校准和图像处理设备、方法和系统的制作方法_4

文档序号:9529282阅读:来源:国知局
性识别该鞘。设计给定校准元件的各种约束和现有知识可用于对其进行识别。滤波器可以包括具有陷波(notch)的步进功能,该陷波被确定大小以沿着扫描线(诸如掺杂区域的厚度)拾取元件。给定的滤波器可表示为矩阵或其他运算子。
[0117]在图6A中描述了用于定位校准部件(诸如图像中的密集区域、0CT图像中的边界或界面、圆形区域、不规则形状或其他适当部件)的各种步骤。在一个实施例中,本文描述的软件和系统使用多个处理步骤(步骤A1-A8)和软件模块以识别掺杂鞘。各种物理约束可利于0CT帧中的检测。掺杂鞘通常为圆形或椭圆形。鞘可以在血管中变形和扭曲,尽管其总面积或周长横跨帧不会改变。掺杂鞘通常不设置在血管的中心,而是可以在各个非同心位置中移动。这些几何限制可用于估计鞘出现的区域。
[0118]此外,掺杂鞘的厚度可以基于制造容限而改变。此外,与图6B右侧所示执行了线平均的版本相比,如图6B左侧中的暗区域所示,掺杂鞘容易具有斑点。所有的这些因素对跟踪作为校准部件的掺杂鞘都存在挑战。
[0119]在一个实施例中,可以使用本文描述的方法和概念来检测校准部件。步骤A1-A8可一次或多次使用以识别给定校准部件。在一个实施例中,可以一起或单独使用滤波器。步骤包括:平均扫描线A1 ;在估计出现导管鞘信号的图像中定位近似区域A4 ;使用一个或多个滤波器(诸如1-D滤波器核)找到候选鞘点A5 ;使用第二滤波器(诸如1-D空间滤波器)测量圆形或椭圆形信号的厚度A6 ;确定圆形、可能脱离中心、候选点的分组A8以及选择椭圆A8。在图像被移动的情况下,还可以执行步骤A2和A3。
[0120]在一个实施例中,使用第一滤波器。第一滤波器可被配置为在各种可能情况下工作(体内/体外和横跨整个掺杂层厚度)。优选地,选择滤波器以处理探针和校准部件将在使用中暴露的情况。在一个实施例中,一个或多个滤波器被配置为解决以下情况或参数:
[0121]具有厚度掺杂区域/或其他部件:校准部件的厚度的规格为0.0015’’+/-0.0005’’。结果,使用最小厚度 0.0010’’ (25um)。
[0122]清洁区域:在一个实施例中使用厚度为20um的0CT分辨单元。
[0123]失配区域:零。可能存在光学指标失配(体外空气中)或者不可能存在光学指标失配(相反为体内)。
[0124]对于第二滤波器,可以一次或多次执行多滤波操作:
[0125]具有厚度的掺杂区域和/或其他部件:厚度的各种规格为(25-50um)。
[0126]清洁区域:与掺杂层厚度反向变化(总鞘厚度恒定)。
[0127]失配区域:零。可能存在光学指标失配(体外空气中)或者不可能存在光学指标失配(相反为体内)。
[0128]在一个实施例中,如果没有找到掺杂鞘(诸如图2B、图3A和图3B所示),系统或校准模块试图搜索掺杂鞘或与光纤3相邻的环(诸如图2A所示)。掺杂鞘的缺乏可以表示使用不同类型的导管,但不是确定性的。如果系统不能在光纤附近找到掺杂层或环,则生成错误信号。如果该系统找到和丢失或者不能找到校准部件,则其可以将数据标为不可用或生成操作者警告。
[0129]导管类型和部件
[0130]图2A示出了一种导管类型,以及图2C和图2D示出了两种导管类型的各种部件。系统被配置为识别这些类型和其他类型。通常,系统首先寻找掺杂鞘,并且在没有找到的情况下寻找光纤附近的掺杂环。在执行拉回之前作为自动校准的一部分执行该步骤。以这种方式,导管类型通知如何在模块图像处理流水线中处理数据。
[0131]导管被设计为与填充光纤和鞘之间的区域的冲洗溶液一起工作。这帮助防止血液进入并用于在拉回期间冲洗用于0CT成像的内腔。溶液被配置为提供光纤和鞘之间适当等级的指数匹配。当探针在空气中时,掺杂鞘相对于其在血液中更容易定位。当与光纤附近的PET环相比时,掺杂鞘更大程度地类似组织。结果,可以执行多阈值采样以识别用于掺杂鞘的候选。这些可以被记下,并且当足够数量的样本表示掺杂鞘存在的适当概率时,鞘位置用于给定帧。
[0132]多预取架构部件的实施例
[0133]图7示出了适合于处理使用血管内成像探针获取的扫描线、样本或帧的图像数据处理架构。开始,来自拉回探针的起始帧被设置为第一图像数据处理模块(在图7中示为图像数据处理模块A)的输入。通常,在给定实施例中,本文描述的步骤和处理可以被配置为在样本、扫描线、帧或帧级的集合处操作。结果,对前述的一种类型的0CT数据的参考可以变为另一种类型的0CT而不存在限制。因此,参考帧还预期对扫描线进行操作的相关实施例,反之亦然。在一个优选实施例中,相对于扫描线执行本文描述的所有校准、处理和滤波步骤。
[0134]在一个实施例中,图像数据处理模块被配置为对来自拉回的帧(诸如所示帧F1、帧F2和帧F3)进行操作。每帧都被图像处理模块A接收作为第一操作(first pass)的一部分,其中模块对每帧进行操作并生成用于每帧的输出。对于帧1来说,输出为用于帧1的输出A1 ;对于帧2来说,输出为用于帧2的输出A2 ;以及对于帧3来说,输出为用于帧3的输出A3。
[0135]在一个实施例中,每个输出都可以是诸如用于偏移帧中的像素或扫描线中样本的可能值的值,从而与使得样本路径和参考路径基本相同或者对齐或检测不同帧或扫描线中的校准部件相一致。输出本身可以是运算子,诸如用于其他帧和其他图像处理模块的矩阵。在一个实施例中,模块A是图8中所示的一个模块,以及模块B是图8的另一模块。在一个实施例中,相对于模块A执行的第一操作是预取。
[0136]在一个实施例中,图像处理模块A从拉回接收帧或多条扫描线,并处理帧或扫描线,以生成帧或扫描线输出。第二操作可以是输出的应用,诸如以虚线帧所示的应用于第二操作的帧3的输出A3。假定模块A在模块B之前的序列配置,如图7的上中部所示,被模块A处理的帧1、2和3产生帧1(应用A1)、帧2(应用A2)和帧3 (应用A3)所示的虚线框。
[0137]然后,在图像数据处理模块B中提供这些处理帧,并且每帧都在示为第一操作的一部分时被操作,使得生成输出Bl、Β2和Β3。如图所示,这些输出被应用于模块Β的输入帧,使得所得到的帧是应用Β1的帧1、应用Β2的帧2以及应用Β3的帧3。尽管没有保持参照A3、Α2和Α1,但在图7的右上角示出由模块Α施加的操作前进到模块Β的输出帧,除非例如模块B被配置为经受模块A的一些或所有操作。
[0138]例如,在一个实施例中,模块A可被配置为对从拉回接收的帧集合提供连续校准。结果,在模块A的应用之后,帧将被校准。此外,模块B将有利地在应用任何附加图像处理(诸如阴影去除变淡(shadow removal lightening)或导丝检测)之前接收校准帧。图5所示的各种拉回处理帧和图8所示的处理模块以及本文描述的任何其他软件模块以任何等效或延伸的方式适合用于参照图7示出和描述的架构。
[0139]多帧流水线和序列/顺序帧处理
[0140]部分地,本发明的一个实施例涉及多预取架构。例如,在一个实施例中,关于图像数据的帧的第一预取计算校准结果,以被图像数据的帧的第二预取显示或处理。在一个实施例中,原始未处理的图像数据可以从拉回进行显示,因为第二图像数据流根据本文描述的图像处理流水线进行处理。
[0141]作为使用多帧数据的实例,在内腔检测期间,使用两帧帮助增加检测内腔边界的精度。例如,导丝投射模糊部分边界的阴影。然而,如图所示,扫描线还可以被内腔中的不清楚的碎片或血液阻挡。结果,扫描线可以对闭塞的多个点进行成像。然而,这些碎片较小,因此通过查看先前帧,软件可用于确定碎片可以与壁区别开,因为壁在帧之间具有连续性而碎片不具有连续性。
[0142]对图像数据帧执行两次操作允许给定模块(诸如图7中的模块A)的所有操作被执行和高速缓存。这些可以保持为阵列或者应用于来自拉回的帧集合。然后,修改帧或帧的集合或这种阵列可以被传送给随后的图像数据处理流水线模块(诸如模块B)。在一个实施例中,模块A和模块B可以是从图8所示图像处理软件流水线中选择的任何软件模块。在一个实施例中,从由拉回时收集的成像数据得到的任何图像集合中预取用于一个图像数据处理模块的数据,OCT、IVUS还是其他形式可以用作图8的一个或多个处理路径的输入。在一个实施例中,可以基于处理资源和用户感兴趣的输出来选择跨越图8的一个或多个路径。
[0143]假定拉回使得内腔运动,在拉回之后优选以连续校准开始图像处理流水线并以内腔检测结束。在一个实施例中,连续校准是指基于软件的校准,通过其使得每帧中的导管或光纤在帧之间对齐。一旦执行了内腔检测,就可以选择用于多帧系统的任何所述先前步骤。
[0144]以这种方式,基于图8所示的生理和数据处理约束,流水线软件模块以树结构进行配置。生理和数据输入可导致流水线中模块的优选顺序。在一些情况下,顺序改善结果或者使得特定输出成为可能,诸如内腔检测。可交换封闭软件模块的顺序选择和连续校准的优势使得改进了数据处理结果和效率。
[0145]如图8所示,软件模块可以被配置为可交换并且被配置为相对于彼此封闭以减小错误传播的可能性并且能够交换模块并改变帧的处理顺序。基于生理约束和多级校准程序,图像数据流水线的级被排序以改进分辨率并避免错误。在一个实施例中,算法具有两个阶段。第一阶段在预取期间运行以收集潜在的导丝区域,而如果拉回具有多帧则执行第二阶段。第一阶段作为单帧处理运行,其收集用于每帧的信息。在一个实施例中,作为多帧处理执行第二阶段,其使用来自单帧处理的信息。
[0146]多帧系统使用两次操作或三次操作来提高精度并降低噪声。一次操作对帧进行操作、分析,并基于模块操作生成正确值或其他输出。校准被选择为第一图像数据处理模块。通过校准模块的第一操作识别半径或其他距离,图像需要偏移该距离以对齐帧之间的光纤接收信号。在一个实施例中,在流水线中稍后是内腔检测,因为该内腔检测依赖于流水线中在其之前发生的导丝检测、分支血管检测和支架支柱检测。
[0147]使用低强度区域和其他结构部件解析图像特征
[0148]在图9A中,示出了血管内成像探针的一部分。该探针包括光束定向器180,其与包括玻璃部分的光纤190部分相邻。此外,如图9A下部截面中的不规则区域所示,探针中的两个熔接接头可以创建低强度区域。由于该区域对应于玻璃部分,所以光应该穿过而不发生过多的散射。
[0149]与0CT和成像探针相关联的一个挑战在于:由于探针基本为圆形的截面和探针具有许多部件而使得环可以容易地形成在图像中。可由导管、拼接或成像系统中的其他光学部件产生的这种性质的环可干扰校准。例如,这种环可以锁定并且错误地处理为校准部件。
[0150]在一个实施例中,当寻找到这些部件之后,已知强度区域(诸如所示拼接区域)和图像中的其他区域可用于排除特定信号(诸如环)作为校准部件的候选。因此,基于探针部件及其配置,图像帧中的已知低强度区域可用于提高校准效率并排除错误环和其他人为因素。
[0151]图9B示出了引起相关成像人为因素的制造问题。所示的光纤195被设置在粘附至光纤的层中。在给定实施例中,这与成像区域中的校准部件相比,探针可相对于该校准部件移动。光纤的偏离中心放置可以导致附加校准步骤。由于距离X和Y不同,所以当旋转时,记录为扫描线的距离偏移可歪曲结果并影响后续图像处理的量。结果,其他校准部件可用于补偿该结果。
[0152]连续校准和操作触发
[0153]通常,基于电机的校准方法不检测成像导管的正常操作模式中的偏差。在图10A中,如可以从附图底部的L模式的经验扩展图案看出的,成像探针没有被适当地操作。类似地,图10B中的L模式表示光纤或透镜不再中继信号。本文描述的连续校准部件可以包括截面图像的周期跟踪。结果,通过使用这种截面图像(其可以包括校准部件),给定校准部件期间的校准部件的失锁可用于停止成像程序或者以其他方式警告操作者。关于校准部件的失锁或跟踪可触发警告或通知操作者不能使用拉回数据。阈值可以包括预定帧数或预定时间段的失锁。
[0154]跨帧数据滤波、内插和基于样条的软件实施例
[0155]如本文所述,基于光学相干断层扫描数据收集探针发送和接收的光学信号而生成图像数据的帧集合。探针包括探针尖端,其包括光纤或与光纤进行光学通信。
[0156]在探针旋转时,该探针在血管中被拉回,使得从探针尖端发送至血管壁的光束跟踪其沿着被成像的血管部分移动的螺旋形。该部分具有指定的拉回距离D。关于拉回距离D获取帧集合。
[0157]关于一些帧,可以导致使特定帧不可用的错误。例如,如本文所述,椭圆形可以适合相对于鞘设置的掺杂层(诸如在鞘内或外)。该掺杂层用于各种目的,诸如不同的校准程序。如果这种椭圆装配失败,或者如果所得到的椭圆装配相对于掺杂层的位置被错误计算,则在随后的校准处理步骤期间,可以考虑丢弃或者忽略所得到的装配。
[0158]在其中设置有探针的聚合物鞘在拉回期间通常具有椭圆截面。探针的光纤和鞘在图像数据的帧中可见或可检测。作为这种椭圆的特殊情况,该截面是圆形的。考虑到动脉的移动和鞘的柔性特性,鞘可以被弯曲或折叠,使得在截面透视图中,鞘的周长涉及各种规则或不规则的连续曲线。假定鞘为物理对象,则诸如给定鞘的周长的各种参数应该横跨沿着拉回距离所得到的帧相同或基本相同。结果,即使鞘从椭圆变形为不规则的轮廓,周长在帧之间也应该恒定或基本恒定。
[0159]在一个实施例中,目前基于最佳匹配椭圆来估计
当前第4页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1