用于脉宽调制电源转换器的电流平均电路的制作方法

文档序号:6268129阅读:161来源:国知局
专利名称:用于脉宽调制电源转换器的电流平均电路的制作方法
相关申请对照本申请主张美国临时申请第60/591227的利益,该案于2004年7月26日申请,其在此合并作为所有意图与目的的参考。
技术领域
本发明涉及脉宽调制电源控制器,并且尤其涉及用于脉宽调制电源供应器的整合平均电流的限制与控制。
现有技术脉宽调制(PWM)控制电路的转换设备中的电流具有斜坡的特征形状,或是具有在步阶上的斜坡的特征形状,这是由于一或多个输出电感器。该电流由一小电阻器与初级电源串联或是由一电流变压器或是由其他变能器机制而转换成一电压。已有一段很长的时间,电压波形用于整合至控制器芯片外部,或是整合至在控制器芯片上检测到的峰值。其造成的电压信息之后被用于提供电流模式反馈信息或是电流限制信息,或是在一些情况中用于提供电流模式反馈信息及电流限制信息两者。在一些申请案中,期望的是根据在一步阶上的斜坡波形的平均值,提供电流限制或是电流反馈功能。已知方法是根据取样的峰值估测平均值。然而此种已知技术是非精确的,且会造成电流拖尾(tail out)。

发明内容一种用于平均一脉宽调制(PWM)电源转换器的分段线性转换电流波形的电流平均电路,其包含第一,第二以及第三取样与保持电路以及取样平均电路。该种第一取样与保持电路取样电流波形的短持续时间(short duration)于每个脉宽调制周期之始,并且提供对应的短取样。该第二取样与保持电路取样每一脉宽调制周期的长持续时间(long duration)并且提供对应的长取样。该取样平均电路连接至第一与第二取样与保持电路,平均对应的短取样与长取样取样,并且提供对应的平均值。该第三取样与保持电路取样每一平均值并且提供一电流平均信号。
该第一,第二与第三取样与保持电路每一个可以包含开关,其连接至一电容器。每一取样与保持电路可以进一步包含缓冲器,其具有连接至一对应的电容器的输入端,以及提供取样后的值的输出端。该电流平均电路可以包含计时控制电路,其控制每一取样与保持电路的开关。在一实施例中,计时控制电路提供短控制信号至第一取样与保持电路的第一开关,提供长信号控制信号至第二取样与保持电路的第二开关,以及提供一平均控制信号至第三取样与保持电路的第三开关。该分段线性转换电流波形可以包含步阶上斜坡脉冲,其计时控制电路于每一电流波形脉冲的起始提供短控制信号作为短脉冲,提供长控制信号在每一电流波形脉冲之持续时间上作为长脉冲,并且于每一电流波形脉冲结尾提供该平均控制信号作为短脉冲。该取样平均电路可以包含连接至一电容器的电阻性差动接面。
根据本发明的电源转换器的实施例包含电感性装置,切换电路,电流传感器,电流平均电路以及控制器。该切换电路选择性的供应输入端电压至该电感性装置,以建立输出端电压。该电流传感器感测流经该切换电路的电流,并且提供一步阶上斜坡波形的电流感测信号。该电流平均电路接收该电流感测信号,并且提供一电流平均信号。该电流平均电路包含第一,第二与第三取样与保持电路以及一取样平均电路。该第一取样与保持电路取样每一电流感测信号的每一脉冲的起始,提供对应的短取样。该第二取样与保持电路取样每一脉冲的持续时间,并且提供对应的长取样。该取样平均电路平均对应的长与短取样,并且提供对应的平均值。该第三取样与保持电路取样每一平均值,并且提供该电流平均信号。该控制器根据电流平均信号控制该切换电路。
在不同实施例中,该电源转换器可以是一个隔离的或是一非隔离的转换器。在非隔离的情况中,电流平均电路可以用于测量电流在转换电路的关闭期间,其中该脉冲具有负向斜率。不论该斜坡信号是正斜率或是负斜率,操作上实质相等。
一种平均脉宽调制电源转换器的分段线性开关电流波形的方法包含于每一脉宽调制周期之起始取样电流波形之一短持续时间,并且提供对应的短取样值,于每一脉宽调制周期的起始取样长持续时间并且提供对应的长取样值,平均长与短取样值的各自一些,并且提供对应的平均值,以及取样每一平均值并且提供一电流平均信号。
每一取样动作可以包含耦接电容器并对其充电。在此种情况中,该方法可以包含在短持续时间内关闭第一开关,并且对第一电容器充电于每一脉宽调制周期起始,关闭第二开关且在每一脉宽调制周期的持续时间对第二电容器充电,并且在每一长持续时间之后关闭第三开关并且对第三电容器充电。该分段线性开关电流波形可以包含步阶上斜坡脉冲。在此种情况下,该方法可以包含关闭第一开关以在每一脉冲之起始对第一电容器充电,关闭第二开关以在每一脉冲持续时间对第二电容器充电,并且关闭第三开关并且在每一脉冲结束时对第三电容器充电。该方法可以包含跨于一电阻性电压差动接面上提供短及长取样值。该方法可以包含感测流经脉宽调制电源转换器的开关装置的电流,并且整流感测电流。

根据下列说明以及附图,本发明的优点,特征与益处将会获得更加了解,其中图1是根据本发明实施例的示范性电流平均电路的示意图;图2是说明图1中电流平均电路的操作的时序图;图3是采用图1的电流平均电路的根据本发明实施例的示范性未调节的电源转换器的示意性框图;图4是一示范性电路的框图,其用以转换图3的未调节电源转换器成为一电压模式受控电源转换器;图5是一非隔离的DC-DC降压转换器的示意性框图,其实施图1的电流平均电路以用于平均“关闭时间”(off-time)电流;图6是一时序图,其说明图1的电流平均电路的操作,其实作成一种在图5中的降压转换器中的关闭时间电流平均电路;以及图7是包含图1的电流平均电路的一电流分享系统的示意性框图。
具体实施方式下列叙述呈现以使相关领域的熟练技术人员在所提供的特定申请以及其要件内容的范围内制造并且使用本发明。对于较佳实施例的不同修改将会对于熟练技术人员而言是明显的,并且在此所定义的原则可以施加至其他实施例。因此,本发明并非意欲限制在此显示并且叙述的特定实施例,而是与在此揭示的原则与新颖特征的最大范畴一致。
本发明提供一方法,其精确的俘获不同类型的脉宽调制(PWM)电源转换器的一分段线性开关电流波形的平均值。该电流波形通常为一步阶上斜坡波形,其中该平均值提供在一脉冲-对-脉冲的基础上,其中该平均值被捕获(被取样且被保持),并且呈现在每一电流脉冲的末端。该被捕获的值保持有效直到下次电流脉冲的终端,该时其以新值所更新。随后,此平均电流输出端信息可以用于在脉冲-对-脉冲基础上实施平均电流模式操作或是平均电流限制。或者,该输出端被滤波以提供一时间平均电流指示。
图1是根据本发明实施例的示范性电流平均电路100的示意图。在一实施例中,该电流平均电路100实施在一电源管理芯片上,其根据脉宽调制控制一个或更多电子开关以转换输入端电压VIN至一调节后的输出端电压VOUT。或者,考虑个别的实施例,其中电流平均方法在芯片外实施。对于在芯片上的实施例,一电流感测(CS)输入端接脚被提供用于感测在脉宽调制电子开关中的电流,如熟练技术人员所熟知的。其他电流感测技术是已知的,其中该CS接脚或其他技术提供一电流感测(CS)信号于一CS节点上,其产生一指示该电流的电压。
如图1所示,形成CS信号的CS节点连接至第一单极单掷(SPST)开关SW0。在此所使用的,节点以及其承载的信号被设想为相同名称,除非有另外指定。SW0的其他端连接至一节点A,其连接至第一电容器C0的一端,并且连接至第一缓冲器U0的输入端。电容器C0的其他端连接至一共同节点(共同节点),例如接地点(GND)。该缓冲器U0的输出端连接至一电阻器R0的一端,其具有连接至一节点C的另一端。该CS节点也连接至其他SPST开关SW1的一端,其具有连接至一节点B的另一端。节点B连接至第二电容器C1的一端,并且连接至第二缓冲器U1的输入端。该电容器C1的另一端连接至接地点。该缓冲器U1的输入端连接至电阻器R1的一端,其具有连接至节点C的其他端。
节点C连接至另一SPST开关SW2的一端并且连接至一电容器C2的一端,其具有连接至GND的另一端。SW2的其他端连接至节点D,其连接至另一缓冲器U2的输入端并且连接至一电容器C3的一端。电容器C3的其他端连接至GND。缓冲器U2的输出端是节点E,其提供一输出端电压信号VIA,其在一脉冲-对-脉冲基础上表现步阶上斜坡电流的平均值。开关SW0具有控制输入端,其接收控制信号SHORT,其由计时控制电路101提供。控制电路101也产生一控制信号LONG,其提供至开关SW1的控制输入端,以及一控制信号AVERAGE提供至开关SW2的控制输入端。在每一种情况中,当控制信号(SHORT,LONG,AVERAGE)为低态时,开关(SW0,SW1,SW2)打开,当控制信号为高态时,该开关关闭。SPST开关SW0-SW2可以每一个以熟练技术人员熟知的任何适当方式实施,例如晶体管装置或是类似包含场效晶体管管(FET),金属氧化物半导体FET(MOSFET),双接面晶体管(BJTs),互补式MOS(CMOS)元件(例如,N-沟道元件或是P-沟道元件或是一CMOS组合),等等。如图所示,该计时控制电路101接收一个或更多的计时控制(TC)信号以用于计时该些SHORT,LONG以及AVERAGE信号的目的。
在所显示的实施例中,缓冲器U0以及U1彼此具有实质上相同的增益,例如单位增益缓冲器等。缓冲器U2同样是一单位增益缓冲器,以至于节点E是节点D的缓冲方式。电阻器R0与R1具有实质上相等的电阻值,以致于节点C形成一电压,其为节点A的电压与节点B的电压的平均值,分别由缓冲器U0与U1的输出值所反映。例如,如果节点A与B的电压相同(例如1Volt),则节点C是相同的(例如1V);如果节点A与B的电压不同,例如1V与5V,则节点C位于A与B电压之间(例如3V)等等。电阻器R0与R1可以想成是连接至电容器C2的电阻性差动接面。在节点C上的平均电压通过提供脉冲至开关SW2而转变至节点D,以致于节点E表现在脉冲-对-脉冲基础上的一平均值。在一选择性实施例中,另一单位增益缓冲器可以插入至电容器C2与开关SW2之间以缓冲在电容器C2上形成的平均值,其平均值提供以在每一周期期间对电容器C3充电。
图2是一时序图,其说明电流平均电路100的操作。信号CS,SHORT,A,LONG,B,C,AVERAGE与E(或是VIA)(或是节点)针对时间为轴而画出。两个步阶上斜坡电流脉冲CR1与CR2显示在CS节点。该第一电流脉冲CR1在时间t0处以电压V1起始并且在时间t4以斜坡爬升至最大值V2。在从时间t0经历短延迟之后的时间t1以允许转换瞬变值(例如50纳秒(ns)),该SHORT信号发出以在接近CR1电流脉冲开始时起始一“短”取样。开关SW0被关闭并且CS节点电压对电容器C0充电至近似相同的值(例如V1),其电压在节点A上显现。SHORT信号针对一短持续时间发出(例如,约50ns)并且在时间t2解除以重新开启开关SW0。理想地,电容器C0充电得非常快,其显示为一斜坡201,并且SHORT脉冲尽可能地狭窄并且定位在接近于CR1电流脉冲的初始上升沿的时间,以尽可能精确地取样电压V1。SHORT脉冲被轻微地延迟,并且具有充分的持续时间以避免CR1脉冲的瞬变,并且允许电容器C0完整充电至CR1的初始电压电平。因此,开关SW0在一段充分时间内保持关闭,该段时间内电容器C0充电至CR1的初始电压,以在实际上尽可能接近V1电压。该短取样因此系储存在电容器C0上作为一稳态值,该值在节点A上自时间t2开始,如203所显示者。短取样由U0所缓冲,并且该短取样或电压值V1作为其输出。该短值表示接近第一电流脉冲CR1起始附近的电流幅度。
在开启短取样的同时,“长”取样同样被开启,如同由时间t1为高态的LONG信号所示,其关闭开关SW1。当开关SW1关闭时,CS节点的电压对电容器C1在节点B上充电,以使B节点同样快速地以斜坡爬升到电压V1,如同在A节点处类似的斜坡202。然而LONG信号在左侧呈现高态,以保持开关SW1关闭直到时间t3,其在电流脉冲CR1结束之前一短时间,(例如,几近于10ns之前)。当SW1关闭,电容器C1充电以便在节点B取样CR1,如同在205的斜坡。该LONG信号在时间t3解除以重新打开开关SW1,使得该长取样储存在电容器C1上,其在时间t3开始时以207所显示的稳态值。电容器C1有效地充电至几近于电压V2,其为在终止之前脉冲CR1的电压。该长取样是对于在电容器C1上储存的电流脉冲CR1的斜坡终端的电流幅度信息,其被缓冲并且发出作为在缓冲器U1的输出端的一长值V2。开关SW1由LONG信号被保持关闭以尽可能地捕捉电压V2而不需延长电流脉冲CR1的过去终止。
储存在电容器C0与C1上并且个别经由缓冲器U0与U1缓冲的短与长取样信息,由两个等值的电阻器R0与R1所平均,该R0与R1位于短与长取样与保持电路之间并且被结合于节点C。在所显示的特定实施例中,C节点的电压跨过电容器C2所发出,如206所显示的以一类似于节点A与B的方式斜坡爬升,达到电压V1。然后以208所显示的C节点的电压以斜坡爬升,其随着斜坡上升的节点B电压,除了在B节点斜率的几近一半处,因为平均节点A与B两者之故。在时间t3当开关C1被打开时,节点C保持在A与B节点的一稳态平均电压值,以209所表示。因为A节点充电至约为V1而B节点充电至约为V2,显示在209的节点C上的稳态电压是V1与V2电压的平均,或是(V1+V2)/2。
当在电流脉冲CR1的斜坡在时间t4终止时,AVERAGE信号在时间t5处发出高态并且在一短时间之后的时间t6处(例如,约为50ns)发出低态。AVERAGE信号关闭开关SW2以使节点C上的电压在电容器C3上取样并且表示成节点D。该取样在电容器C3上的平均值由缓冲器U2所缓冲并且表示至输出端节点E以210作为表示,其是第一电流脉冲CR1的平均取样值。假设缓冲器U2是一单位增益缓冲器,在节点E上的稳态电压(以210为表示)是电压V1与V2的平均。
该过程重复施加在第二步阶上斜坡电流脉冲CR2,其在时间t10处开始并且在后继的时间t14结束。在这种情况下,脉冲CR2以一电压V3开始,并且以斜坡爬升至一电压V4。该SHORT与LONG信号系在时间t11发出。该SHORT信号在一短时间之后于时间t12被解除,而该LONG信号在接近于电流脉冲CR2的斜坡终点处于时间t13被解除,其恰好在时间t4之前。发展在节点C上的一平均取样电压(以211作表示),其是电压V3与V4的平均。AVERAGE信号在时间t15与t16之间被脉冲激发,其在电流脉冲CR2的终点处以取样电容器C3与节点D的平均值,其以缓冲器U2所缓冲至输出端节点E,其以212作表示。以此种方式,第一电流脉冲CR1的平均值保持在节点E上,并且维持不变直到下一电流脉冲CR2结束,此时节点E在约为时间t15处由下一个平均值所更新。在一脉冲-对-脉冲基础上重复此一方式的操作。
总之,开关SW0与SW1在约相同时间被开启,其在于每一脉宽调制脉冲的开始以使得节点A与B最初充电至相同的电压。节点C同样最初充电至节点A与B相同的电压。开关SW0于脉宽调制脉冲的起始被脉冲激发以开启并且关闭以有效地取样CS节点电压,其中该节点A上的取样电压被保持于缓冲器U0的输出端。开关SW1保持开启直到相同脉冲结束以使得节点B追随CS节点的电压并且以斜坡爬升至一不同的电压水平,其电压提供在缓冲器U1的输出端。因此,节点C以相同于节点A与B的电压且以斜坡爬升至一电压,其为节点A与B两值的中间,代表节点CS上脉冲之平均电压值。开关SW2被脉冲于每一电流脉冲结束时,以取样节点D上的平均值,该值被缓冲且被发出到节点E上作为信号VIA。因此,每一电流脉冲的平均值恰在脉冲已经完成之后提供在节点E上,并且保持在节点E上直到下一次电流脉冲结束。
图3是一概要框图,其为采用电流平均电路100的根据本发明实施例实现的一示范性未经调节的电源转换器300。虽然显示一未经调节的电源转换器,本发明也可同等地利用在经调节后的电源转换器。电源转换器300包含一示范性半桥接转换器301,其包含DC电容器C1与C2,电源变压器T1,电流感测变压器T2,以及开关Q1与Q2。本发明相等地施加至利用全桥接转换器及其类似者的调节器,包含单一端及双端拓朴。开关Q1,Q2指定元件符号Q并且概要地显示为场效晶体管(FETs)的简化表示法,其中其应被了解的是开关Q1,Q2可以实施为另一种适合的电子开关装置,例如N-沟道装置,P-沟道装置,金属氧化物半导体场效晶体管(MOSFETs),双极结晶体管(BJTs),隔绝栅极双极晶体管(IGBTs),或是如熟练技术人员所熟知的任何其他电子开关组态。一输入端电压(VIN)信号被提供至电容器C1的一端,并提供至开关Q1的第一电流终端(例如,栅极或是源极)。开关Q1的该第二电流终端连接至Q2的第一电流终端,并连接至电流感测变压器T2的初级绕组P2。初级绕组P2的另一端连接至一变压器T1的初级绕组P1。电容器C1的另一端连接至初级绕组P1另一端,并且连接至电容器C2的一端。电容器C2的另一端与Q2的第二电流终端耦接在一起以发展一初级返回(PRTN)信号。变压器P1的次级绕组S1的终端被提供至整流及滤波电路303,其发展一输出端电压(VOUT)信号相关于一次级返回(SRTN)信号。
该电流感测变压器T2包含一次级绕组S2,其连接至一全波整流器电路305,其包含二极管D1-D4。特别是,次级绕组S2的一端连接至二极管D1的阳极并连接至二极管D2的阴极。次级绕组S2的另一端连接至二极管D3的阳极并且连接至二极管D4的阴极。二极管D2与D4的阳极耦接在一起并连接到PRTN节点,其进一步连接至一负载电阻R1的一端。二极管D1与D3的阴极一起连接在阳极306,其连接至电阻器R1的另一端,且其发展一整流初级(RP)信号。该节点306连接至一滤波器电阻器R2的一端,其具有连接至一电流感测(CS)节点307的另一端,该电流感测节点307具有特征化的步阶上斜坡波形。CS节点由一电容器CF(参考GND或是PRTN)滤波,并提供到电流平均电路100的CS输入端,其参考至PRTN作为相关的GND信号。如前所述,电流平均电路100对CS节点307取样,并产生VIA信号,它是正比于电源转换器300的平均输出端电流的电压。VIA信号被提供至一电阻器R3的一端,其另一端连接至一放大器的反向或是负向(-)输入端(例如,一运算放大器或是op amp,比较器等等)309并连接至一反馈电容器CFB的一端。电容器CFB的另一端连接至放大器309的输出端,其发展一电流控制(ICTL)信号。一电流参考(IREF)信号被提供至放大器309的非反向或是正向(+)输入端。电阻器R3,电容器CFB以及放大器309形成一电流放大器311,其比较VIA与IREF信号以发展ICTL信号。
ICTL信号被提供至另一个放大器313的非反向输入端,其接收一锯齿状(ST)信号于其反向输入端。振荡器(OSC)312一般用于产生如所显示的ST信号。放大器313作为脉宽调制(PWM)产生器以用于发展一脉宽调制信号,其被提供至一开关控制器315的输入端。RP信号同样被提供至另一个放大器323的非反向输入端,其于反向输入端接收一峰值参考(PREF)电压信号。放大器323的输出端发出一峰值电流限制信号IPEAK,其被提供至开关控制器315的另一个输入端。该峰值电流限制检测放大器323操作类似于峰值限制控制电路,如相关领域熟练技术人员所熟知的,在此不进一步叙述。该开关控制器315接收PWM信号与IPEAK信号,并发展多个开关控制(SC)信号,其包含第一与第二开关控制信号SC1与SC2。该SC1与SC2信号各自被提供至各隔绝/驱动/电平移位(I/D/LS)电路317与319,其个别驱动半桥接转换器301的开关Q1与Q2的栅极。SC1与SC2信号被同样提供至双输入OR门电路321的个别输入端,其至少产生一个TC(计时控制)信号,其提供至电流平均电路100。TC信号被提供到计时控制电路101,或是由计时控制电路101使用于计时SHORT,LONG与AVERAGE信号,以用于电流取样。
这种开关控制器315致动开关Q1在每一脉宽调制周期的第一个半周期期间,并且在脉宽调制周期的第二个半周期致动开关Q2并且其运作以此种方式连续的交替,如相关技术领域熟练技术人员所熟知的。电流放大器311放大输出平均电流信号VIA与IREF信号之间的差异,其对应所需的平均电流限制,并产生ICTL信号,其在一过载状况下用以控制脉宽调制信号的工作周期。在正常操作期间当平均电流信号VIA小于IREF时,由电流放大器311所发出的ICTL信号处于最大值,并且该脉宽调制信号伴随最大工作周期产生。如果输出端电流增加并且造成过载状况,VIA信号增加以超过IREF信号,并且该ICTL信号相应地由电流放大器311所减少。ICTL信号的减少使得脉宽调制信号的工作周期减少,使得输出端电流不超过由IREF信号所决定的目标电流水平。以此种方式,平均电流方法产生一常数或是俗称“砖块墙”(brick-wall)的电流限制行为。
图4系一示范性电路的框图,该示范性电路用以转换未调节的电源转换器300至一电压模式受控电源转换器。增加一电压错误放大器401以测量VOUT信号的电压水平,并且其输出一对应的电压控制(VCTL)信号。该VCTL信号正比于VOUT信号与一输出端电压参考(VREF)信号之间的差异,而该VCTL信号提供至放大器401的输入端。电压错误放大器401的输出端被加总或是以允许放大器具有最低输出端信号以主导的方式连接至一电流错误放大器311的ICTL输出端。因此电流错误放大器311发出电流控制信号ICTL加总在一起,或是连接至VCTL信号以集合地提供控制信号CTL,其代表ICTL或是VCTL信号的无论哪一个为较低。CTL信号被提供至一脉宽调制比较器403的负向或是反向输入端(-),其于正向或是非反向输入端(+)接收一锯齿状信号ST。比较器403代替未调节电源转换器300的比较器313以转换至一未调节转换器,比较器403比较CTL信号与ST信号,并且在输出端产生脉宽调制信号,其提供至开关控制器315。当使用电压-模式控制时,平均过电流保护方法利用电流平均电路100,通过在半周期之间保持工作周期对称以保持在变压器T1的通量平衡。
图5是一示范性非隔离DC-DC降压转换器500的概要框图,其利用电流平均电路100以平均“关闭时间”电流。通常而言,一降压转换器转换一未调节输入端电压VIN至一调节后输出端电压VOUT,其中VOUT少于VIN。本发明可同样施用在升压,降压-升压,以及其他非隔离性转换器,其中该输出端电压大于,等于或是小于输入端电压。一脉宽调制控制电路501根据一脉宽调制信号产生一开关控制信号SC1与SC2,其类似于先前所述的方式。SC1信号被提供至Q1的栅极,并且SC2信号被提供至Q2的栅极,其中Q1与Q2再次以FET显示,但是可以根据任何适当电子开关组态而实施。Q1的电流路径(例如,漏极-源极或是源极-漏极)耦接在VIN与一相位(PH)节点,并且Q2的电流路径耦接在PH节点与接地点之间。该PH节点连接至输出电感L的一端,其另一端发展输出端电压信号VOUT,该电压信号由电容器C滤波,该电容器参考至GND。VOUT信号被回馈至一电压错误放大器505,其接收VREF信号并且将其与VOUT信号相比较,以与先前所述的方式类似的方式发展电压控制信号VCTL。
一电流传感器503被插入至PH节点与Q2中间。电流传感器503可以根据多种技术中的任一种而实施,例如MOSFET RDSON,离散感测电阻器,电流变压器,霍尔效应(hall effect)装置等等。电流传感器503产生CS信号,其被提供到电流平均电路100的CS输入端。电流平均电路100接收TC信号并且以类似于先前所述的方式产生VIA信号。操作实质上相等,除了步阶上斜坡波形的斜坡部分具有一负斜率,并且因此当Q2开启时操作为一关闭-时间电流感测电路。如相关领域熟悉该项技术的人员所了解的,Q1在“开启时间”期间被打开或是致动,以耦接VIN至电感L,在每一脉宽调制周期的第一半周期期间驱动VOUT的电压。随后,在“关闭时间”中Q1被关闭并且Q2被打开以在每一脉宽调制周期的第二半周期期间耦接电感L至GND。该电流平均电路100产生电流平均信号VIA,其被提供至一电流错误放大器509的输入端。电流错误放大器509接收并且比较IREF信号与VIA信号,以类似于先前所述的方式发展ICTL信号。ICTL与VCTL信号被提供至一脉宽调制比较器511的个别负向输入端,其在另一端接收锯齿状(ST)信号,即正向输入端。脉宽调制比较器511以类似于脉宽调制比较器403的方式操作,其中出于控制的目的而使ICTL与VCTL之中的较低电压主导。脉宽调制比较器511产生脉宽调制信号,其被提供至控制电路501以完成控制回路。
图6是一时序图,其说明电流平均电路100的操作,其系施作为在该降压转换器500中的关闭时间电流平均电路。再次,CS,SHORT,A,LONG,B,C,AVERAGE与E(或是VIA)信号(或是节点)针对时间轴描绘。显示在图6的信号波形非常相似于显示于图2的信号波形,除了电流脉冲CR1与CR2表现负向斜率斜坡而不是正向斜率斜坡。在A节点上的波形是类似的,除了在负向斜率电流脉冲CR1与CR2表现较高的电压初始值。B波形以及在C节点上的平均波形都类似于图2的波形,但其具有负向斜率斜坡。提供VIA信号的E节点亦非常类似,因为负向斜率电流脉冲对于关闭时间的平均类似于正向斜率斜坡在开启时间的平均。
图7是一电流分享系统700的概要框图,其包含电流平均电路100。在这种情况中,电流平均电路100整合在一脉宽调制控制器集成电路(IC)或是芯片703上,其具有一CS接脚,用以接收由电流平均电路100的输入端所提供的感测电流,并且芯片703的IOUT接脚提供平均电流信号VIA。在一实施例中,该VIA信号可以进一步由内部缓冲器(例如,4X,并未显示)所放大,其用以提供VIA信号。电流感测变压器T包含用以感测电流的初级绕组P以及次级绕组S。次级绕组S连接至一全波整流器电路705,其包含二极管D1至D4,其相同于显示在图3的方式。特别的是,次级绕组S的一端耦接至二极管D1的阳极与二极管D2的阴极。次级绕组S的另一端连接至二极管D3的阳极,以及二极管D4的阴极。二极管D2与D4的阳极耦接至地(GND)并耦接至一负载电阻器R1的一端。二极管D1与D3耦接在一节点706,其连接至电阻器R1的另一端且其发展整流后的初级RP信号RP。节点706连接至一滤波器电阻器R2的一端,其另一端耦接至一电流感测(CS)节点707,其具有特征化的步阶上斜坡波形。CS节点707由电容器CF(参考至GND)滤波,并且提供至脉宽调制控制器芯片703的CS接脚。
在脉宽调制控制器芯片703的IOUT接脚的VIA信号被提供至放大器U2A的非反向输入端,其具有连接至电阻器R3与R4每一个的一端的反向输入端。电阻器R3的另一端连接至GND,而R4的另一端连接至放大器U2A的输出端,并且连接至电阻器R5与R7每一个的一端。电阻器R5的另一端连接至一节点709,形成ISHARE BUS。电阻器R6与电容器C1平行耦接至GND与节点709之间,而节点709进一步连接至另一个放大器U2B的非反向输入端。电阻器R7的另一端连接至放大器U2B的反向输入端,反馈电阻器R8的一端,电阻器R9的一端以及另一个电容器C2的一端。电阻器R9的另一端连接至一源极电压VDD,而电阻器R8的其他端与电容器C2耦接在一起,且耦接至放大器U2B的输出端。放大器U2B的输出端连接至MOSFET Q的栅极,其具有连接至一电阻器R10的一端的源极,以及耦接至节点711的漏极,节点711形成在电压驱动电阻器R11与R12之间。电阻器R10与R11的其他端连接至地,且电阻器R12的另一端连接至VOUT。
电流分享系统700对于多个电源系统的每一相位分享电流以驱动一共同输出端节点,发展VOUT信号。每一电流分享系统700的ISHARE BUS节点709耦接在一起。以此种方式,所有的ISHARE系统平行耦接,使得任何系统在任何给定时间可以成为主导系统,而其他系统成为从属系统。VOUT由R11与R12于节点711处分开,其连接至电压错误放大器(例如,在脉宽调制控制器芯片703内)。U2A设定ISHARE BUS节点709的信号幅度,而U2B是ISHAREBUS放大器。R7与C2设定电流分享带宽,而R8限制电流分享放大器U2B的增益。R7与R9设定主导系统与从属系统之间的最大负载差异。R10设定VOUT的最大变化量,其电流分享系统700可以感应以产生电流分享。
操作上,多个电流分享系统700实施电流分享方法,其监视电源供应器,其供应最高电流。提供最高电流输出端的电源供应器被定义为主导者,而其余电源供应器为从属者。主导者控制ISHARE BUS,其中该主导者可以依照负载状况动态改变。ISHARE BUS的幅度指示主导者的电流负载。每一从属电源供应器的电流分享系统700将其内部平均电流水平与ISHARE BUS的内部平均电流水平比较,并且如果比较结果太低(即,低于ISHARE BUS),则拉升来自输出端电压反馈分压器网路的电流。特别是,当放大器U2B的反向输入端降到低于ISHARE BUS节点709时,放大器U2B驱动Q以从节点711吸取电流,因而减少其电压。如此会造成输出端电压VOUT显得对于区域电源供应器而言太低,于是其意欲增加VOUT使得增加输出端电流。最后,从属者之一开始得到比主导者更多的电流而变成主导者。电流分享系统700合并迟滞以使得任何给定的主导者保持主导者之地位持续至少一段最短时间,以预防不必要的振荡并且预防多个电流分享系统700之间的伤害。
根据本发明实施例的平均电流限制与控制电路可以由任何需要具有良好表现的电流控制限制特征的脉宽调制电源转换器加以利用。控制电路产生一常数或是“砖块墙”电流限制行为,使得电流并未超过一最大电流水平,且电流保持固定值而不会发生超过负载的状况。输出电源水平保持固定使得最大电流水平未被超过,取而代之允许输出端电压崩溃。控制电路对于电池供电的电子装置特别有用,该些电子装置包括可携式或是移动式装置等,其必须将电流限制在一预定的最大水平。这种配置可以包含非隔离式的电源拓朴。但控制电路对于高度供电装置以及交流供电装置也是同样有用,例如计算机服务器系统及利用隔离式电源拓朴等。
虽然本发明已经由详细的细节参考特定较佳型式加以说明,其他型式及变化仍是可能可以完成的。本领域熟习技术人员应可了解,在不背离由申请专利范围所定义的精神和范畴下,可以容易的利用所揭示的观念以及特定实施例作为基础而设计或是修改其他结构,作为提供本发明相同之目的。
权利要求
1.一种电流平均电路,其用于平均一脉宽调制(PWM)电源转换器的分段线性开关电流波形,其包含第一取样与保持电路,其于每一脉宽调制周期的开始取样电流波形的短持续时间,且其提供对应的短取样;第二取样与保持电路,其取样每一脉宽调制周期的长持续时间,并且提供对应的长取样;取样平均电路,其连接至所述第一和第二取样与保持电路,该取样平均电路平均对应的短与长取样且提供对应的平均值;以及第三取样与保持电路,其取样每一所述平均值并且其提供电流平均信号。
2.如权利要求1所述的电流平均电路,其特征在于,所述第一、第二与第三取样与保持电路,每一个都包含一开关,其耦接至电容器。
3.如权利要求2所述的电流平均电路,其特征在于,该第一、第二与第三取样与保持电路,每一个进一步包含缓冲器,其具有耦接至对应的电容器的输入端,以及提供取样值的输出端。
4.如权利要求2所述的电流平均电路,其特征在于,进一步包含计时控制电路,其控制该第一,第二与第三取样与保持电路的每一个的所述开关。
5.如权利要求4所述的电流平均电路,其特征在于,所述计时控制电路提供短控制信号至所述第一取样与保持电路的第一开关,提供长控制信号至所述第二取样与保持电路的第二开关,以及提供平均控制信号至所述第三取样与保持电路的第三开关。
6.如权利要求5所述的电流平均电路,其特征在于,分段线性开关电流波形包含步阶上斜坡脉冲,并且其中所述计时控制电路于每一电流波形脉冲开始时提供所述短控制信号作为一短脉冲,在每一电流波形脉冲持续时间提供长控制信号作为一长脉冲,而在每一电流波形脉冲结束时提供所述平均控制信号作为一短脉冲。
7.如权利要求1所述的电流平均电路,其特征在于,所述取样平均电路包含一电阻性差动接面,其耦接至一电容器。
8.一种电源转换器,其包含电感性装置;开关电路,其选择性地施加输入电压至该电感性装置以形成一输出电压;电流传感器,其感测流经所述开关电路的电流,并且提供电流感测信号作为步阶上斜坡波形;电流平均电路,其接收所述电流感测信号,并且提供电流平均信号,该电流平均电路包含第一取样与保持电路,其取样所述电流感测信号的每一脉冲的起始,并且提供对应的短取样;第二取样与保持电路,其取样每一脉冲的持续时间,并且提供对应的长取样;取样平均电路,其连接至所述第一与第二取样与保持电路,该取样平均电路平均所述短取样与长取样的对应一些,且提供对应的平均值;以及第三取样与保持电路,其取样每一所述平均值,且提供所述电流平均信号;以及控制器,其根据所述电流平均信号控制所述开关电路。
9.如权利要求8所述的电源转换器,其特征在于所述电感性装置包含第一变压器,其具有初级绕组与次级绕组;其中该开关电路包含第一与第二开关,其连接至所述第一变压器的所述初级绕组,并且其中所述次级绕组形成所述输出电压;并且其中所述控制器包含第一放大器,其具有接收所述电流平均信号与电流参考信号的输入端,以及提供电流控制信号的输出端;第二放大器,其具有接收所述电流控制信号及振荡信号的输入端,以及提供脉宽调制(PWM)信号的输出端;以及开关控制器,其具有接收所述脉宽调制信号的输入端,并具有第一输出端与第二输出端,其分别提供第一与第二开关控制信号至该第一开关与第二开关。
10.如权利要求9所述的电源转换器,其特征在于,该电流传感器包含感测变压器,其具有初级绕组与次级绕组,该初级绕组与该第一变压器的初级绕组串联耦接;以及整流电路,其提供所述电流感测信号。
11.如权利要求10所述的电源转换器,其特征在于,进一步包含控制逻辑,其具有接收所述第一与第二开关控制信号的输入端,以及提供计时控制信号的输出端;以及其中所述电流平均电路进一步包含计时控制电路,其具有接收所述计时控制信号的输入端,以及多个输出端,其用于控制所述第一、第二与第三取样与保持电路。
12.如权利要求9所述的电源转换器,其特征在于,进一步包含第三放大器,其具有接收所述输出电压以及输出参考电压的输入端,以及提供电压控制信号的输出端,并且其中所述第二放大器包含比较器,该比较器具有接收所述电流控制信号、所述电压控制信号与所述振荡信号的输入端,并具有提供所述脉宽调制信号的输出端。
13.如权利要求8所述的电源转换器,其特征在于所述开关电路包含第一开关,其具有控制终端与一对电流终端,其耦接在所述输入端电压与相位节点之间,以及第二开关,其具有控制终端与一对电流终端,其耦接在所述电流传感器与接地之间;其中该电流传感器具有输入终端,其耦接在所述相位节点与所述第二开关之间,并且具有一输出端以提供所述电流感测信号;并且其中所述控制器包含第一放大器,具有接收所述电流平均信号与电流参考信号的输入端,并具有提供电流控制信号的输出端;比较器,其具有第一与第二输入端,其分别接收所述电流控制信号与振荡信号,该比较器亦具有一输出端提供脉宽调制(PWM)信号;并且控制电路,其具有输入端,其接收所述脉宽调制信号,以及第一与第二输出端,其分别提供第一与第二开关控制信号至所述第一与第二开关的所述控制终端。
14.如权利要求13所述的电源转换器,其特征在于,进一步包含第二放大器,它具有接收所述输出端电压与参考电压的输入端,以及提供电压控制信号的输出端;以及其中所述比较器具有接收所述电压控制信号的第三输入端。
15.一种平均脉宽调制(PWM)电源转换器的分段线性开关电流波形的方法,包含在每一脉宽调制周期开始时取样电流波形的短持续时间,并且提供对应的短取样;取样每一脉宽调制周期的长持续时间并且提供对应的长取样;平均短取样与长取样的各一些并且提供对应的平均值;以及取样每一平均值并且提供电流平均信号。
16.如权利要求15所述的方法,其特征在于,所述取样步骤每一个都包括耦合一电容器并对其充电。
17.如权利要求15所述的方法,其特征在于,所述取样短持续时间的步骤包含在一短持续时间内关闭第一开关,并且在每一脉宽调制周期开始时充电第一电容器,其中所述取样每一脉宽调制周期的长持续时间的步骤包含关闭第二开关,并且在每一脉宽调制周期的持续时间内充电第二电容器,且其中该取样每一平均值的步骤包含在每一长持续时间之后关闭第三开关并且对第三电容器充电。
18.如权利要求15所述的方法,其特征在于,该分段线性开关电流波形包含步阶上斜坡脉冲,其中所述取样短持续时间的步骤包含于每一脉冲开始时关闭第一开关以对第一电容器充电,其中所述取样每一脉宽调制周期的长持续时间步骤包含在每一脉冲的持续时间内关闭第二开关以对第二电容器充电,并且其中所述取样每一平均值的步骤包含关闭第三开关并且在每一脉冲结束时对第三电容器充电。
19.如权利要求15所述的方法,其特征在于,所述平均短取样与长取样的各自一些的步骤包含跨过一电阻性电压差异接面提供短取样与长取样。
20.如权利要求15所述的方法,其特征在于,进一步包含感测流经脉宽调制电源转换器的开关装置的电流,并且对其感测电流整流。
全文摘要
揭示一种用于平均一脉宽调制电源转换器的分段线性开关电流波形的电流平均电路,其包含第一,第二与第三取样与保持电路以及取样平均电路。该第一取样与保持电路对每一脉宽调制周期的一短持续时间内的电流波形进行取样,并且提供对应的短取样值。第二取样与保持电路取样每一脉宽调制周期的长持续时间并且提供对应的长取样值。该取样平均电路连接至该第一与第二取样与保持电路,平均对应的短取样值与长取样值,并提供对应的平均值。第三取样与保持电路取样每一平均值并提供一电流平均信号。该波形可以包含代表开关电流的步阶上斜坡电压脉冲。该电流平均信号在每一电流脉冲之后更新。
文档编号G05F1/12GK1734385SQ20051008821
公开日2006年2月15日 申请日期2005年7月26日 优先权日2004年7月26日
发明者G·M·伍德, F·F·格林菲尔德 申请人:英特赛尔美国股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1