显示装置的制作方法

文档序号:13625632阅读:175来源:国知局
显示装置的制作方法

本公开的示例性实施例涉及一种显示装置,更具体地,涉及一种触摸感测单元集成的显示装置。



背景技术:

当前正在开发用于诸如电视机、移动电话、平板计算机、导航装置和游戏机的多媒体装置的各种显示装置。键盘或鼠标被包括作为显示装置的输入设备。另外,最近的显示装置包括触摸面板作为输入设备。

该背景技术部分中公开的上述信息仅用于增强对发明构思的背景的理解,因此,它可以包含不形成在本国已被本领域普通技术人员所知晓的现有技术的信息。



技术实现要素:

本公开的示例性实施例提供了一种具有降低的噪声的触摸感测单元集成显示装置。

另外的方面将在下面的具体描述中进行阐述,并且部分地,通过该公开将是清楚的,或者可以通过发明构思的实践而了解。

发明构思的示例性实施例公开了一种显示装置,所述显示装置包括:基础层,包括显示区域和非显示区域;电路层,包括至少一个中间绝缘层以及与非显示区域叠置的电源电极,电路层设置在基础层上;发光器件层,包括包含设置在电路层上的第一电极、发光层和第二电极的有机发光二极管、包括暴露第一电极的开口的像素限定层、将第二电极与电源电极连接并且包括多个孔的连接电极以及与所述多个孔叠置的多个绝缘图案;薄膜包封层,包括与所述多个绝缘图案和有机发光二极管叠置的有机层并且设置在所述发光器件层上;以及触摸感测单元,包括至少一个触摸绝缘层、多个触摸电极和连接到所述多个触摸电极的多条触摸信号线并且设置在薄膜包封层上。所述多条触摸信号线的至少一部分与所述多个绝缘图案叠置。

发明构思的示例性实施例还公开了一种显示装置,所述显示装置包括:基础层,包括显示区域和非显示区域;电路层,设置在基础层上;发光器件层,包括设置在电路层上的发光二极管、包括暴露发光二极管的第一电极的像素限定层以及与非显示区域叠置的多个绝缘图案;有机层,设置在发光器件层上并与所述多个绝缘图案和发光二极管叠置;以及触摸感测单元,包括多个触摸电极和连接到所述多个触摸电极的多条触摸信号线并且设置在有机层上。所述多条触摸信号线的至少一部分与所述多个绝缘图案叠置。

前面的总体描述和下面的详细描述是示例性和说明性的,并且旨在提供对所要求保护的主题的进一步解释。

附图说明

被包括以提供对本发明构思的进一步理解并且被并入且构成本说明书的一部分的附图,示出了本发明构思的示例性实施例,并且与本说明书一起用于解释本发明构思的原理。

图1a是根据发明构思的示例性实施例的显示装置的根据第一操作的透视图。

图1b是根据发明构思的示例性实施例的显示装置的根据第二操作的透视图。

图1c是根据发明构思的示例性实施例的显示装置的根据第三操作的透视图。

图2是根据发明构思的示例性实施例的显示装置的剖视图。

图3a和图3b是根据发明构思的示例性实施例的显示装置的透视图。

图4是根据发明构思的示例性实施例的显示装置的透视图。

图5a是根据发明构思的示例性实施例的显示模块的剖视图。

图5b是根据发明构思的示例性实施例的有机发光显示面板的平面图。

图6a是根据发明构思的示例性实施例的像素的等效电路图。

图6b和图6c是根据发明构思的示例性实施例的有机发光显示面板的局部剖视图。

图7a、图7b和图7c是根据发明构思的示例性实施例的薄膜包封层的剖视图。

图8a是根据发明构思的示例性实施例的触摸感测单元的剖视图。

图8b、图8c、图8d、图8e和图8f是根据发明构思的示例性实施例的触摸感测单元的平面图。

图9a是根据发明构思的示例性实施例的显示模块的剖视图。

图9b是根据比较例的显示模块的剖面图。

图10是根据发明构思的示例性实施例的显示模块的平面图。

图11a是根据发明构思的示例性实施例的显示模块的一部分的放大平面图。

图11b是沿图11a的线i-i'截取的根据发明构思的示例性实施例的显示模块的剖视图。

图11c是沿图11a的线i-i'截取的根据发明构思的比较例的显示模块的剖视图。

图11d是图11b的一部分的放大剖视图。

图12a、图12b和图12c是根据发明构思的示例性实施例的显示模块的一部分的放大平面图。

图13a和图13b是根据发明构思的示例性实施例的显示模块的剖视图。

具体实施方式

在下面的描述中,为了说明的目的,阐述了许多具体细节,以便提供对各种示例性实施例的深入的理解。然而明显的是,可以在没有这些具体细节或者有一个或多个等效布置的情况下实践各种示例性实施例。在其它情况下,以框图形状示出公知的结构和设备以便避免不必要地使各种示例性实施例模糊不清。

在附图中,为了清楚和描述目的,可以夸大层、膜、面板、区域等的尺寸和相对尺寸。另外,同样的附图标记表示同样的元件。

当元件或层被称作“在”另一元件或层“上”、“连接到”或“结合到”另一个元件或层时,该元件或层可以直接在其它元件或层上、直接连接到或直接结合到另一元件或层或者可以存在中间元件或层。然而,当元件或层被称作“直接在”另一个元件或层“上”、“直接连接到”或“直接结合到”另一个元件或层时,不存在中间元件或层。出于本公开的目的,“x、y和z中的至少一个(种)”和“从由x、y和z组成的组中选择的至少一个(种)”可被解释为仅x、仅y、仅z,或者x、y和z中的两个(种)或更多个(种)的任意组合,诸如以xyz、xyy、yz和zz为例。同样的标号始终表示同样的元件。如这里使用的,术语“和/或”包括一个或更多个相关所列项目的任何和所有组合。

虽然在此可以使用术语第一、第二等来描述各种元件、组件、区域、层和/或部分,但这些元件、组件、区域、层和/或部分不应受这些术语的限制。这些术语被用于将一个元件、组件、区域、层和/或部分与另一个元件、组件、区域、层和/或部分区分开。因此,在不脱离本公开的教导的情况下,下面讨论的第一元件、组件、区域、层和/或部分可以被称为第二元件、组件、区域、层和/或部分。

诸如“在……之下”、“在……下方”、“下面的”、“在……上方”、“上面的”等的空间相对术语可以用于描述的目的,从而来描述如图中示出的一个元件或特征与另一个元件或特征的关系。除了图中描绘的取向之外,空间相对术语还旨在包括装置在使用、操作和/或制造中的不同取向。例如,如果附图中的装置翻转,那么被描述为“在”其它元件或特征“下方”或者“在”其它元件或特征“之下”的元件将被定向为“在”其它元素或特征“上方”。因此,示例性术语“在……下方”可以包括在上方和在下方两个方位。此外,该装置可以被另外地定向(例如,旋转90度或处于其它方位),如此,在此所使用的空间相对描述符被相应地解释。

这里使用的术语仅是为了描述具体实施例的目的,而不意图成为限制。如这里使用的,除非上下文另外明确地指出,否则单数形状“一个”、“一种”和“该(所述)”也旨在包括复数形状。此外,当在本说明书中使用术语“包括”、“包含”及其各种变形时,指明所述特征、整体、步骤、操作、元件、组件和/或它们的组合的存在,但是不排除一个或更多个特征、整体、步骤、操作、元件、组件和/或它们的组合的存在或添加。

在此参照作为理想化的示例性实施例和/或中间结构的示意图的剖面来描述各种示例性实施例。如此,可以预期插图的作为例如制造技术和/或公差的结果的形状的变化。因此,在此公开的示例性实施例不应被解释为对具体示出的区域的形状的限制,而是包括由例如制造导致的形状的偏差。图中所示的区域实质上是示意性的,并且它们的形状不旨在说明装置的区域的实际形状也不意图成为限制。

除非另外定义,否则这里使用的所有术语(包括技术术语和科学术语)具有与本公开作为其中一部分的领域的普通技术人员所通常理解的含义相同的含义。除非在这里如此明确地定义,否则术语(诸如在通用字典中定义的术语)应当被解释为具有与在相关领域背景下的它们的含义一致的含义,而不以理想化或过于形状化的含义来解释。

图1a是根据发明构思的示例性实施例的显示装置dd的根据第一操作的透视图。图1b是根据发明构思的示例性实施例的显示装置dd的根据第二操作的透视图。图1c是根据发明构思的示例性实施例的显示装置dd的根据第三操作的透视图。

如图1a中所示,在第一操作模式中,显示图像im的显示表面is平行于由第一方向轴dr1和第二方向轴dr2限定的表面。显示表面is的法线方向(即,显示装置dd的厚度方向)指示第三方向轴dr3。每个构件的前表面(或上表面)和后表面(或下表面)由第三方向轴dr3划分。然而,第一方向轴至第三方向轴dr1、dr2和dr3指示的方向可以转变为作为相对概念的其它方向。在下文中,作为第一方向轴至第三方向轴dr1、dr2和dr3分别指示的方向的第一方向至第三方向适用于同样的附图标记。

图1a至图1c示出了可折叠显示装置作为柔性显示装置dd的一个示例。然而,发明构思可以涉及可卷曲显示装置或可弯曲显示装置,并且不被具体地限制。另外,虽然在该示例性实施例中示出了柔性显示装置,但是发明构思不限于此。根据该示例性实施例的显示装置dd可以是平面刚性显示装置。除了诸如电视机和监视器的大尺寸电子装置以外,柔性显示装置dd还可以用于诸如移动电话、平板电脑、车载导航仪、游戏机和智能手表的小尺寸和中尺寸电子装置。

如图1a中所示,柔性显示装置dd的显示表面is可以包括多个区域。柔性显示装置dd可以包括显示图像im的显示区域dd-da以及与显示区域dd-da相邻的非显示区域dd-nda。非显示区域dd-nda是不显示图像的区域。图1a示出了花瓶作为图像im的一个示例。作为一个示例,显示区域dd-da可以具有矩形形状。非显示区域dd-nda可以围绕显示区域dd-da。然而,发明构思不限于此,可以相对地设计显示区域dd-da的形状和非显示区域dd-nda的形状。

如图1a至图1c中所示,显示装置dd可以包括根据操作形式限定的多个区域。显示装置dd可以包括基于弯曲轴bx弯曲的弯曲区域ba、第一非弯曲区域nba1和第二非弯曲区域nba2。如图1b中所示,显示装置dd可以是向内弯曲的,以允许第一非弯曲区域nba1的显示表面is和第二非弯曲区域nba2的显示表面is面向彼此。如图1c中所示,显示装置dd可以是向外弯曲的,以允许显示表面is暴露于外部。

根据发明构思的示例性实施例,显示装置dd可以包括多个弯曲区域ba。此外,弯曲区域ba可以按照根据用户如何操纵显示装置dd的方式来限定。例如,与图1b和图1c不同,弯曲区域ba可以被限定为与第一方向轴dr1平行,也可以被限定在对角线方向上。弯曲区域ba的面积不是固定的,而是可以根据曲率半径来确定。根据发明构思的示例性实施例,显示装置dd可以被构造为仅重复图1a和图1b中所示的操作模式。

图2是根据发明构思的示例性实施例的显示装置dd的剖视图。图2示出了由第二方向轴dr2和第三方向轴dr3限定的剖面。

如图2中所示,显示装置dd可以包括保护膜pm、显示模块dm、光学构件lm、窗口wm、第一粘合构件am1、第二粘合构件am2和第三粘合构件am3。显示模块dm设置在保护膜pm与光学构件lm之间。光学构件lm设置在显示模块dm与窗口wm之间。第一粘合构件am1使显示模块dm和保护膜pm结合,第二粘合构件am2使显示模块dm和光学构件lm结合,第三粘合构件am3使光学构件lm和窗口wm结合。虽然图2示出了保护膜pm、显示模块dm、光学构件lm、窗口wm、第一粘合构件am1、第二粘合构件am2和第三粘合构件am3在第二方向dr2上的长度相同,但是根据发明构思的显示装置dd不限于此。

保护膜pm保护显示模块dm。保护膜pm提供了暴露于外部的第一外表面os-l并提供了粘附到第一粘合构件am1的粘合表面。保护膜pm可以吸收外部冲击并且抑制湿气渗透到显示模块dm中。

保护膜pm可以包括塑料膜作为基础层。保护膜pm可以包括塑料膜作为基础基底。保护膜pm可以包括塑料膜,所述塑料膜包括从由聚醚砜(pes)、聚丙烯酸酯、聚醚酰亚胺(pei)、聚萘二甲酸乙二醇酯(pen)、聚对苯二甲酸乙二醇酯(pet)、聚苯硫醚(pps)、聚烯丙酯(polyallylate)、聚酰亚胺(pi)、聚碳酸酯(pc)、聚(亚芳基醚砜)和它们的组合构成的组中选择的至少一种。构成保护膜pm的材料不限于塑料树脂,还可以包括有机/无机复合材料。保护膜pm可以包括有机层和填充到多孔有机层的孔中的无机材料。保护膜pm还可以包括形成在塑料膜处的功能层。功能层可以包括树脂层。功能层可以通过涂覆方法来形成。根据发明构思的示例性实施例,可以省略保护膜pm。

提供了窗口wm,并提供了粘附于第三粘合构件am3的粘合表面。参照图1a至图1c,窗口wm可以保护显示模块dm免受外部冲击并向用户提供输入表面。窗口wm的显示表面is可以是第二外表面os-u。

窗口wm可以包括塑料膜作为基础基底。窗口wm可以具有多层结构。窗口wm的基础构件可以具有从玻璃基底、塑料膜和塑料基底中选择的多层结构。窗口wm还可以包括边框图案。多层结构可以通过连续工艺或使用粘合层的粘合工艺来形成。此外,窗口wm还可以包括设置在基础构件处的功能层。功能层可以包括硬涂层、抗指纹层、抗反射层和自修复层。

光学构件lm降低外部光的反射性。光学构件lm可以包括至少一个偏振膜。光学构件lm还可以包括相位差膜。根据发明构思的示例性实施例,可以省略光学构件lm。

显示模块dm可以包括显示面板dp和触摸感测单元ts。显示面板dp可以是有机发光显示面板,但是不具体限于此。例如,显示面板dp可以是作为另一种类型的自发光显示面板的量子点发光显示面板。对于量子点发光显示面板,发光层包括量子点和量子棒。在下文中,显示面板dp将被描述为“有机发光显示面板”。

触摸感测单元ts直接设置在有机发光显示面板dp上。在该说明书中,“直接设置”是指通过连续工艺“形成”,不包括通过额外的粘合层“附着”。

有机发光显示面板dp产生对应于输入图像数据的图像im(见图1a)。有机发光显示面板dp提供面向厚度方向dr3的第一显示面板表面bs1-l和第二显示面板表面bs1-u。在该示例性实施例中,虽然描述了有机发光显示面板dp,但是显示面板不限于此。

触摸感测单元ts获取外部输入的坐标信息。例如,触摸感测单元ts可以通过电容方法检测外部输入。在该发明构思中,触摸感测单元ts的操作方法不具体限于此,根据发明构思的示例性实施例,触摸感测单元ts可以通过电磁感应方法或压力检测方法检测外部输入。

虽然没有单独示出,但是根据发明构思的示例性实施例的显示模块dm还可以包括抗反射层。抗反射层可以包括滤色器或者导电层/绝缘层/导电层的层叠结构。抗反射层可以通过吸收、破坏性干扰从外部入射的光或者使得从外部入射的光偏振来减小外部光反射率。抗反射层可以代替光学构件lm的功能。

第一粘合构件am1、第二粘合构件am2和第三粘合构件am3中的每个可以是诸如光学透明粘合(oca)膜、光学透明树脂(ocr)或压敏粘合(psa)膜的有机粘合层。有机粘合层可以包括诸如聚氨酯、聚丙烯酸、聚酯、聚环氧和聚乙酸乙烯酯的粘合材料。结果,有机粘合层对应于多个有机层中的一个。

虽然未单独示出,但是显示装置dd还可以包括框架结构,该框架结构用于支持功能层以保持图1a至图1c中所示的状态。框架结构可以包括铰接结构或铰链结构。

图3a和图3b是根据发明构思的示例性实施例的显示装置dd-1的透视图。图3a示出了处于展开状态的显示装置dd-1,图3b示出了处于弯曲状态的显示装置dd-1。图4是根据发明构思的示例性实施例的显示装置dd-2的透视图。

如图3a和3b中所示,显示装置dd-1可以包括一个弯曲区域ba和一个非弯曲区域nba。显示装置dd-1的非显示区域dd-nda可以是弯曲的。然而,根据发明构思的示例性实施例,可以改变显示装置dd-1的弯曲区域。

不同于图1a至图1c中示出的显示装置dd,显示装置dd-1可以固定为一种形状并进行操作。如图3b中所示,显示装置dd-1可以是以弯曲状态操作的弯曲显示装置。显示装置dd-1可以以弯曲状态固定在框架处,并且框架可以结合到电子设备的外壳。

显示装置dd-1可以具有与图2中所示的剖面结构相同的剖面结构。然而,非弯曲区域nba和弯曲区域ba可以具有不同的层叠结构。非弯曲区域nba可以具有与图2中所示的剖面结构相同的剖面结构,而弯曲区域ba可以具有与图2中所示剖面结构不同的剖面结构。光学构件lm和窗口wm不需要设置在弯曲区域ba中。也就是说,光学构件lm和窗口wm可以仅设置在非弯曲区域nba中。第二粘合构件am2和第三粘合构件am3也不需要设置在弯曲区域ba中。

如图4中所示,显示装置dd-2可以包括一个弯曲区域ba和一个非弯曲区域nba。一个弯曲区域ba可以沿着显示装置dd-2的在第一方向dr1上延伸的边缘来限定。然而,根据发明构思的示例性实施例,显示装置dd-2可以包括在第二方向dr2上面向彼此的两个弯曲区域。两个弯曲区域可以在第一方向dr1上延伸,并且均可以沿着在第二方向dr2上面向彼此的两个边缘延伸。

图5a是根据发明构思的示例性实施例的显示模块dm的剖视图。图5b是根据发明构思的示例性实施例的有机发光显示面板dp的平面图。图6a是根据发明构思的示例性实施例的像素pxi的等效电路图。图6b和图6c是根据发明构思的示例性实施例的有机发光显示面板dp的局部剖视图。

如图5a中所示,有机发光显示面板dp包括基础层sub、设置在基础层sub上的电路层dp-cl、发光器件层dp-oled和薄膜包封层tfe。基础层sub可以包括至少一个塑料膜。基础层sub可以包括塑料基底、玻璃基底、金属基底或作为柔性基底的有机/无机复合材料基底。

电路层dp-cl可以包括至少一个中间绝缘层、多个导电层以及半导体层。电路层dp-cl的多个导电层可以构成信号线或像素的驱动电路。发光器件层dp-oled至少包括有机发光二极管。薄膜包封层tfe密封发光器件层dp-oled。薄膜包封层tfe包括无机层和有机层。薄膜包封层tfe可以包括至少两个无机层和位于它们之间的有机层。无机层保护发光器件层dp-oled免受湿气/氧的影响,有机层保护发光器件层dp-oled免受诸如灰尘颗粒的外来物质的影响。无机层可以包括氮化硅层、氮氧化硅层、氧化硅层、氧化钛层或氧化铝层。有机层可以包括丙烯酰类有机层,但是不限于此。

触摸感测单元ts直接设置在薄膜包封层tfe上。触摸感测单元ts包括触摸电极和触摸信号线。触摸电极和触摸信号线可以具有单层结构或多层结构。

触摸电极和触摸信号线可以包括氧化铟锡(ito)、氧化铟锌(izo)、氧化锌(zno)、氧化铟锡锌(itzo)、pedot、金属纳米线或石墨烯。触摸电极和触摸信号线可以包括金属层,例如,钼、银、钛、铜、铝或它们的合金。触摸电极和触摸信号线可以具有相同的或不同的层结构。稍后将描述触摸感测单元ts的具体内容。

如图5b中所示,有机发光显示面板dp包括处于平面上的显示区域da和非显示区域nda。在该示例性实施例中,非显示区域nda可以沿着显示区域da的轮廓来限定。有机发光显示面板dp的显示区域da和非显示区域nda分别对应于显示装置dd的显示区域dd-da和非显示区域dd-nda。有机发光显示面板dp的显示区域da和非显示区域nda可以不必与显示装置dd的显示区域dd-da和非显示区域dd-nda相同,而是可以根据有机发光显示面板dp的结构/设计而改变。

有机发光显示面板dp包括驱动电路、多条信号线sl-vint、sl-vdd、el、gl、dl和sl-d、电源电极e-vss以及多个像素px。设置有多个像素px的区域可以被定义为显示区域da。

驱动电路可以包括扫描驱动电路gdc。扫描驱动电路gdc产生多个扫描信号,并将所述多个扫描信号顺序地输出到稍后描述的多条扫描线gl。另外,扫描驱动电路gdc产生多个发光控制信号,并将所述多个发光控制信号输出到稍后描述的多条发光控制线el。

虽然图5b中示出了从一个扫描驱动电路gdc输出多个扫描信号和多个发光控制信号,但是发明构思不限于此。根据发明构思的示例性实施例,多个扫描驱动电路可以拆分和输出多个扫描信号并且拆分和输出多个发光控制信号。另外,根据发明构思的示例性实施例,用于产生和输出多个扫描信号的驱动电路与用于产生和输出多个发光控制信号的驱动电路可以是被拆开且彼此分离的。可以进一步设置在第二方向dr2上面向图5b中所示的扫描驱动电路gdc的另一个扫描驱动电路。

扫描驱动电路gdc可以包括在电路层dp-cl中。扫描驱动电路gdc可以包括多个薄膜晶体管,所述多个薄膜晶体管与像素px的驱动电路通过同一工艺来形成。

虽然未在图中单独示出,但是有机发光显示面板dp还可以包括以膜上芯片(cof)形状结合到焊盘pd的数据驱动电路。根据发明构思的示例性实施例,数据驱动电路也可以集成在电路层dp-cl上。

多条信号线gl、dl、el、sl-vdd、sl-vint和sl-d可以包括扫描线gl、发光控制线el、数据线dl、电源线sl-vdd、初始化电压线sl-vint和虚设信号线sl-d。所述多条信号线gl、dl、el、sl-vdd、sl-vint和sl-d可以包括在电路层dp-cl中,并且可以省略一些线。焊盘pd可以连接到所述多条信号线gl、dl、el、sl-vdd、sl-vint和sl-d的端部。

多条扫描线gl分别连接到多个像素px中对应的像素px,多条数据线dl分别连接到多个像素px中对应的像素px。发光控制线el中的每条可以平行于多条扫描线gl中对应的扫描线gl而布置。

电源线sl-vdd可以连接到多个像素px并向所述多个像素px提供第一电源电压。电源线sl-vdd可以包括在第一方向dr1上延伸的多条线和在第二方向dr2上延伸的多条线。

初始化电压线sl-vint可以向多个像素px提供初始化电压。初始化电压线sl-vint可以包括在第一方向dr1上延伸的多条线和在第二方向dr2上延伸的多条线。

虚设信号线sl-d可以向扫描驱动电路gdc提供控制信号。虚设信号线sl-d可以向电源电极e-vss提供第二电源电压。第二电源电压具有与第一电源电压的电压电平不同的电压电平。第二电源电压可以具有比第一电源电压的电压电平低的电压电平。

电源电极e-vss设置在非显示区域nda中并且具有沿着基础层sub的轮廓延伸的形状。如图5b中所示,电源电极e-vss可以具有面向三侧轮廓的形状。电源电极e-vss也可以包括在电路层dp-cl中。

图6a示例性地示出了连接到多条数据线dl1至dlm中的第k数据线dlk的第i像素pxi。第i像素pxi响应于施加到第i扫描线gli的第i扫描信号si而被激活。

第i像素pxi包括有机发光二极管oled和用于控制有机发光二极管oled的像素驱动电路。像素驱动电路可以包括七个薄膜晶体管t1至t7和一个电容器cst。虽然在示例性实施例中示出了包括七个薄膜晶体管t1至t7和一个电容器cst的像素驱动电路,但是像素pxi包括第一晶体管t1(或驱动晶体管)、第二晶体管t2(或开关晶体管)和电容器cst作为用于驱动有机发光二极管oled的驱动电路是足够的,像素驱动电路可以以各种方式被修改。

驱动晶体管控制向有机发光二极管oled提供的驱动电流。第二晶体管t2的输出电极电连接到有机发光二极管oled。第二晶体管t2的输出电极可以直接接触有机发光二极管oled的第一电极,或者可以通过另一个晶体管(例如,该示例性实施例中的第六晶体管t6)连接到有机发光二极管oled的第一电极。

控制晶体管的控制电极可以接收控制信号。施加到第i像素pxi的控制信号可以包括第i-1扫描信号si-1、第i扫描信号si、第i+1扫描信号si+1、数据信号dk和第i发光控制信号ei。根据发明构思的示例性实施例,控制晶体管可以包括第一晶体管t1以及第三晶体管t3至第七晶体管t7。

第一晶体管t1包括连接到第k数据线dlk的输入电极、连接到第i扫描线gli的控制电极以及连接到第二晶体管t2的输出电极的输出电极。第一晶体管t1通过施加到第i扫描线gli的扫描信号si(在下文中,被称作第i扫描信号)导通,并将施加到第k数据线dlk的数据信号dk提供至电容器cst。

图6b是与图6a中所示的等效电路的第一晶体管t1对应的部分的剖视图。图6c是与图6a中所示的等效电路的第二晶体管t2、第六晶体管t6和有机发光二极管oled对应的部分的剖视图。

参照图6b和图6c,缓冲层bfl可以设置在基础层sub上。缓冲层bfl改善基础层sub与导电图案或半导体图案的结合强度。缓冲层bfl可以包括无机层。虽然未在图中单独示出,用于防止外来物质进入的阻挡层可以进一步设置在基础层sub的上表面上。可以选择性地设置/省略缓冲层bfl和阻挡层。

第一晶体管t1的半导体图案osp1(在下文中,被称作第一半导体图案)、第二晶体管t2的半导体图案osp2(在下文中,被称作第二半导体图案)和第六晶体管t6的半导体图案osp6(在下文中,被称作第六半导体图案)设置在缓冲层bfl上。第一半导体图案osp1、第二半导体图案osp2和第六半导体图案osp6可以选自非晶硅、多晶硅和金属氧化物半导体。

第一绝缘层10可以设置在第一半导体图案osp1、第二半导体图案osp2和第六半导体图案osp6上。虽然在图6b和图6c中示出了第一绝缘层10设置为覆盖第一半导体图案osp1、第二半导体图案osp2和第六半导体图案osp6的层形状,但是第一绝缘层10可以设置为与第一半导体图案osp1、第二半导体图案osp2和第六半导体图案osp6对应地设置的图案。

第一绝缘层10可以包括多个无机层。所述多个无机层可以包括氮化硅层、氮氧化硅层和氧化硅层。

第一晶体管t1的控制电极ge1(在下文中,被称作“第一控制电极”)、第二晶体管t2的控制电极ge2(在下文中,被称作“第二控制电极”)和第六晶体管t6的控制电极ge6(在下文中,被称作“第六控制电极”)设置在第一绝缘层10上。第一控制电极ge1、第二控制电极ge2和第六控制电极ge6可以根据与扫描线gl(见图5a)的光刻工艺相同的光刻工艺来制造。

用于覆盖第一控制电极ge1、第二控制电极ge2和第六控制电极ge6的第二绝缘层20可以设置在第一绝缘层10上。第二绝缘层20可以提供平坦的上表面。第二绝缘层20可以包括有机材料和/或无机材料。

第一晶体管t1的输入电极se1(在下文中,被称作“第一输入电极”)和输出电极de1(在下文中,被称作“第一输出电极”)、第二晶体管t2的输入电极se2(在下文中,被称作“第二输入电极”)和输出电极de2(在下文中,被称作“第二输出电极”)以及第六晶体管t6的输入电极se6(在下文中,被称作“第六输入电极”)和输出电极de6(在下文中,被称作“第六输出电极”)设置在第二绝缘层20上。

第一输入电极se1和第一输出电极de1分别通过贯穿第一绝缘层10和第二绝缘层20的第一贯穿孔ch1和第二贯穿孔ch2连接到第一半导体图案osp1。第二输入电极se2和第二输出电极de2分别通过贯穿第一绝缘层10和第二绝缘层20的第三贯穿孔ch3和第四贯穿孔ch4连接到第二半导体图案osp2。第六输入电极se6和第六输出电极de6分别通过贯穿第一绝缘层10和第二绝缘层20的第五贯穿孔ch5和第六贯穿孔ch6连接到第六半导体图案osp6。另一方面,根据发明构思的另一个示例性实施例,第一晶体管t1、第二晶体管t2和第六晶体管t6中的至少一个可以被修改并实现为底栅结构。

用于覆盖第一输入电极se1、第二输入电极se2、第六输入电极se6、第一输出电极de1、第二输出电极de2和第六输出电极de6的第三绝缘层30设置在第二绝缘层20上。第三绝缘层30可以包括有机层和/或无机层。第三绝缘层30还可以包括用于提供平坦表面的有机材料。

第一绝缘层10、第二绝缘层20和第三绝缘层30可以定义为“中间绝缘层”。可以根据像素的电路结构省略第一绝缘层10、第二绝缘层20和第三绝缘层30中的一个。

像素限定层pdl和有机发光二极管oled设置在第三绝缘层30上。第一电极ae设置在第三绝缘层30上。第一电极ae通过贯穿第三绝缘层30的第七贯穿孔ch7连接到第六输出电极de6。开口op被限定在像素限定层pdl中。像素限定层pdl的开口op暴露第一电极ae的至少一部分。

像素px可以设置在平面上位于像素区域中。像素区域可以包括发光区域pxa和与发光区域pxa相邻的非发光区域npxa。非发光区域npxa可以围绕发光区域pxa。根据该示例性实施例,与第一电极ae的被开口op暴露的部分区域对应地来限定发光区域pxa。

空穴控制层hcl可以公共地设置在发光区域pxa和非发光区域npxa中。虽然未在图中单独地示出,但是诸如空穴控制层hcl的公共层可以公共地形成在多个像素px(见图5a)中。

发光层eml设置在空穴控制层hcl上。发光层eml可以设置在与开口op对应的区域中。也就是说,发光层eml可以被拆分并形成在多个像素px中的每个处。发光层eml可以包括有机材料和/或无机材料。虽然根据该示例性实施例示出了图案化的发光层eml,但是发光层eml可以公共地设置在多个像素px中。此时,发光层eml可以产生白光。另外,发光层eml可以具有多层结构。

电子控制层ecl设置在发光层eml上。虽然未在图中单独地示出,但是电子控制层ecl可以公共地形成在多个像素px处(见图5a)。

第二电极ce设置在电子控制层ecl上。第二电极ce公共地设置在多个像素px处。

薄膜包封层tfe设置在第二电极ce上。薄膜包封层tfe公共地设置在多个像素px处。根据该示例性实施例,薄膜包封层tfe直接覆盖第二电极ce。根据发明构思的示例性实施例,用于覆盖第二电极ce的覆盖层可以进一步设置在薄膜包封层tfe与第二电极ce之间。此时,薄膜包封层tfe可以直接覆盖覆盖层。

图7a至图7c是根据发明构思的示例性实施例的薄膜包封层tfe1、tfe2和tfe3的剖视图。在下文中,参照图7a至图7c描述根据发明构思的示例性实施例的薄膜包封层tfe1、tfe2和tfe3。

如图7a中所示,薄膜包封层tfe1可以包括n个无机层iol1至ioln。薄膜包封层tfe1可以包括n-1个有机层ol1至oln-1,n-1个有机层ol1至oln-1与n个无机层iol1至ioln可以交替地设置。n-1个有机层ol1至oln-1可以平均具有比n个无机层iol1至ioln的厚度大的厚度。

n个无机层iol1至ioln中的每个可以是包括一种材料的单层或者包括各自不同的材料的多层。可以通过沉积、印刷或涂覆有机单体来形成n-1个有机层ol1至oln-1中的每个。有机单体可以包括丙烯酰类单体。

如图7b和图7c中所示,薄膜包封层tfe2和tfe3中的每个所包括的无机层可以具有相同或不同的无机材料并且可以具有相同或不同的厚度。薄膜包封层tfe2和tfe3中的每个所包括的有机层可以具有相同或不同的有机材料并且可以具有相同或不同的厚度。

如图7b中所示,薄膜包封层tfe2可以包括顺序地堆叠的第一无机层iol1、第一有机层ol1、第二无机层iol2、第二有机层ol2和第三无机层iol3。

第一无机层iol1可以具有两层结构。第一子层s1和第二子层s2可以包括不同的无机材料。

如图7c中所示,薄膜包封层tfe3可以包括依次堆叠的第一无机层iol10、第一有机层ol1和第二无机层iol20。第一无机层iol10可以具有两层结构。第一子层s10和第二子层s20可以包括不同的无机材料。第二无机层iol20可以具有两层结构。第二无机层iol20可以包括在不同的沉积环境中沉积的第一子层s100和第二子层s200。第一子层s100可以在低功率条件下沉积,而第二子层s200可以在高功率条件下沉积。第一子层s100和第二子层s200可以包括相同的无机材料。

图8a是根据发明构思的示例性实施例的触摸感测单元ts的剖视图。图8b至图8f是根据发明构思的示例性实施例的触摸感测单元ts的平面图。

如图8a中所示,触摸感测单元ts包括第一导电层ts-cl1、第一绝缘层ts-il1(在下文中,被称作“第一触摸绝缘层”)、第二导电层ts-cl2和第二绝缘层ts-il2(在下文中,被称作“第二触摸绝缘层”)。第一导电层ts-cl1直接设置在薄膜包封层tfe上。发明构思不限于此,另一个无机层或有机层可以进一步设置在第一导电层ts-cl1与薄膜包封层tfe之间。第一导电层ts-cl1和第二导电层ts-cl2中的每个可以包括单层结构或沿着第三方向轴dr3堆叠的多层结构。多层结构的导电层可以包括多个透明导电层和多个金属层中的至少两层。多层结构的导电层可以包括具有不同金属的金属层。透明导电层可以包括氧化铟锡(ito)、氧化铟锌(izo)、氧化锌(zno)、氧化铟锡锌(itzo)、pedot、金属纳米线或石墨烯。金属层可以包银、钛、铜、铝和它们的合金。例如,第一导电层ts-cl1和第二导电层ts-cl2中的每个可以具有钛/铝/钛的三层结构。

第一导电层ts-cl1和第二导电层ts-cl2中的每个包括多个图案。在下文中,第一导电层ts-cl1包括第一导电图案,第二导电层ts-cl2包括第二导电图案。第一导电图案和第二导电图案中的每个可以包括触摸电极和触摸信号线。

第一触摸绝缘层ts-il和第二触摸绝缘层ts-il2中的每个可以包括无机材料或有机材料。无机材料可以包括氧化铝、氧化钛、氧化硅、氮氧化硅、氧化锆和氧化铪中的至少一种。有机材料可以包括丙烯酸树脂、甲基丙烯酸树脂、聚异戊二烯树脂、乙烯基树脂、环氧树脂、氨基甲酸酯树脂、纤维素树脂、硅氧烷树脂、聚酰亚胺树脂、聚酰胺树脂和苝树脂中的至少一种。

第一触摸绝缘层ts-il1和第二触摸绝缘层ts-il2中的每个可以具有单层或多层结构。第一触摸绝缘层ts-il1和第二触摸绝缘层ts-il2中的每个可以包括无机层或有机层中的至少一个。无机层和有机层可以通过化学气相沉积法来形成。

第一触摸绝缘层ts-il1足以使第一导电层ts-cl1与第二导电层ts-cl2绝缘,但是其形状不受限制。根据第一导电图案和第二导电图案的形状,可以改变第一触摸绝缘层ts-il1的形状。第一触摸绝缘层ts-il1可以完全覆盖薄膜包封层tfe或者可以包括多个绝缘图案。多个绝缘图案足以与第一连接部cp1或第二连接部cp2叠置,这将在随后描述。

虽然在该示例性实施例中示出了两层触摸感测单元,但是发明构思不限于此。单层触摸感测单元包括导电层和用于覆盖导电层的绝缘层。导电层包括触摸电极和线连接到触摸电极的触摸信号线。单层触摸感测单元可以通过自覆盖(例如,自电容)方法获取坐标信息。

如图8b中所示,触摸感测单元ts可以包括第一触摸电极te1-1至te1-4、连接到第一触摸电极te1-1至te1-4的第一触摸信号线sl1-1至sl1-4、第二触摸电极te2-1至te2-5、连接到第二触摸电极te2-1至te2-5的第二触摸信号线sl2-1至sl2-5以及连接到第一触摸信号线sl1-1至sl1-4和第二触摸信号线sl2-1至sl2-5的焊盘部pada。虽然在示例性实施例中于图8b中示出了包括四个第一触摸电极te1-1至te1-4和五个第二触摸电极te2-1至te2-5的触摸感测单元ts,但是发明构思不限于此。

第一触摸电极te1-1至te1-4中的每个可以具有限定有多个触摸开口的网格形状。第一触摸电极te1-1至te1-4中的每个包括多个第一触摸传感器部sp1和多个第一连接部cp1。第一触摸传感器部sp1沿着第一方向dr1布置。第一连接部cp1中的每个使第一触摸传感器部sp1中的相邻的两个第一触摸传感器部sp1连接。虽然未在图中单独地示出,但是第一触摸信号线sl1-1至sl1-4也可以具有网格形状。

第二触摸电极te2-1至te2-5与第一触摸电极te1-1至te1-4交叉,并且与第一触摸电极te1-1至te1-4绝缘。第二触摸电极te2-1至te2-5中的每个可以具有限定有多个触摸开口的网格形状。第二触摸电极te2-1至te2-5中的每个包括多个第二触摸传感器部sp2和多个第二连接部cp2。第二触摸传感器部sp2沿着第二方向dr2布置。第二连接部cp2中的每个使第二触摸传感器部sp2中相邻的两个第二触摸传感器部sp2连接。第二触摸信号线sl2-1至sl2-5也可以具有网格形状。

第一触摸电极te1-1至te1-4静电结合到第二触摸电极te2-1至te2-5。当触摸检测信号被施加到第一触摸电极te1-1至te1-4时,在第一触摸传感器部sp1与第二触摸传感器部sp2之间形成电容器。

多个第一触摸传感器部sp1、多个第一连接部cp1、第一触摸信号线sl1-1至sl1-4、多个第二触摸传感器部sp2、多个第二连接部cp2和第二触摸信号线sl2-1至sl2-5中的部分可以通过使图8a中所示的第一导电层ts-cl1图案化来形成,其它部分可以通过使图8a中所示的第二导电层ts-cl2图案化来形成。

虽然示例性实施例中示出了多个第一连接部cp1与多个第二连接部cp2交叉的触摸感测单元ts,但是发明构思不限于此。例如,为了不与多个第一连接部cp1叠置,可以将第二连接部cp2中的每个修改为v形形式。v形的第二连接部cp2可以与第一触摸传感器部sp1叠置。虽然示例性实施例中示出了菱形形状的第一触摸传感器部sp1和第二触摸传感器部sp2,但是发明构思不限于此。

如图8c中所示,第一导电图案设置在薄膜包封层tfe上。第一导电图案可以包括桥接图案cp2。桥接图案cp2可以直接设置在薄膜包封层tfe上。桥接图案cp2对应于图8b中所示的第二连接部cp2。

如图8d中所示,用于覆盖桥接图案cp2的第一触摸绝缘层ts-il1设置在薄膜包封层tfe上。用于部分地暴露桥接图案cp2的接触孔ch被限定在第一触摸绝缘层ts-il1中。接触孔ch可以通过光刻工艺来形成。

如图8e中所示,第二导电图案设置在第一触摸绝缘层ts-il1上。第二导电图案可以包括多个第一触摸传感器部sp1、多个第一连接部cp1和第一触摸信号线sl1-1至sl1-4以及多个第二触摸传感器部sp2和第二触摸信号线sl2-1至sl2-5。虽然未在图中单独地示出,但是用于覆盖第二导电图案的第二触摸绝缘层ts-il2设置在第一触摸绝缘层ts-il1上。

根据发明构思的另一个示例性实施例,第一导电图案可以包括第一触摸电极te1-1至te1-4和第一触摸信号线sl1-1至sl1-4。第二导电图案可以包括第二触摸电极te2-1至te2-5和第二触摸信号线sl2-1至sl2-5。此时,接触孔ch不限定在第一触摸绝缘层ts-il1中。

另外,根据发明构思的示例性实施例,第一导电图案与第二导电图案可以互换。也就是说,第二导电图案可以包括桥接图案cp2。

另外,根据发明构思的示例性实施例,第一导电图案还可以包括与第一触摸信号线sl1-1至sl1-4和第二触摸信号线sl2-1至sl2-5对应的虚设信号线。彼此对应的虚设信号线和触摸信号线可以通过贯穿第一触摸绝缘层ts-il1的接触孔ch彼此连接。虚设信号线使触摸信号线的电阻减小。

图8f是图8e的区域bb的局部放大图。如图8f中所示,第一触摸传感器部分sp1和第二触摸传感器部分sp2与非发光区域npxa叠置。多个网格孔ts-opr、ts-opg和ts-opb限定在第一触摸传感器部分sp1和第二触摸传感器部分sp2中。多个网格孔ts-opr、ts-opg和ts-opb可以与发光区域pxa-r、pxa-g和pxa-b具有一一对应关系。

发光区域pxa-r、pxa-g和pxa-b可以像图6c的发光区域pxa那样来限定。有机发光二极管oled设置在发光区域pxa-r、pxa-g和pxa-b中的每个中。有机发光二极管oled可以包括用于产生第一颜色光的第一有机发光二极管、用于产生第二颜色光的第二有机发光二极管和用于产生第三颜色光的第三有机发光二极管。

pxa-r、pxa-g和pxa-b可以根据有机发光二极管oled(见图6c)的发光层eml(见图6c)发射的颜色而具有不同的面积。发光区域pxa-r、pxa-g和pxa-b的尺寸可以根据有机发光二极管的类型来确定。发光区域pxa-r、pxa-g和pxa-b可以被划分为至少两组。图8f示出了发光区域pxa-r、pxa-g和pxa-b被划分为三组。

多个网格孔ts-opr、ts-opg和ts-opb可以被划分为具有不同面积的若干组。它们可以被划分为至少两组。图8f示例性地示出了具有第一面积的第一网格孔ts-opr、具有与第一面积不同的第二面积的第二网格孔ts-opg以及具有与第一面积和第二面积不同的第三面积的第三网格孔ts-opb。网格孔ts-opr、ts-opg和ts-opb的面积可以根据与之叠置的有机发光二极管oled的类型来确定。

第一触摸传感器部分sp1和第二触摸传感器部分sp2中的每个可以包括用于限定多个网格孔ts-opr、ts-opg和ts-opb的网格线。网格线可以包括沿着与第一方向dr1和第二方向dr2交叉的第四方向dr4延伸的第一网格线以及沿着与第四方向dr4交叉的第五方向dr5延伸的第二网格线。第一网格线和第二网格线的线宽可以是若干微米。

图8f分别示出了用于限定一个网格孔ts-opr的四个网格线单元m1、m2、m3和m4。网格线单元形成第一网格线和第二网格线的一部分。第一网格线单元m1和第二网格线单元m2在第四方向dr4上面对彼此并且第三网格线单元m3和第四网格线单元m4在第五方向dr5上面对彼此。

虽然上面示出了网格孔ts-opr、ts-opg和ts-opb在一对一基础上对应于发光区域pxa-r、pxa-g和pxa-b,但是发明构思不限于此。网格孔ts-opr、ts-opg和ts-opb中的一个可以对应于发光区域pxa-r、pxa-g和pxa-b中的两个或更多个。

虽然示出了发光区域pxa-r、pxa-g和pxa-b的尺寸是不同的,但是发明构思不限于此。发光区域pxa-r、pxa-g和pxa-b的尺寸可以彼此相同并且网格孔ts-opr、ts-opg和ts-opb的尺寸可以彼此相同

图9a是根据发明构思的示例性实施例的显示模块dm的剖视图。图9b是根据比较例的显示模块的剖面图。图9a和图9b示出了图5a的放大区域aa。图10是根据发明构思的示例性实施例的显示模块dm的平面图。

由于设置在显示区域da中的电路层dp-cl、发光器件层dp-oled和薄膜包封层tfe的层叠结构与参照图6b和图6c描述的层叠结构相同,所以省略详细的描述。然而,未示出空穴控制层hcl和电子控制层ecl。由于设置在显示区域da中的触摸感测单元ts的层叠结构也与参照图8a至8f描述的构造相同,所以省略对其的详细描述。示例性实施例中示出了包括第一无机层iol1、有机层ol和第二无机层iol2的薄膜包封层tfe。在下文中,主要描述非显示区域nda。

电路层dp-cl的扫描驱动电路gdc设置在非显示区域nda中。扫描驱动电路gdc包括与像素晶体管t6通过同一工艺形成的至少一个晶体管gdc-t。扫描驱动电路gdc包括与像素晶体管t6的输入电极设置在同一层上的信号线gdc-sl。初始化电压线sl-vint和电源电极e-vss也与像素晶体管t6的输入电极设置在同一层上。由于初始化电压线sl-vint、电源电极e-vss和像素晶体管t6的输入电极也通过同一工艺形成,所以它们可以包括相同的层结构和相同的材料。

如图10中所示,电源电极e-vss设置在扫描驱动电路gdc的外部。电源电极e-vss可以沿着基础层sub的轮廓延伸。非显示区域可以包括在第一方向dr1上面向彼此的第一非显示区域nda1和第二非显示区域nda2,并且显示区域da位于第一非显示区域nda1与第二非显示区域nda2之间。非显示区域可以包括在第二方向dr2上面向彼此的第三非显示区域nda3和第四非显示区域nda4,并且显示区域da位于第三非显示区域nda3与第四非显示区域nda4之间。电源电极e-vss可以设置在第一非显示区域nda1、第三非显示区域nda3和第四非显示区域nda4中的至少一个非显示区域中。电源电极e-vss可以设置在第一非显示区域nda1、第三非显示区域nda3和第四非显示区域nda4中。

再次参照图9a,连接电极e-cnt设置在第三绝缘层30上。连接电极e-cnt使电源电极e-vss与第二电极ce连接。连接电极e-cnt从电源电极e-vss向第二电极ce传送第二电源电压。由于连接电极e-cnt与第一电极ae通过同一工艺形成,所以它们可以包括相同的层结构和相同的材料。连接电极e-cnt和第一电极ae可以具有相同的厚度。

连接电极e-cnt可以设置在第一非显示区域nda1、第三非显示区域nda3和第四非显示区域nda4中的至少一个非显示区域中。连接电极e-cnt可以设置在第一非显示区域nda1、第三非显示区域nda3和第四非显示区域nda4中。

多个孔cnt-h被限定在连接电极e-cnt中。多个孔cnt-h排出在用于形成第三绝缘层的工艺过程中产生的气体。与多个孔cnt-h叠置的多个绝缘图案ip设置在连接电极e-cnt上。多个绝缘图案ip可以一一对应于多个孔cnt-h。

多个绝缘图案ip可以是单层并可以与像素限定层pdl同时形成。由于多个绝缘图案ip与像素限定层pdl通过同一工艺形成,所以它们可以具有相同的厚度并包括相同的材料。多个绝缘图案ip可以具有比像素限定层pdl的厚度小的厚度。

第二电极ce与多个绝缘图案ip的至少一部分叠置。第二电极ce接触连接电极e-cnt的多个绝缘图案ip的非叠置部分。

如图9a中所示,坝dm1和dm2可以设置在非显示区域nda中。根据该示例性实施例,示出了第一坝dm1和第二坝dm2在第二方向dr2上分隔开。虽然未在图中单独地示出,但是第一坝dm1和第二坝dm2可以在平面上围绕显示区域da设置。第一坝dm1和第二坝dm2可以设置在第一非显示区域nda1、第三非显示区域nda3和第四非显示区域nda4中的至少一个非显示区域中。第一坝dm1和第二坝dm2可以设置在第一非显示区域nda1、第三非显示区域nda3和第四非显示区域nda4中。

第一坝dm1可以设置在电源电极e-vss上。第一坝dm1可以是单层并可以与像素限定层pdl同时形成。由于第一坝dm1与像素限定层pdl通过同一工艺形成,所以它们可以具有相同的厚度并包括相同的材料。第一坝dm1可以具有比像素限定层pdl的厚度小的厚度。

第二坝dm2可以设置在第一坝dm1外侧。例如,第二坝dm2与显示区域da之间的距离可以大于第一坝dm1与显示区域da之间的距离。

第二坝dm2可以覆盖电源电极e-vss的一部分。第二坝dm2可以具有多层结构。第二坝dm2可以包括上部和下部。下部可以与第三绝缘层30同时形成,上部可以与像素限定层pdl同时形成。

第一无机层iol1可以覆盖第一坝dm1和第二坝dm2。第一无机层iol1的边缘可以接触第二绝缘层20。有机层ol可以与绝缘图案ip叠置,其边缘与第一坝dm1和第二坝dm2叠置。期望有机层ol的边缘不设置在第二坝dm2的外侧。第二无机层iol2可以与第一坝dm1和第二坝dm2叠置。第二无机层iol2的边缘可以接触第一无机层iol1。

第一触摸绝缘层ts-il1可以与第一坝dm1和第二坝dm2叠置。第一触摸绝缘层ts-il1的边缘可以接触第二无机层iol2。

设置在第一触摸绝缘层ts-il1上的触摸信号线sl2的至少一部分与多个绝缘图案ip叠置。不必要整个触摸信号线sl2与多个绝缘图案ip叠置,一些触摸信号线sl2的一部分与绝缘图案ip叠置就足够了。

如图9a中所示,根据该示例性实施例的触摸感测单元ts的触摸信号线sl2设置在相对平坦的表面上。根据图9b中所示的比较例,一些触摸信号线sl2设置在倾斜表面上。根据比较例,由于省略了图9a中所示的绝缘图案ip,所以有机层ol的厚度随着朝向基础层sub的边缘而逐渐减小。当对根据该示例性实施例和比较例的有机层ol的厚度减小的区域在第二方向dr2上的长度进行比较时,已知比较例的长度大于该示例性实施例的长度。这将在下面参照图11b和图11c进行详细描述。

当与第二电极ce的距离根据触摸信号线sl2的位置而改变时(参见图9b),产生噪声。特别地,因为触摸信号线sl2与第二电极ce的电容在最外侧处增大,所以噪声会只在特定的信号线处增大。另外,由扫描驱动电路gdc的信号线gdc-sl产生的噪声会集中在最外侧的触摸信号线sl2上。噪声会通过在扫描驱动电路gdc的信号线gdc-sl中的施加有ac信号的信号线被放大。

图11a是根据发明构思的示例性实施例的显示模块的一部分的放大平面图。图11b是沿图11a的线i-i'截取的根据发明构思的示例性实施例的显示模块的剖视图。图11c是沿图11a的线i-i'截取的根据发明构思的比较例的显示模块的剖视图。图11d是图11b的一部分的放大剖视图。图11a对应于图10的区域cc。图11b和图11c示出了形成薄膜包封层的过程。

如图11a中所示,多个绝缘图案ip可以一一对应于多个孔cnt-h。多个孔cnt-h限定了多个行h-r1至h-r8,多个行h-r1至h-r8布置在第一方向dr1上。多个行h-r1至h-r8可以包括布置在第二方向dr2上的孔,并且多个行h-r1至h-r8可以包括不同数量的孔。多个孔cnt-h在平面上的形状不受限制。

多个行中的第一行h-r1的孔可以被定义为第一孔,多个行中的第二行h-r2的孔可以被定义为第二孔。多个行中的第三行h-r3的孔可以被定义为第三孔。

第一行h-r1和第三行h-r3可以包括相同数量的孔。第一孔和第三孔可以对齐。第二孔设置在第一孔与第三孔之间。

多个绝缘图案ip可以具有与多个孔cnt-h相同的布置。多个绝缘图案ip可以控制液体有机材料的流量。

如图11b中所示,在第一无机层iol1上设置液体有机材料以形成有机层ol(见图9a)。液体有机材料可以由喷墨头提供。提供至显示区域da的边缘部分(见图9a)的液体有机材料流向非显示区域nda。多个绝缘图案ip可以控制液体有机材料的流动。第一坝dm1和第二坝dm2可防止液体有机材料溢出。虽然未在图中单独地示出,但是为了控制液体有机材料的流率/流速,可以对第一无机层iol1执行疏水或亲水等离子体处理。

图11b和图11c分别示出了两个路径fp和fp-s。图11b示出了根据该示例性实施例的路径,图11c示出了根据比较例的路径。参照根据该示例性实施例的路径fp,多个绝缘图案ip减小液体有机材料的流速。液体有机材料缓慢地朝向基础层sub的边缘流动。另外,由于多个绝缘图案ip对厚度进行了补偿,所以有机层ol(见图9a)在非显示区域nda中相对地具有均匀的厚度(见图9a)。

根据图11c中所示的比较例的路径fp-s,由于流速不减小,所以有机层ol(参见图9b)的厚度随着朝向基础层sub的边缘而变薄。因此,有机层ol(见图9b)在非显示区域nda中具有不均匀的厚度(见图9b)。

根据路径fp,当液体有机材料的流率/流速被控制时,可以在非显示区域nda中形成均匀平坦的有机层。如图11a中所示,当在奇数行的绝缘图案ip之间形成偶数行的绝缘图案ip时,它们可以控制所有对应于奇数行的路径fp1(在下文中,被称作第一路径)和对应于偶数行的路径fp2(在下文中,被称作第二路径)。

绝缘图案ip可以控制液体有机材料的流速/流速,也可以防止连接电极e-cnt的损坏。如图11d中所示,连接电极e-cnt可以包括第一透明导电层tco1、位于第一透明导电层tco1上的金属层ml以及位于金属层ml上的第二透明导电层tco2。第一透明导电层tco1和第二透明导电层tco2可以包括氧化铟锡(ito)、氧化铟锌(izo)、氧化锌(zno)或者氧化铟锡锌(itzo)。金属层ml可以包括诸如铝、铜和银的高导电性金属。

绝缘图案ip可以覆盖金属层ml的被多个孔cnt-h暴露的剖面。因此,防止金属层ml的腐蚀。

图12a至图12c是根据发明构思的示例性实施例的显示模块的一部分的放大平面图。图12a至图12c是对应于图11a的平面图。在下文中,省略对于参照图11a至图11d所描述的相同构造的详细描述。

如图12a中所示,多个孔cnt-h可以以n×m矩阵布置。这里,n和m是大于或等于2的自然数。示例性地示出了4×6矩阵的孔cnt-h。不必使限定在连接电极e-cnt中的所有孔以矩阵布置,而是限定在一些区域中的孔可以以矩阵布置。例如,限定在其它一些区域中的孔cnt-h可以如图11a布置。

绝缘图案可以包括与多个孔cnt-h叠置的第一绝缘图案ip1和不与多个孔cnt-h叠置的第二绝缘图案ip2。第一绝缘图案ip1可以与矩阵中的孔一一对应地以n×m矩阵布置。

第二绝缘图案ip2设置为与第一绝缘图案ip1分隔开。第二绝缘图案ip2可以限定位于第一绝缘图案ip1的n个行之间的n-1个行以及位于第一绝缘图案ip1的m个列之间的m-1个列。第二绝缘图案ip2可以设置在第一绝缘图案ip1中的用于限定最小矩形的四个第一绝缘图案的中心处。

第二绝缘图案ip2在平面上的长度大于第二绝缘图案ip2与第一绝缘图案ip1之间的间隔。例如,第二绝缘图案ip2的长度可以是第二绝缘图案ip2与第一绝缘图案ip1之间的间隔的两倍大。

第一绝缘图案ip1可以控制与图11a中所示的第一路径fp1相同的路径fp10,第二绝缘图案ip2可以控制与图11a中所示的第二路径fp2对应的路径fp20。

如图12b中所示,绝缘图案可以包括具有不同形状的第一绝缘图案ip10和第二绝缘图案ip20。

第一绝缘图案ip10可以包括列部分ip-c和连接到列部分ip-c的行部分ip-r。列部分ip-c可以与n×m矩阵中的多个孔中的在列方向上布置的孔叠置。行部分ip-r可以与在行方向上设置的孔叠置,其中,在列方向上布置的所述孔分别布置在所述行方向上。列部分ip-c可以具有沿着基础层sub(参见图10)的在第一方向dr1上延伸的边缘延伸的形状。第二绝缘图案ip20可以具有对应于孔cnt-h的形状。绝缘图案还可以包括第三绝缘图案ip30。第三绝缘图案ip30可以具有与第一绝缘图案ip10的形状相同的形状。在这种情况下,第二绝缘图案ip20可以设置在沿行方向分隔开的两个第一绝缘图案ip10之间。第三绝缘图案ip30可以具有与第一绝缘图案ip10的形状不同的形状。例如,第三绝缘图案ip30可以包括与第一绝缘图案ip10的列部分相同的列部分以及与第一绝缘图案ip10的行部分不同的行部分。在这种情况下,第二绝缘图案ip20可以设置在沿行方向分隔开的第一绝缘图案ip10与第三绝缘图案ip30之间。

第一绝缘图案ip10的行部分ip-r和第二绝缘图案ip20可以控制与图11a中所示的第一路径fp1相同的路径fp100,第一绝缘图案ip10的列部分ip-c可以控制与图11a中所示的第二路径fp2对应的路径fp200。

虽然图12b中示出了以n×m矩阵布置的多个孔cnt-h,但是发明构思不限于此。例如,限定在其它一些区域中的孔cnt-h可以如图11a布置。

如图12c中所示,绝缘图案可以包括与以n×m矩阵布置的孔cnt-h中的沿列方向布置的一些孔叠置的列绝缘图案ip-c1和ip-c2。多个列绝缘图案中的至少一个可以设置在n×m矩阵中的多个孔的每k个行之间,其中,k是小于n的自然数。例如,如图12c所示,多个列绝缘图案中的至少一个可以设置在n×m矩阵中的多个孔的每3个行之间,即,覆盖在列方向上连续布置的3个孔。

第一列绝缘图案ip-c1和第二列绝缘图案ip-c2与相邻且不同行的孔叠置。当从第二方向dr2看时,第一列绝缘图案ip-c1与第二列绝缘图案ip-c2彼此叠置。当在第二方向dr2上将第二列绝缘图案ip-c2朝向第一列绝缘图案ip-c1移动时,第二列绝缘图案ip-c2与第一列绝缘图案ip-c1部分地叠置。第一列绝缘图案ip-c1和第二列绝缘图案ip-c2交替地设置并且第二列绝缘图案ip-c2的端部可以与第一列绝缘图案的ip-c1的中心区域叠置。这里,中心区域的边界可以被限定在距离第一列绝缘图案ip-c1的端部的第一列绝缘图案ip-c1的长度的10%以内。

第一列绝缘图案ip-c1和第二列绝缘图案ip-c2互补地控制与图11a中示出的第一路径fp1相同的路径fp1000以及与图11a中示出的第二路径fp2对应的路径fp2000。

图13a和图13b是根据发明构思的示例性实施例的显示模块的剖视图。图13a和图13b示出了对应于图9a的剖面。在下文中,省略对于参照图9a至图12c所描述的相同构造的详细描述。

如图13a中所示,可以省略在连接电极e-cnt中限定的孔cnt-h。也就是说,连接电极e-cnt不包括孔cnt-h。不论是否有孔cnt-h,绝缘图案ip都可以设置在连接电极e-cnt上。绝缘图案ip可以在平面上具有图11a和图12a至图12c中示出的布置和形状。

如图13b中所示,可以省略连接电极e-cnt。绝缘图案ip可以直接设置在第三绝缘层30上。绝缘图案ip可以在平面上具有图11a和图12a至图12c中所示的布置和形状。

如上所述,绝缘图案可以控制构成薄膜包封层的单体溶液的流动。通过控制单体溶液的流向显示面板的边缘区域的流率,平坦有机层可以形成至边缘区域。结果,设置在有机层上的无机层也可以提供平坦的上表面。设置在无机层上的触摸信号线与第二电极分隔开基本相同的距离。另外,分隔距离可以大于参考距离。可以防止第二电极与触摸信号线之间的信号干扰。

虽然已经描述了本发明的示例性实施例,但是理解的是,本发明不应限于这些示例性实施例,而是本领域普通技术人员可以在本发明所要求保护的精神和范围内进行各种改变和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1