的S. aureus,在4°C摇床上培养过夜。以6000g,5min离心去除未偶联 的上转换纳米颗粒,并将沉淀用超纯水清洗数次,最后溶于lml超纯水,置于4°C冰箱中储存 备用。
[0029] (4)荧光光谱图像采集:进行图像扫描之前,需要提前将显微高光谱成像系统(如 图2)打开进行预热30分钟;同时,将多色纳米荧光探针UCNPs Er-anti-E.coli及UCNPsEr-anti-S. aureus与微生物混合样本置于显微镜的载物台上,在外接激光光源980nm激光器的 照射下,进行显微高光谱数据获取。扫描速度为O.Olmm/s。样本成像以〇.〇lmm/ s的移动速度 单个有序地通过成像光谱仪的狭缝视野,X的移动范围为SIOmnuEMCCD相机的曝光时间设 置为 3000ms。
[0030] (5)在荧光显微高光谱成像模式下获得多色上转换纳米材料(UCNPs)标记后的荧 光图像,与传统的绿色荧光蛋白(GFP)标记对比,结果基本一致,但UCNPs标记后的荧光发光 强度更好,稳定性更强。
[0031] (6)数据处理及分析:首先,通过组合间隔偏最小二乘筛选出几个最优区间组合, 剔除了全光谱区域内大量与检测目标无关的变量;接着,应用遗传退火正交投影智能搜索 方法,从最优区间组合中对变量进行进一步优选,剔除相邻波长间具有高度共线性的冗余 变量;最后,根据筛选的特征波长,从荧光光谱图像数据提取特征图像。随后利用相似角阈 值数据降维手段优选出特定尺度下的特征光谱图像,通过对特征光谱图像进行数据分析, 对多色焚光探针同时捕捉E. col i及S. aureus进行可视化分析。 在本说明书的描述中,参考术语"一个实施例"、"一些实施例"、"示意性实施例"、"示 例"、"具体示例"、或"一些示例"等的描述意指结合该实施例或示例描述的具体特征、结构、 材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示 意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点 可以在任何的一个或多个实施例或示例中以合适的方式结合。 尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离 本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明 的范围由权利要求及其等同物限定。
【主权项】
1. 一种基于纳米荧光显微高光谱成像技术的食源性微生物可视化分析方法,其特征在 于,构建一套纳米荧光显微高光谱成像系统,通过合成多色上转换纳米材料,构造一个具有 特异性识别食源性微生物的多色纳米荧光探针,对复杂体系下的多种微生物进行多靶向标 记;在荧光显微成像模式下,针对获取待测对象的荧光光谱图像数据,提取感兴趣区域的荧 光光谱,通过数据降维手段,优选特定尺度下的特征光谱图像,并借助图像处理手段,实现 物理场胁迫下的食源性微生物的分布、迀移、代谢、凋亡等进行可视化分析。2. 根据权利要求1所述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视 化分析方法,其特征在于,所述构建的一套纳米荧光显微高光谱成像系统是将高光谱成像 技术、显微成像技术和纳米晶体的独特光学性质相结合,同时,荧光显微高光谱成像系统是 以功率可调的980nm激光器作为光源辐照待检测样品,系统上的扩束器增加激光器对样品 的辐照面积,瞬时视场下的样品条带通过显微镜的目镜和C-Mount接口最后到达成像光谱 仪的狭缝,再经过光谱分光组件后,样品条带发出的光在样品条带垂直方向发生散射最后 投射到EMCCD成像平面,最终得到一个线阵的荧光光谱数据。3. 根据权利要求1所述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视 化分析方法,其特征在于,所述的物理场胁迫至少包括磁场、电场、超高压、超高温胁迫。4. 根据权利要求1所述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视 化分析方法,其特征在于,所述的多色上转换纳米材料,主要以油酸作为表面活性剂,通过 添加钆(Gd 3+)稀土元素调节纳米材料表面的晶体生长,在合适的反应条件30%Gd3+掺杂浓 度、300°C反应温度、Ih反应时间下合成晶型六相的、大小<100nm的多色上转换纳米材料; 至少包括上转换荧光纳米颗粒 NaY/GdF4:Yb3+,Er3+(UCNPsEr):, NaY/GdF4:Yb3+,5. 根据权利要求1所述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视 化分析方法,其特征在于,所述的多色纳米荧光探针,是将多色上转换纳米材料与相应微生 物发生特异性应答的免疫球蛋白或寡核苷酸结合,至少包括UCNPs a-大肠杆菌免疫球蛋 白、UCNPsm-金黄色葡萄球菌免疫球蛋白、UCNPshcj-鼠伤寒沙门氏菌免疫球蛋白、 UCNPse,-大肠杆菌寡核苷酸、UCNPsTiU-金黄色葡萄球菌寡核苷酸、UCNPs hq-鼠伤寒沙门 氏菌寡核苷酸。6. 根据权利要求1所述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视 化分析方法,其特征在于,采用一种相似角阈值方法提取感兴趣区域的荧光光谱,将任一像 元在不同波长下的光谱数据组合成一个多维空间矢量,利用解析方法计算未知区域的像元 矢量和与目标区域像元矢量之间的夹角,根据夹角的大小来确定未知区域像元的归属,以 对荧光光谱图像数据中感兴趣区域的有效分割。7. 根据权利要求1所述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视 化分析方法,其特征在于,所述的数据降维手段主要通过目标导向筛选出几个最优区间组 合,剔除全光谱区域内大量与检测目标无关的变量;接着,应用智能搜索方法,从最优区间 组合中对变量进行进一步优选,剔除相邻波长间具有高度共线性的冗余变量,从而优选出 特定尺度下的特征光谱图像。8. 根据权利要求1所述的一种基于纳米荧光显微高光谱成像技术的食源性微生物可视 化分析方法,其特征在于,该方法包括如下具体步骤: 步骤1)物理场胁迫微生物:取培养好的微生物,在一定条件下进行物理场胁迫。 步骤2)多色上转换纳米材料制备:采用高温裂解法制备上转换纳米颗粒,所制备的为 油酸包裹的纳米颗粒。2ml甲醇溶解的稀土氯化物(O . 2M,RE = Y/Gd (78 % ),Yb (20 % ),Er (2 % )、Tm( 2 % )或Ho (2 % )),与3ml油酸,7ml 1-十八烯,均加入到50ml的烧瓶。搅拌上述溶液 并加热到160°C,持续30min,然后冷却到室温。随后加入5ml甲醇溶解的NH4F(1.6mmol)和 NaOH(lmm〇l),搅拌30min。待甲醇完全蒸发,上述溶液在氩气保护下加热到280-300°C,并持 续1.5h。待溶液冷却至室温,离心,其上层液体,获得的沉淀用甲醇和乙醇清洗数次,最后将 沉淀置于真空干燥箱中干燥,得到多色上转换纳米颗粒白色粉末储存备用。 步骤3)多色纳米荧光探针制备:上转换纳米颗粒与食源性微生物特异性免疫球蛋白或 寡核苷酸的共辄连接采用NHS/EDC化学连接法连接。首先利用EDC(25yl,2mg/ml)和NHS (12.5μ1,2mg/ml)将上转换纳米颗粒(lmg,5mg/ml)在室温下活化3h。然后以9350g,15min离 心活化的上转换纳米颗粒,所得沉淀溶于Iml超纯水。接着,向上述溶液中加入IOOyg的 E. col i抗体,在4°C摇床上培养过夜。以6000g,5min离心去除未偶联的上转换纳米颗粒,并 将沉淀用超纯水清洗数次,最后溶于Iml超纯水,置于4°C冰箱中储存备用。 步骤4)荧光光谱图像采集:进行图像扫描之前,需要提前将显微高光谱成像技术打开 进行预热30分钟;同时,将多色纳米荧光探针与物理场胁迫后微生物混合样本置于显微镜 的载物台上,在外接激光光源980nm激光器的照射下,进行显微高光谱数据获取。扫描速度 为0.01mm/s。样本成像以0.01mm/s的移动速度单个有序地通过成像光谱仪的狭缝视野,X的 移动范围为8-20mm。EMC⑶相机的曝光时间设置为3000ms。 步骤5)数据处理及分析:首先,对显微高光谱成像技术获得的荧光图像数据进行感兴 趣区域(ROI)提取,然后进行数据降维,得到特征光谱图像,通过对特征光谱图像进行数据 分析,实现对物理场胁迫下的食源性微生物的分布、迀移、代谢、凋亡等过程的可视化分析。
【文档编号】G01N21/64GK106018357SQ201610292624
【公开日】2016年10月12日
【申请日】2016年5月4日
【发明人】李欢欢, 陈全胜, 欧阳琴, 郭志明, 林颢, 胡薇薇, 张彬, 杨明秀
【申请人】江苏大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1