一种纹路检测装置及其纹路检测方法与流程

文档序号:11678083阅读:432来源:国知局
一种纹路检测装置及其纹路检测方法与流程

本发明显示技术领域,尤其涉及一种纹路检测装置及其纹路检测方法。



背景技术:

随着纹路(例如指纹)检测技术的发展,其广泛地应用于手机、平板电脑、电视、门禁、以及保险柜等设备中。指纹检测技术主要有光学式、电容式、以及超声波式,其中,光学式指纹检测技术的检测范围更广、且成本较低。

如图1所示,下面以采用小孔成像原理实现光学式指纹检测的为例进行说明。待检测物(例如手指)反射的光经过透光孔31成像于光敏传感层10上,解决了由于混光造成的成像模糊问题。其中,由于导光板40与外界环境存在折射率差异,一般导光板40的折射率为大于1.5的介质,外界环境的折射率为1,因此,透光孔31可以接收到与导光板40光出射面呈41.8°~90°的角度射出的光线。

以圆形透光孔为例,如图2所示,为了避免指纹漏检、以及手指反射的光在光敏传感层上所成的像重叠(所述成的像重叠的现象如图3所示),从手指到透光孔31的物距与从透光孔31到光敏传感层10的像距之比,必须大于等于(图2中实线为每个透光孔31对应的可检测到的指纹区域、虚线为经过每个透光孔所成的像的区域)。这样的话,指纹在光敏传感层10上所成的像比实际指纹至少缩小了倍,因此,若要显示较为清晰的像,则对光敏传感层10的ppi(pixelperinch,简称像素密度)的要求较高,其中,像素密度的大小受像素间距的影响,即,每英寸中像素之间的间距越大,像素密度越小;反之,则越大。实验数据表明:若指纹在光敏传感层10上所成的像相比实际指纹缩小倍,则像素间距为10μm时指纹还可以在光敏传感层10上较清晰地成像,但当像素间距增加到29μm时指纹在光敏传感层10上所成的像已经非常模糊了,影响纹路检测的准确性。然而,由于工艺限制,在基板上很难制作像素间距为10μm的光敏传感层10。



技术实现要素:

本发明的实施例提供一种纹路检测装置及其纹路检测方法,用于待检测物在光敏传感层上清晰成像时,降低对光敏传感层的像素密度的要求。

为达到上述目的,本发明的实施例采用如下技术方案:

一方面,提供一种纹路检测装置的纹路检测方法,所述纹路检测装置包括导光层、位于所述导光层侧面的光源、透光孔形成层、以及位于所述透光孔形成层远离所述导光层一侧的光敏传感层;其中,在纹路检测阶段,所述透光孔形成层可在与纹路检测区域对应的区域,形成包括多个透光孔的遮光区域,相邻所述透光孔在所述光敏传感层上的成像区域至少部分重叠。

所述纹路检测方法包括:在纹路检测阶段,分时段控制所述透光孔形成层在与所述纹路检测区域对应的区域,形成具有不同分布位置的透光孔的遮光区域,以使在每一时段内待检测纹路通过所述透光孔形成层在所述光敏传感层上的成像区域不重叠;将所述待检测纹路分时段在所述光敏传感层上所成的像进行拼接。

优选的,在所述纹路检测阶段之前,所述方法还包括:根据待检测纹路在所述纹路检测装置的触摸位置,确定所述纹路检测区域。

优选的,在纹路检测阶段,分两个时段控制所述透光孔形成层在与所述纹路检测区域对应的区域,形成具有不同分布位置的透光孔的遮光区域,以使在每一时段内待检测纹路通过所述透光孔形成层在所述光敏传感层上的成像区域不重叠。

优选的,所述纹路检测装置还包括显示面板,所述显示面板位于所述透光孔形成层与所述光敏传感层之间;所述纹路检测方法还包括:在所述纹路检测阶段,所述透光孔形成层在除所述纹路检测区域以外的其他区域呈现出全透光状态。

优选的,所述透光孔形成层为液晶显示面板;所述纹路检测方法还包括:在所述纹路检测阶段,所述纹路检测装置在除纹路检测区域以外的显示区域内显示图像。

第二方面,提供一种纹路检测装置,包括导光层、设置于所述导光层侧面的光源、透光孔形成层、设置于所述透光孔形成层远离所述导光层一侧的光敏传感层、以及控制模块;其中,在纹路检测阶段,所述透光孔形成层可在与纹路检测区域对应的区域,形成包括多个透光孔的遮光区域,相邻所述透光孔在所述光敏传感层上的成像区域至少部分重叠;所述控制模块,用于在纹路检测阶段,分时段控制所述透光孔形成层在与所述纹路检测区域对应的区域,形成具有不同分布位置的透光孔的遮光区域,以使在每一时段内待检测纹路通过所述透光孔形成层在所述光敏传感层上的成像区域不重叠;将所述待检测纹路分时段在所述光敏传感层上所成的像进行拼接。

优选的,在所述纹路检测阶段之前,所述控制模块还用于根据待检测纹路在所述纹路检测装置的触摸位置,确定纹路检测区域。

优选的,所述纹路检测装置还包括显示面板,所述显示面板设置于所述透光孔形成层与所述光敏传感层之间;在纹路检测阶段,所述控制模块还用于控制所述透光孔形成层在除所述纹路检测区域以外的其他区域呈现出全透光状态。

进一步优选的,所述光敏传感层的光敏传感单元与所述显示面板的像素区域或子像素区域对应,每个所述像素区域或每个所述子像素区域对应的所述光敏传感单元的面积,与每个所述像素区域或每个所述子像素区域的面积比为大于或等于1:4、且小于或等于1:1。

优选的,所述透光孔形成层为液晶显示面板;在所述纹路检测阶段,所述控制模块还用于控制所述纹路检测装置在除所述纹路检测区域以外的显示区域内显示图像。

进一步优选的,所述显示面板包括黑矩阵,所述黑矩阵在所述导光层上的正投影覆盖所述光敏传感层的光敏传感单元在所述导光层上的正投影;所述光源发出的光为红外光。

优选的,所述透光孔的尺寸大于等于1μm小于等于30μm。

优选的,所述光源设置于所述导光层的多个侧面。

本发明实施例提供一种纹路检测装置及其纹路检测方法,可以在显示的同时实现纹路检测,在纹路检测的过程中,通过增大待检测物通过透光孔形成层在光敏传感层上所成的像的面积,使待检测物在光敏传感层上清晰成像,而随着成像面积的增大,相邻透光孔在光敏传感层上的成像区域至少部分重叠,因此,在纹路检测阶段,分时段控制透光孔形成层在与纹路检测区域对应的区域,形成具有不同分布位置的透光孔的遮光区域,以使在每一时段内通过透光孔形成层在光敏传感层上的成像区域不重叠,并将待检测纹路分时段在光敏传感层上所成的像进行拼接,完成纹路检测,可以降低待检测物在光敏传感层上清晰成像时,对光敏传感层的像素密度的要求。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为现有技术提供的一种待检测物通过纹路传感装置的成像示意图一;

图2为现有技术提供的一种通过圆形透光孔待检测物及其成像示意图;

图3为现有技术提供的一种待检测物通过纹路传感装置的成像示意图二;

图4为本发明实施例提供的一种纹路检测装置的侧视示意图一;

图5为本发明实施例提供的一种纹路检测装置的侧视示意图二;

图6为本发明实施例提供的一种纹路检测方法的流程示意图;

图7(a)为本发明实施例提供的一种透光孔的示意图一;

图7(b)为本发明实施例提供的一种透光孔的示意图二;

图7(c)为本发明实施例提供的一种透光孔的示意图三;

图7(d)为本发明实施例提供的一种透光孔的示意图四;

图8为现有技术提供的一种透光孔形成层形成透光孔的示意图;

图9为本发明实施例提供的一种分时段控制透光孔形成层形成透光孔的示意图;

图10为本发明实施例提供的一种光线通过透光孔形成层在光敏传感层的成像示意图;

图11(a)为本发明实施例提供的一种分时段在光敏传感层上的成像示意图一;

图11(b)为本发明实施例提供的一种分时段在光敏传感层上的成像示意图二;

图11(c)为图11(a)与图11(b)拼接后的成像示意图;

图12(a)为本发明实施例提供的一种纹路检测装置的俯视示意图一;

图12(b)为本发明实施例提供的一种纹路检测装置的俯视示意图二;

图13(a)为本发明实施例提供的一种纹路检测装置的结构示意图三;

图13(b)为本发明实施例提供的一种纹路检测装置的结构示意图四;

图14(a)为本发明实施例提供的一种多个光敏传感单元的设置方式的示意图一;

图14(b)为本发明实施例提供的一种多个光敏传感单元的设置方式的示意图二;

图15(a)为本发明实施例提供的一种导光层及光源的结构示意图一;

图15(b)为本发明实施例提供的一种导光层及光源的结构示意图二;

图15(c)为本发明实施例提供的一种导光层及光源的结构示意图三;

图15(d)为本发明实施例提供的一种导光层及光源的结构示意图四。

附图标记:

10-光敏传感层;11-光敏传感单元;20-显示面板;211-纹路检测区域;22-像素区域;221-子像素区域;23-公共电极;24-像素电极;25-液晶层;30-透光孔形成层;31-透光孔;40-导光板;50-导光层;51-光源;61-上偏光片;62-下偏光片;70-承载基板。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

背景技术中提到的问题:以圆形透光孔为例,为了避免待检测物(例如手指)漏检、以及手指反射的光在光敏传感层10上所成的像重叠,物距与像距之比必须大于等于进而指纹在光敏传感层10上所成的像比实际指纹至少缩小倍,则像素间距为10μm时指纹还可以在光敏传感层10上较清晰地成像,而随着像素间距的增大,成像越来越模糊,然而由于工艺限制,在基板上很难制作像素间距为10μm的光敏传感层10,因此,只能通过减小物距与像距的比值,来增大指纹在光敏传感层10上所成的像的面积,实现清晰成像,但随着所成的像的面积的增大,容易造成手指反射的光在光敏传感层10上所成的像重叠的现象。

针对上述问题,本发明实施例提供了一种新的技术方案,可有效降低待检测物在光敏传感层10上清晰成像时,对光敏传感层10的像素密度的要求,且不会使在光敏传感层10上所成的像重叠。

本发明实施例提供一种纹路检测装置的纹路检测方法,如图4和图5所示,所述纹路检测装置包括导光层50、位于导光层50侧面的光源51、透光孔形成层30、以及位于透光孔形成层30远离导光层50一侧的光敏传感层10;其中,在纹路检测阶段,透光孔形成层30可在与纹路检测区域对应的区域,形成包括多个透光孔31的遮光区域,相邻透光孔31在光敏传感层10上的成像区域至少部分重叠。

如图6所示,所述纹路检测方法具体可通过如下步骤实现:

s10、在纹路检测阶段,分时段控制透光孔形成层30在与纹路检测区域对应的区域,形成具有不同分布位置的透光孔31的遮光区域,以使在每一时段内待检测纹路通过透光孔形成层30在光敏传感层10上的成像区域不重叠。

s20、将所述待检测纹路分时段在光敏传感层10上所成的像进行拼接。

此处,可通过设置光源51的出光角度,使得从光源51发出的光进入导光层50后,在导光层50内发生全反射;当待检测物触摸纹路检测装置的导光层50的任意位置时,从光源51发出的光进入导光层50后,在除待检测物触摸位置以外的区域发生全反射,与待检测物触摸位置对应的区域的全反射遭到破坏,光线从导光层50靠近透光孔形成层30一侧的底面出射,并射到光敏传感层10上,从而实现纹路检测。其中,当待检测物触摸纹路检测装置时,光线经过待检测物的谷、脊发生漫反射后,反射光的光强存在差异,光线经过谷反射的光强相对脊反射的光强低,光敏传感层10可基于接收到的光强的差异来进行纹路检测。

其中,纹路检测装置可以是全屏都可用于纹路检测,也可以是屏幕中的部分区域可用于纹路检测。

需要说明的是,第一,所述纹路检测装置可用于检测指纹、掌纹等有纹路的受测物,本发明对此不做限定。

第二,如图4和图5所示,每个透光孔31均与光敏传感层10的多个光敏传感单元11对应,所述光敏传感单元11用于将光信号转化为电信号,其可以是光敏传感器、光电传感器等。

第三,不对光敏传感层10的多个光敏传感单元11的排布方式进行限定,其设置位置只要满足:当待检测物触摸纹路检测装置显示侧用于纹路检测的任意位置时,都可进行纹路检测,且多个光敏传感单元11所占的区域不影响纹路检测装置的正常显示即可。其中,相邻光敏传感单元11可以邻接设置(即两个光敏传感单元间没有用于出光的区域),也可以间隔设置(即两个光敏传感单元间由用于出光的区域间隔开)。可选的,纹路检测装置中每两个相邻的光敏传感单元11均间隔设置;可选的,纹路检测装置中的相邻光敏传感单元11既可以邻接设置,也可以间隔设置,且邻接设置的光敏传感单元11不影响纹路检测装置的正常显示。

第四,不对透光孔形成层30的形成方式进行限定,只要透光孔形成层30可在与纹路检测区域对应的区域,形成包括多个透光孔31的遮光区域即可,例如采用电极驱动液晶的方式。本领域技术人员应该理解,透光孔形成层30的遮光区域包括多个允许光通过的透光孔31,其含义是指:在纹路检测区域,透光孔31所在的区域透光,其他区域为不透光区域;除纹路检测区域以外的区域可根据实际需要决定是否透光。

第五,不对透光孔形成层30可形成的多个透光孔31的排布方式进行限定,多个透光孔31间可以呈阵列排布,也可以无规则排布,只要不会造成待检测纹路漏检即可。

第六,不对透光孔31在光敏传感层10上的正投影的形状进行限定,例如:透光孔31在光敏传感层10上的正投影可以是圆形(如图7(a)所示)、正方形(如图7(b)所示)、椭圆形(如图7(c)所示)、长方形(如图7(d)所示)等。

示例的,透光孔31在光敏传感层10上的正投影的形状为圆形,可以通过调整物距与像距的比值,使物距与像距的比值小于从而改善当透光孔31在光敏传感层10上的正投影的形状为圆形时,在光敏传感层10成像不清晰的问题;透光孔31在光敏传感层10上的正投影的形状为正方形,可以通过调整物距与像距的比值,使物距与像距的比值小于1:1,从而改善当透光孔31在光敏传感层10上的正投影的形状为正方形时,在光敏传感层10成像不清晰的问题。

第七,相邻透光孔31在光敏传感层10上的成像区域至少部分重叠,是指:如图8所示,当透光孔形成层30中,与纹路检测区域对应的所有透光孔31都打开时,对于通过任一透光孔31在光敏传感层10上所成的像来说,至少通过一个透光孔31在光敏传感层10上所成的像与其重叠。

示例的,透光孔31呈矩阵排列,对于通过任一透光孔31在光敏传感层10上所成的像来说,横向上,可以与通过一个、两个、三个、四个、或者更多透光孔31在光敏传感层10上所成的像重叠,而纵向上,可以与通过零个、一个、两个、三个、四个、或者更多透光孔31在光敏传感层10上所成的像重叠;或者,横向上,可以与通过零个、一个、两个、三个、四个、或者更多透光孔31在光敏传感层10上所成的像重叠,而纵向上,可以与通过一个、两个、三个、四个、或者更多透光孔31在光敏传感层10上所成的像重叠。

第八,不对导光层50的材料进行限定,其可以是聚甲基丙烯酸甲酯(pmma)、环烯的热可塑性树脂、聚碳酸酯(pc)、玻璃等透光材料。

第九,在每一时段内,待检测纹路通过透光孔形成层30在光敏传感层10上的成像区域不重叠、且保证对待检测物进行完整检测的基础上,控制模块可分多个时段控制透光孔形成层30形成具有不同分布位置的透光孔31的遮光区域,例如:分两个时段(如图9所示)、大于两个时段等。

在此基础上,纹路检测装置进行纹路检测时,可以仅通过一个周期完成检测,也可以通过多个周期完成检测。即,通过一个周期完成检测时,在透光孔形成层30的同一位置,仅形成一次透光孔31;通过多个周期完成检测时,在透光孔形成层30的同一位置,可多次形成透光孔31,此时,通过透光孔形成层30在光敏传感层10的同一位置处多次成像,可选取最清晰的像进行拼接。

第十,本领域的技术人员应该理解,在每一时段内待检测纹路通过透光孔形成层30在光敏传感层10上的成像区域不重叠,是指:如图10所示,对于通过任一透光孔31在光敏传感层10上所成的像来说,同一时间段内,通过其他透光孔31在光敏传感层10上所成的像均不与其重叠(图10仅以分两个时段为例)。

第十一,将光敏传感层10在分时段采集的像进行拼接,是指:将各个时段采集的像进行拼接后,组成待检测物通过透光孔形成层30所成的完整的像。

示例的,图11(a)为第一时段待检测物通过透光孔形成层30所成的不重叠的像,图11(b)为第二时段待检测物通过透光孔形成层30所成的不重叠的像,图11(c)为将第一时段与第二时段所成的像进行拼接后,组成的完整的像(图11(a)-图11(c)仅以分两个时段为例)。

本发明实施例提供一种纹路检测装置的纹路检测方法,可以在显示的同时实现纹路检测,在纹路检测的过程中,通过增大待检测物通过透光孔形成层30在光敏传感层10上所成的像的面积,使待检测物在光敏传感层10上清晰成像,而随着成像面积的增大,相邻透光孔31在光敏传感层10上的成像区域至少部分重叠,因此,在纹路检测阶段,分时段控制透光孔形成层30在与纹路检测区域对应的区域,形成具有不同分布位置的透光孔31的遮光区域,以使在每一时段内通过透光孔形成层30在光敏传感层10上的成像区域不重叠,并将待检测纹路分时段在光敏传感层10上所成的像进行拼接,完成纹路检测,可以降低待检测物在光敏传感层10上清晰成像时,对光敏传感层10的像素密度的要求。

优选的,如图12(a)和12(b)所示,在纹路检测阶段之前,所述方法还包括:根据待检测纹路在所述纹路检测装置的触摸位置,确定纹路检测区域211。

此处,所述纹路检测装置可以利用触控结构实现:根据待检测纹路在所述纹路检测装置的触摸位置,确定纹路检测区域211,进而使透光孔形成层30中与纹路检测区域211对应的区域,分时段形成具有不同分布位置的透光孔31的遮光区域,以实现纹路检测。

其中,触控结构可以是基于电容式的触控结构,也可以是基于电阻式的触控结构。若所述纹路检测装置还包括显示面板,则当触控结构为基于电容式的触控结构时,可以是内嵌式触控(incelltouch)、可以是表面式触控(oncelltouch)、也可以是一体化触控(oneglasssolution,简称ogs);当触控结构为基于电阻式的触控结构时,可以是四线电阻式、也可以是五线电阻式。

需要说明的是,待检测物应完全包含于纹路检测区域211。

示例的,如图12(a)所示,待检测物完全包含于纹路检测区域211、且面积小于纹路检测区域211的面积;如图12(b)所示,待检测物完全包含于纹路检测区域211、且面积等于纹路检测区域211的面积。

本发明实施例中,当纹路检测装置可用于全屏纹路检测时,为了不影响除纹路检测区域211以外的其他区域正常工作,可先根据待检测物的触摸位置确定纹路检测区域211,并仅在纹路检测区域211内进行纹路检测。

优选的,如图10所示,在纹路检测阶段,分两个时段控制透光孔形成层30在与纹路检测区域211对应的区域,形成具有不同分布位置的透光孔31的遮光区域,以使在每一时段内待检测纹路通过透光孔形成层30在光敏传感层10上的成像区域不重叠。

本发明实施例中,若分两个时段即可改善在光敏传感层10成像不清晰的问题,则相较于分为更多的时段,分两个时段具有节省检测时间的好处。

优选的,如图5所示,所述纹路检测装置还包括显示面板20,显示面板20位于透光孔形成层30与光敏传感层10之间;所述纹路检测方法还包括:在纹路检测阶段,透光孔形成层30在除纹路检测区域211以外的其他区域呈现出全透光状态。

需要说明的是,显示面板20可以是液晶显示面板,也可以是oled(organiclight-emittingdiode,简称有机发光二极管)显示面板。

当显示面板20为液晶显示面板时,包括阵列基板、对盒基板、以及设置于二者之间的液晶层,阵列基板可以包括tft(thinfilmtransistor,简称薄膜晶体管)、与tft的漏极电连接的像素电极,进一步的显示面板20还包括设置于阵列基板或对盒基板上的公共电极。

当显示面板20为oled显示面板时,包括阵列基板和封装基板。其中,阵列基板可以包括tft,与tft的漏极电连接的阳极、阴极、以及位于阳极和阴极之间的有机材料功能层。

本发明实施例中,在纹路检测阶段,透光孔形成层30在除纹路检测区域211以外的其他区域呈现出全透光状态,可不影响显示面板20除纹路检测区域211以外的显示区域显示图像。

优选的,如图4和图13(a)所示,透光孔形成层30为液晶显示面板;所述纹路检测方法还包括:在所述纹路检测阶段,所述纹路检测装置在除纹路检测区域211以外的显示区域内显示图像。

在此基础上,如图13(b)所示,所述纹路检测装置还可以包括位于液晶显示面板远离导光层50一侧的承载基板70,光敏传感层10设置于承载基板70远离显示面板20的一侧。

这样一来,可以避免由于透光孔形成层30为液晶显示面板时,导致透光孔31与光敏传感层10之间的距离较小,进而待检测物通过透光孔形成层30在光敏传感层10上所成的像的面积也较小的问题。

本发明实施例中,当显示面板20为液晶显示面板时,液晶显示面板中的公共电极23和像素电极24驱动液晶层25,使透光孔形成层30可在纹路检测区域211形成包括多个透光孔31的遮光区域,技术成熟且不影响纹路检测装置除纹路检测区域211以外的显示区域显示图像,具有简化工艺的好处。

本发明实施例还提供一种纹路检测装置,如图4和图5所示,包括导光层50、设置于导光层50侧面的光源51、透光孔形成层30、设置于透光孔形成层30远离导光层50一侧的光敏传感层10、以及控制模块(图中未标出);其中,在纹路检测阶段,透光孔形成层30可在与纹路检测区域211对应的区域,形成包括多个透光孔31的遮光区域,相邻透光孔31在光敏传感层10上的成像区域至少部分重叠;所述控制模块,用于在纹路检测阶段,分时段控制透光孔形成层30在与纹路检测区域211对应的区域,形成具有不同分布位置的透光孔31的遮光区域,以使在每一时段内待检测纹路通过透光孔形成层30在光敏传感层10上的成像区域不重叠;将待检测纹路分时段在光敏传感层10上所成的像进行拼接。

此处,可通过设置光源51的出光角度,使得从光源51发出的光进入导光层50后,在导光层50内发生全反射;当待检测物触摸纹路检测装置的导光层50的任意位置时,从光源51发出的光进入导光层50后,在除待检测物触摸位置以外的区域发生全反射,与待检测物触摸位置对应的区域的全反射遭到破坏,光线从导光层50靠近透光孔形成层30一侧的底面出射,并射到光敏传感层10上,从而实现纹路检测。其中,当待检测物触摸纹路检测装置时,光线经过待检测物的谷、脊发生漫反射后,反射光的光强存在差异,光线经过谷反射的光强相对脊反射的光强低,光敏传感层10可基于接收到的光强的差异来进行纹路检测。

其中,纹路检测装置可以是全屏都可用于纹路检测,也可以是屏幕中的部分区域可用于纹路检测。

本发明实施例提供一种纹路检测装置,可以在显示的同时实现纹路检测,在纹路检测的过程中,通过增大待检测物通过透光孔形成层30在光敏传感层10上所成的像的面积,使待检测物在光敏传感层10上清晰成像,而随着成像面积的增大,相邻透光孔31在光敏传感层10上的成像区域至少部分重叠,因此,在纹路检测阶段,分时段控制透光孔形成层30在与纹路检测区域211对应的区域,形成具有不同分布位置的透光孔31的遮光区域,以使在每一时段内通过透光孔形成层30在光敏传感层10上的成像区域不重叠,并将待检测纹路分时段在光敏传感层10上所成的像进行拼接,完成纹路检测,可以降低待检测物在光敏传感层10上清晰成像时,对光敏传感层10的像素密度的要求。

优选的,如图12(a)和12(b)所示,在纹路检测阶段之前,所述控制模块还用于根据待检测纹路在所述纹路检测装置的触摸位置,确定纹路检测区域211。

此处,所述纹路检测装置可以利用触控结构实现:根据待检测纹路在所述纹路检测装置的触摸位置,确定纹路检测区域211,进而使透光孔形成层30中与纹路检测区域211对应的区域,分时段形成具有不同分布位置的透光孔31的遮光区域,以实现纹路检测。

其中,触控结构可以是基于电容式的触控结构,也可以是基于电阻式的触控结构。若所述纹路检测装置还包括显示面板20,则当触控结构为基于电容式的触控结构时,可以是内嵌式触控(incelltouch)、可以是表面式触控(oncelltouch)、也可以是一体化触控(oneglasssolution,简称ogs);当触控结构为基于电阻式的触控结构时,可以是四线电阻式、也可以是五线电阻式。

需要说明的是,待检测物应完全包含于纹路检测区域211。

示例的,如图12(a)所示,待检测物完全包含于纹路检测区域211、且面积小于纹路检测区域211的面积;如图12(b)所示,待检测物完全包含于纹路检测区域211、且面积等于纹路检测区域211的面积。

本发明实施例中,当纹路检测装置可用于全屏纹路检测时,为了不影响除纹路检测区域211以外的其他区域正常工作,可先根据待检测物的触摸位置确定纹路检测区域211,并仅在纹路检测区域211内进行纹路检测。

优选的,所述纹路检测装置还包括显示面板20,显示面板20设置于透光孔形成层30与光敏传感层10之间;在纹路检测阶段,所述控制模块还用于控制透光孔形成层30在除纹路检测区域211以外的其他区域呈现出全透光状态。

本发明实施例中,在纹路检测阶段,所述控制模块控制透光孔形成层30在除纹路检测区域211以外的其他区域呈现出全透光状态,可不影响显示面板20除纹路检测区域211以外的显示区域显示图像。

进一步优选的,光敏传感层10的光敏传感单元11与显示面板20的像素区域22(如图14(a)所示)或子像素区域221(如图14(b)所示)对应,每个像素区域22或每个子像素区域221对应的光敏传感单元11的面积,与每个像素区域22或每个子像素区域221的面积比为大于或等于1:4、且小于或等于1:1。

具体的,对于彩色光装置而言,像素区域22是指其中可呈现多种颜色的最小重复区域,子像素区域221是指在像素区域22中用于呈现一种原色的区域,像素区域22通常包含至少三个子像素区域221。示例的,子像素区域221可以是红色子像素区域、绿色子像素区域、蓝色子像素区域;像素区域22可以是至少包括一红色子像素区域、一绿色子像素区域、一蓝色子像素区域的区域。对于单色光装置而言,像素区域22包括一个子像素区域221,像素区域22的大小即为子像素区域221的大小。

需要说明的是,光敏传感单元11可与显示面板20中的每个像素区域22或每个子像素区域221一一对应,或者光敏传感元11设置于显示面板20中的部分像素区域22或部分子像素区域221,只要多个光敏传感单元11所在的区域大小,可用来进行纹路检测即可。

本发明实施例以显示面板20中的一个像素区域22或一个子像素区域221为单位设置每个光敏传感单元11,可使多个光敏传感单元11在显示面板20中均匀排布,而每个光敏传感单元11在显示面板20中所占的区域与像素区域22或子像素区域221的面积比大于等于1:4、且小于等于1:1,在此面积比范围内,当纹路检测装置用于显示时,可不因开口率的减小影响纹路检测装置的正常显示。

优选的,如图4和图13(a)所示,透光孔形成层30为液晶显示面板;在纹路检测阶段,所述控制模块还用于控制所述纹路检测装置在除纹路检测区域211以外的显示区域内显示图像。

在此基础上,如图13(b)所示,所述纹路检测装置还可以包括位于液晶显示面板远离导光层50一侧的承载基板70,光敏传感层10设置于承载基板70远离显示面板20的一侧。

这样一来,可以避免由于透光孔形成层30为液晶显示面板时,导致透光孔31与光敏传感层10之间的距离较小,进而待检测物通过透光孔形成层30在光敏传感层10上所成的像的面积也较小的问题。

当然,纹路检测装置还可以包括设置于显示面板20靠近导光层50设置的上偏光片61,和与上偏光片61相对的下偏光片62。需要说明的是,上偏光片61和下偏光片62的透过轴的相对位置不同,透光孔形成层30的工作模式不同,例如可分为以下两种情况:

第一种情况:上偏光片61和下偏光片62的透过轴垂直设计。

当透光孔形成层30以tn(twistednematic,简称扭曲向列相)模式形成透光孔31时,透光孔形成层30在不加电的情况下为白态,在加电的情况下为黑态。当透光孔形成层30在与纹路检测区域211对应的区域,形成包括多个透光孔31的遮光区域时,透光孔31所在的区域,公共电极23和像素电极24之间无电压,使该区域允许光通过;除透光孔31之外的区域,公共电极23和像素电极24之间有电压,使该区域遮光。

当透光孔形成层30以ads(advancedsuperdimensionswitch简称高级超维场转换)模式形成透光孔31时,透光孔形成层30在不加电的情况下为黑态,在加电的情况下为白态。当透光孔形成层30在与纹路检测区域211对应的区域,形成包括多个透光孔31的遮光区域时,透光孔31所在的区域,公共电极23和像素电极24之间有电压,使该区域允许光通过;除透光孔31之外的区域,公共电极23和像素电极24之间无电压,使该区域遮光。

第二种情况:上偏光片61和下偏光片62的透过轴平行设计。

当透光孔形成层30以tn(twistednematic,简称扭曲向列相)模式形成透光孔31时,透光孔形成层30在不加电的情况下为黑态,在加电的情况下为白态。当透光孔形成层30在与纹路检测区域211对应的区域,形成包括多个透光孔31的遮光区域时,透光孔31所在的区域,公共电极23和像素电极24之间有电压,使该区域允许光通过;除透光孔31之外的区域,公共电极23和像素电极24之间无电压,使该区域遮光。

当透光孔形成层30以ads(advancedsuperdimensionswitch简称高级超维场转换)模式形成透光孔31时,透光孔形成层30在不加电的情况下为白态,在加电的情况下为黑态。当透光孔形成层30在与纹路检测区域211对应的区域,形成包括多个透光孔31的遮光区域时,透光孔31所在的区域,公共电极23和像素电极24之间无电压,使该区域允许光通过;除透光孔31之外的区域,公共电极23和像素电极24之间有电压,使该区域遮光。

本发明实施例中,当显示面板20为液晶显示面板时,液晶显示面板中的公共电极23和像素电极24驱动液晶层25,使透光孔形成层30可在纹路检测区域211形成包括多个透光孔31的遮光区域,技术成熟且不影响纹路检测装置除纹路检测区域211以外的显示区域显示图像,具有简化工艺的好处。

进一步优选的,显示面板20包括黑矩阵,黑矩阵在导光层50上的正投影覆盖光敏传感层10的光敏传感单元11在导光层50上的正投影;光源51发出的光为红外光。

此处,由于红外光具有很强的穿透力,因此,可穿过黑矩阵射到光敏传感层10上。

本发明实施例通过使黑矩阵20在导光层50上的正投影覆盖光敏传感层10的光敏传感单元11在导光层50上的正投影,可不影响纹路检测装置用于显示时的开口率。

考虑到透光孔31的尺寸过小,容易导致光线通过透光孔31时发生衍射,因此,优选的,透光孔31的尺寸大于等于1μm小于等于30μm。

优选的,如图15(a)-15(d)所示,光源51设置于导光层50的多个侧面。

此处,光源51可以设置于导光层50相邻的两个侧面(如图15(a)所示)、相对的两个侧面(如图15(b)所示),或者设置于导光层50的三个侧面(如图15(c)所示),或者设置于导光层50的四个侧面(如图15(d)所示)。

本发明实施例中,相较于光源51仅设置于导光层50的一个侧面,将光源51设置于导光层50的多个侧面,可提高进入导光层50的光线的强度,进而提高射到光敏传感层10的光线的强度,可增大纹路检测的准确性;将光源51设置于导光层50相对的两个侧面或导光层50的四个侧面,可使进入导光层50各个位置处的光线强度均相等,避免因导光层50不同位置的光线强度不同,对纹路检测结果造成影响。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1