具有适应电压的参考电压发生器及集成电路芯片的制作方法

文档序号:16810688发布日期:2019-02-10 13:36阅读:210来源:国知局
具有适应电压的参考电压发生器及集成电路芯片的制作方法

本发明有关一种电源电路,更特别有关一种具有自动随温度及制程改变的适应电压的参考电压发生器及使用该参考电压发生器的集成电路芯片。



背景技术:

带隙基准电路通常用来提供下游电路所需的电源电压。所述带隙基准电路包含带隙基准电压源(bandgapreferencevoltagesource)以及稳压器(ldo)。所述带隙基准电压源提供稳定的基准电压至所述稳压器。所述稳压器具有低的静态电流(iddq)以降低耗能并用于保持所述电源电压。

例如参照图1所示,带隙基准电路(bandgapreferencecircuit)10提供电源电压vdd至除频器(divider)12。当除频器12为d型正反器(dflipflop)所构成的除频器时,虽然在正常状况下所述储频器12可正常运作,然而在因制程漂移所造成的sscorner及ffcorner的极端条件下,除频器12可能无法正常运作。

已知解决这种问题的方式,是通过使用制程及温度检测器(processandtemperaturedetector)辨识出芯片的制程和温度,并据以校正所述电源电压vdd。然而,这种方法必须事先知道所欲操作的环境温度,才能正确校正所述电源电压vdd。

有鉴于此,一种能够自我调整所述电源电压vdd而无使用已知的校正程序的具有自适应电压的参考电压发生器实为业界所需。



技术实现要素:

本发明提供一种提供自适应电压的参考电压发生器及使用该参考电压发生器的集成电路芯片。

本发明提供一种参考电压发生器,包含稳定电流源、p型金属氧化物半导体晶体管以及n型金属氧化物半导体晶体管。所述稳定电流源用于提供稳定电流。所述p型金属氧化物半导体晶体管的源极接收所述稳定电流,所述p型金属氧化物半导体晶体管并具有第一栅源极电压。所述n型金属氧化物半导体晶体管的漏极电性耦接所述p型金属氧化物半导体晶体管的漏极,且所述n型金属氧化物半导体晶体管并具有第二栅源极电压,其中,所述参考电压发生器所提供的参考电压由所述第一栅源极电压及所述第二栅源极电压所决定。

本发明还提供一种参考电压发生器,包含p型金属氧化物半导体晶体管、n型金属氧化物半导体晶体管以及稳定电流源。所述p型金属氧化物半导体晶体管具有第一栅源极电压。所述n型金属氧化物半导体晶体管的漏极电性耦接所述p型金属氧化物半导体晶体管的漏极,且所述n型金属氧化物半导体晶体管具有第二栅源极电压。所述稳定电流源用于提供稳定电流从所述n型金属氧化物半导体晶体管的源极流出,其中,所述参考电压发生器所提供的参考电压由所述第一栅源极电压及所述第二栅源极电压所决定。

本发明还提供一种集成电路芯片,包含参考电压发生器、稳压器以及高频电路。所述参考电压发生器包含彼此串接的稳定电流源、至少一个p型金属氧化物半导体晶体管及至少一个n型金属氧化物半导体晶体管,其中,所述至少一个p型金属氧化物半导体晶体管具有第一栅源极电压,所述至少一个n型金属氧化物半导体晶体管具有第二栅源极电压,所述参考电压发生器用于提供由所述第一栅源极电压及所述第二栅源极电压决定的参考电压。所述稳压器接收所述参考电压并产生调节电压。所述高频电路以所述调节电压作为电源电压,且所述电源电压为自动随温度及制程变化的自适应电压。

本发明的实施方式中,由于p型金属氧化物半导体晶体管及n型金属氧化物半导体晶体管的栅源极电压(gate-sourcevoltage)会随制程及操作温度自动调整,因此可产生随制程及操作温度自动变化的参考电压。藉此,无需要进行校正机制,即能以简单的电路消除极端条件下电路失效的问题。

某些实施方式中,若自适应电压的调整幅度无法使下游电路离开失效,可调整稳定电流源所提供的稳定电流源、改变被连接的p型金属氧化物半导体晶体管和/或n型金属氧化物半导体晶体管的数目,以改变自适应电压的电压变化范围。

为了让本发明的上述和其他目的、特征和优点能更明显,下文将配合所附图示,详细说明如下。此外,在本发明的说明中,相同的构件以相同的符号表示,在此先述明。

附图说明

图1为已知电源电路的方框图;

图2为本发明一种实施例的集成电路芯片内的电源电路及高频电路;

图3为本发明一实施例的参考电压发生器的电路图;

图4为本发明另一实施例的参考电压发生器的电路图;及

图5为本发明再一实施例的参考电压发生器的电路图。

附图标记说明

2集成电路芯片

20参考电压发生器

21稳定电流源

23p型金属氧化物半导体晶体管

25n型金属氧化物半导体晶体管

27稳压器

29高频电路

具体实施方式

本发明应用于集成电路芯片中的电源电路及高频电路。所述电源电路提供自适应电压至所述高频电路。由于所述高频电路与所述电源电路中的金属氧化物半导体晶体管是在相同制程所制作,因此具有大致相同的随温度及制程变化的特性。由于所述电源电路所提供的自适应电压可随温度及制程自我调整,故可避免所述高频电路在极端操作条件下发生电路失效(fail)的情形。

请参照图2所示,其为本发明一种实施方式的集成电路芯片2的电源电路及高频电路29,其中,所述电源电路包含参考电压发生器(referencevoltagegenerator)20及稳压器(ldo)27。所述参考电压发生器20用于输出参考电压vref,所述稳压器27接收所述参考电压vref并产生调节电压vdd。所述高频电路29以所述调节电压vdd作为电源电压,其中所述电源电压为自动随温度及制程变化的自适应电压(详述于后)。

图2中,所述稳压器27显示为作为电压跟随器(voltagefollower)的运算放大器。必须说明的是,虽然图2显示稳压器27是将其输出端直接回授至负输入端所形成的电压增益为1的电压跟随器,但其仅用以说明但并非用以限制本发明。其他实施方式中,稳压器27可具有大于1的电压增益,根据不同应用而定。例如,可参照本案申请人所共同拥有且于2017年4月27日申请的美国专利申请第us15/499,497号,其全部内容在此并入参考。

所述高频电路29通常具有极端条件下会发生电路失效的情形,但通过改变调节电压vdd,即能使高频电路29恢复正常运作。一种实施方式中,所述高频电路29为d型正反器(dflip-flop)形成的除频器(divider)。

例如,若所述除频器操作于8ghz、sscorner及-40℃的极端条件下会发生电路失效,但经过调高调节电压vdd则能恢复正常运作。例如,若所述除频器操作于4ghz、ffcorner及85℃的极端条件下会发生电路失效,但经过调低调节电压vdd则能恢复正常运作。必须说明的是,本发明说明中的极端条件的数值,例如频率值及温度值仅为例示,并非用以限定本发明。

所述参考电压发生器20包含彼此串接的稳定电流源21、至少一个p型金属氧化物半导体晶体管(pmostransistor)及至少一个n型金属氧化物半导体晶体管(nmostransistor),例如图2中显示一个p型金属氧化物半导体晶体管23串接一个n型金属氧化物半导体晶体管25。所述至少一个p型金属氧化物半导体晶体管23具有第一栅源极电压vgs_p,所述至少一个n型金属氧化物半导体晶体管25具有第二栅源极电压vgs_n,所述参考电压发生器20用于提供由所述第一栅源极电压vgs_p与所述第二栅源极电压vgs_n决定的参考电压vref。

例如图2中,所述稳定电流源21用于提供稳定电流(steadycurrent)is,所述稳定电流源21例如可由带隙基准电压源(bandgapreferencevoltagesource)提供,或者可由其他电路提供,并无特定限制。

图2的实施方式中,所述p型金属氧化物半导体晶体管23的源极连接所述稳定电流源21以接收所述稳定电流is,所述p型金属氧化物半导体晶体管23并具有第一栅源极电压vgs_p。所述n型金属氧化物半导体晶体管25的漏极电性耦接所述p型金属氧化物半导体晶体管23的漏极,所述n型金属氧化物半导体晶体管25并具有第二栅源极电压vgs_n,其中,所述第一栅源极电压vgs_p及所述第二栅源极电压vgs_n可以下列方程式(1)表示:

vgs=vth+((2id/μcox)×(l/w))1/2方程式(1)

其中,vth为金属氧化物半导体晶体管的临界电压(thresholdvoltage),其与制程与温度相关;id为漏极电流;μ为电子迁移率(mobility),其为与制程有关的常数;cox为闸极与基板间氧化层的单位面积电容值(oxidecapacitance);(l/w)为长宽比。

所述参考电压发生器20所提供的参考电压vref由所述第一栅源极电压vgs_p及所述第二栅源极电压vgs_n所决定。例如,若参考电压发生器20的n型金属氧化物半导体晶体管25的源极连接接地电压grd,则参考电压vref=vgs_p+vgs_n。某些实施方式中,n型金属氧化物半导体晶体管25的源极可连接定电压源。

因此,当id、l、w根据高频电路29的操作电压决定其数值后,栅源极电压vgs仍与温度及制程相关。例如,相对于ttcorner及常温的正常条件,在ffcorner和高温的极端条件下,vth及vgs变小,因此可降低调节电压vdd而使所述高频电路29恢复正常运作。例如,相对于ttcorner及常温的正常条件,在sscorner和低温的极端条件下,vth及vgs都变大,因此可增加调节电压vdd而使所述高频电路29恢复正常运作。藉此,即使集成电路芯片2的操作特性随制程及温度改变,所述高频电路29的电源电压(即vdd)都能自我调整,以使所述高频电路29在极端条件下正常运作。

图2显示所述n型金属氧化物半导体晶体管25的漏极直接电性耦接所述p型金属氧化物半导体晶体管23的漏极,且所述p型金属氧化物半导体晶体管23及所述n型金属氧化物半导体晶体管25的闸极均电性耦接所述n型金属氧化物半导体晶体管25的漏极与所述p型金属氧化物半导体晶体管23的漏极之间的节点p。

某些实施方式中,根据参考电压发生器20所需提供的参考电压vref的电压值以及金属氧化物半导体晶体管(例如23、25)的栅源极电压的vgs的操作范围,所述n型金属氧化物半导体晶体管25的漏极与所述p型金属氧化物半导体晶体管23的漏极之间还可连接至少一个其他的n型金属氧化物半导体晶体管和/或至少一个其他的p型金属氧化物半导体晶体管,只要稳定电流源21提供从所述至少一个p型金属氧化物半导体晶体管中第一个p型金属氧化物半导体晶体管的源极流入的稳定电流is即可。

例如,图3为本发明一实施例的参考电压发生器的电路图,其中,图3的参考电压发生器与其下游的稳压器27及高频电路29的连接方式类似图2所示,故于此不再赘述。亦即,稳压器27连接至所述稳定电流源21与所述至少一个p型金属氧化物半导体晶体管之间的节点,以接收参考电压vref并输出调节电压vdd。

图3中,所述n型金属氧化物半导体晶体管25的漏极与所述p型金属氧化物半导体晶体管23的漏极之间还连接至少一个其他的p型金属氧化物半导体晶体管及至少一个其他的n型金属氧化物半导体晶体管;例如,p型金属氧化物半导体晶体管23的漏极与p型金属氧化物半导体晶体管23’的源极电性耦接以形成串接;n型金属氧化物半导体晶体管25的漏极与n型金属氧化物半导体晶体管25’的源极电性耦接以形成串接;而p型金属氧化物半导体晶体管23、p型金属氧化物半导体晶体管23’、n型金属氧化物半导体晶体管25与n型金属氧化物半导体晶体管25’的闸极都连接至节点p。

某些实施方式中,所述n型金属氧化物半导体晶体管25的漏极与所述p型金属氧化物半导体晶体管23的漏极之间还连接多个其他的p型金属氧化物半导体晶体管23’及多个其他的n型金属氧化物半导体晶体管25’,其连接方式都为前一个p型金属氧化物半导体晶体管的漏极与下一个p型金属氧化物半导体晶体管的源极电性耦接且前一个n型金属氧化物半导体晶体管的源极与下一个n型金属氧化物半导体晶体管的漏极电性耦接,以形成串接。

某些实施方式中,被连接的所述多个其他的p型金属氧化物半导体晶体管23’及所述多个其他的n型金属氧化物半导体晶体管25’的数目可调整。调整的方式例如可通过开关组件连接或旁路(bypass)所述多个其他的p型金属氧化物半导体晶体管23’,或通过开关组件连接或旁路所述多个其他的n型金属氧化物半导体晶体管25’。另一种实施方式中,可透过设置多个连接不同数目且彼此串接的n型金属氧化物半导体晶体管与p型金属氧化物半导体晶体管(其串接的方式如同图3)的晶体管群(transistorbank),并通过多任务器或开关组件连接不同的晶体管群,以达到连接不同数目的金属氧化物半导体晶体管的目的。例如,集成电路芯片2中同时设置有图2的晶体管23、25以及图3的晶体管23、23’、25、25’以作为不同的晶体管群;当稳压器27连接如图2时,栅源极vgs如方程式(1)所示,当稳压器27连接如图3时,栅源极vgs则如(假设晶体管23、23’相同且晶体管25、25’相同)方程式(2)所示

vgs=vth+((2id/μcox)×(2l/w))1/2方程式(2)

必须说明的是,改变连接的晶体管群以改变调节电压vdd例如是透过使用中央处理器或微处理器等处理单元实现改变连接,其并不同于所述n型金属氧化物半导体晶体管25与所述p型金属氧化物半导体晶体管23可随制程及温度自行变化调节电压vdd。如前所述,在id、l、w决定后,提供给高频电路29的调节电压vdd已决定,所述n型金属氧化物半导体晶体管25与所述p型金属氧化物半导体晶体管23是针对极端条件下让高频电路29恢复正常运作而设置的。某些情形下,如果p型金属氧化物半导体晶体管23与n型金属氧化物半导体晶体管25的栅源极电压vgs的变化无法让高频电路29恢复正常运作,才考虑改变连接晶体管的方式。一般而言,若事先设计良好,仅透过金属氧化物半导体晶体管的栅源极电压vgs的自适应变化,则足以让高频电路29恢复正常运作。

另一种改变调节电压vdd的方式例如是调整所述稳定电流源21提供的所述稳定电流is的数值。实现的方式例如为设置一个可变的稳定电流源或设置多个不同的固定电流源,只要使参考电压发生器20的稳定电流is的数值可改变即可,并无特定限制。如前所述,在设计适当的前提下,所述稳定电流源21可提供固定电流,仅透过金属氧化物半导体晶体管的栅源极电压vgs的自适应变化,则足以让高频电路29恢复正常运作。只有在金属氧化物半导体晶体管的栅源极电压vgs的自适应变化无法让高频电路29恢复正常运作时,才改变稳定电流is的电流值。

上述改变金属氧化物半导体晶体管连接方式及调整稳定电流is亦可搭配使用。

请参照图4所示,其为本发明另一实施例的参考电压发生器的电路图。图4的参考电压发生器20’与图2的参考电压发生器20的主要差异在于稳定电流源21的设置位置以及稳压器27的连接位置不同。例如,图4显示稳压器27是连接于n型金属氧化物半导体晶体管25的源极与接地电压grd之间的节点。

本实施方式中,p型金属氧化物半导体晶体管23的源极耦接定电压源vs,且所述p型金属氧化物半导体晶体管23具有第一栅源极电压vgs_p;n型金属氧化物半导体晶体管25的漏极电性耦接所述p型金属氧化物半导体晶体管23的漏极,且所述n型金属氧化物半导体晶体管25具有第二栅源极电压vgs_n;稳定电流源21电性连接n型金属氧化物半导体晶体管25的源极以提供稳定电流is从所述n型金属氧化物半导体晶体管25的源极流出。同理,参考电压发生器20所提供的参考电压vref由所述第一栅源极电压vgs_p及所述第二栅源极电压vgs_n所决定;例如,vref=vs-(vgs_p+vgs_n)。

图4中,所述n型金属氧化物半导体晶体管25的漏极直接电性耦接所述p型金属氧化物半导体晶体管23的漏极,且所述p型金属氧化物半导体晶体管23及所述n型金属氧化物半导体晶体管25的闸极电性耦接所述n型金属氧化物半导体晶体管25的漏极与所述p型金属氧化物半导体晶体管23的漏极之间的节点p。

如前所述,根据高频电路29所需的操作电压及金属氧化物半导体晶体管的栅源极电压vgs的操作范围,所述n型金属氧化物半导体晶体管25的漏极与所述p型金属氧化物半导体晶体管23的漏极之间可连接至少一个其他的n型金属氧化物半导体晶体管和/或至少一个其他的p型金属氧化物半导体晶体管,只要所述稳定电流源21提供从所述至少一个n型金属氧化物半导体晶体管中最后一个n型金属氧化物半导体晶体管的源极流出的稳定电流is即可。

例如图5中,所述n型金属氧化物半导体晶体管25的漏极与所述p型金属氧化物半导体晶体管23的漏极之间还连接一个其他的p型金属氧化物半导体晶体管23’及一个其他的n型金属氧化物半导体晶体管25’以形成串接,其连接方式已说明于前并显示于图5,故于此不再赘述。

同理,某些实施例中所述n型金属氧化物半导体晶体管25的漏极与所述p型金属氧化物半导体晶体管23的漏极之间亦可连接多个其他的p型金属氧化物半导体晶体管23’及多个其他的n型金属氧化物半导体晶体管25’以形成串接,且被连接的所述多个其他的p型金属氧化物半导体晶体管23’及所述多个其他的n型金属氧化物半导体晶体管25’的数目可调整,其连接及调整方式已说明于前,故于此不再赘述。

同理,某些实施例中,所述稳定电流源21提供的所述稳定电流is可调整,其调整方式已说明于前,故于此不再赘述。

必须说明的是,虽然图3及5中显示p型金属氧化物半导体晶体管与n型金属氧化物半导体晶体管的数目是对称的设置,但本发明并不以此为限。某些实施方式中,参考电压发生器中被连接的p型金属氧化物半导体晶体管的数目与被连接的n型金属氧化物半导体晶体管的数目不相同。

本发明中,定电压源vs的数值并无特定限制,例如在55纳米(nm)及40纳米的集成电路制程中,定电压源vs可选自1.1-1.8伏特。然而其他制程中可选择为其他电压值,并无特定限制。

本领域技术人员对于sscorner、ffcorner、ttcorner的定义已熟知,故于此不再赘述。

可以了解的是,本发明的集成电路芯片2中可包含上述电源电路及高频电路以外的其他电路,而包含的所述其他电路的种类及功能,则视集成电路芯片2的目的及用途而定。

综上所述,已知电源电路需要使用校正机制来消除极端条件下的电路失效问题,而校正机制需要使用制程及温度检测器进行检测,其程序复杂。因此,本发明提供一种参考电压发生器(图2至5)及使用该参考电压发生器的集成电路芯片(图2),其通过设置简单的电路即可提供自适应电源电压,使下游电路可操作于极端条件,而具有简化电路及增加电路可操作范围的效果。

虽然本发明已通过前述实例披露,但是其并非用以限定本发明,任何本发明所属技术领域中具有通常知识的技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与修改。因此本发明的保护范围当视后附的权利要求所界定的范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1