多堆叠光学数据存储介质和这种介质的使用的制作方法

文档序号:6750300阅读:188来源:国知局
专利名称:多堆叠光学数据存储介质和这种介质的使用的制作方法
技术领域
本发明涉及用于通过聚焦激光束可重写地进行记录的多堆叠光学数据存储介质,所述介质具有一个基片,在该基片的一侧上淀积有第一记录堆叠,包括相变型记录层,所述第一记录堆叠距离聚焦激光束最远,至少一个另外记录堆叠,包括相变型记录层,在记录堆叠之间的透明衬垫层,所述透明衬垫层具有大于聚焦激光束的聚焦深度的厚度。
本发明还涉及为高数据率记录应用使用这种多堆叠光学数据存储介质。
在开始段中所述类型的光学数据存储介质的实施例通过申请人提交的美国专利US6,190,750而公知。
根据相变原理的光学数据存储介质是具有吸引力的,因为它利用跟只读光学数据存储系统容易兼容性组合了直接重写(DOW)和高存储密度的可能性。在该上下文中,数据存储包括数字视频、数字音频和软件数据存储。相变光学记录涉及使用聚焦的、功率相对高的激光束来在晶体记录层中形成亚微米大小的非晶记录标记。在记录信息期间,该介质根据要被记录的信息相对于调制的聚焦激光束移动。当高功率的激光束融化晶相记录层时,形成标记。当激光束被关闭和/或接着相对于记录层移动时,在记录层中淬火熔融的标记,在记录层的暴露区域中留下非晶信息标记,该记录层在未暴露的区域中保持晶相。已写的非晶标记的擦除利用通过以较低功率电平的相同激光加热进行再结晶来实现,而不用融化记录层。非晶标记表示数据位,能够通过功率相对低的聚焦激光束例如经由基片读取该数据位。非晶标记相对于晶相记录层的反射差导致调制的激光束,该调制的激光束随后由检测器根据记录的信息转换成调制的光电流。
在相变光学记录中最重要的需求之一就是高数据率,这意味着可以按至少30M位/s的用户数据率在介质内写入和重写数据。这样高的数据率要求记录层在DOW期间具有高结晶速度,即短的结晶时间。为了确保先前记录的非晶标记在DOW期间能够被再结晶,该记录层必须具有适当的结晶速度,以便使介质相对于激光束的速度匹配。如果结晶速度不足够高,则先前记录的、表示旧数据的非晶标记在DOW期间不能完全被擦除,就意味着被再结晶了。这导致高噪音级。在高密度记录和高数据率光学记录介质中特别要求高结晶速度,例如在圆盘形的CD-RW高速、DVD-RW、DVD+RW、DVD-RAM、DVR-红和蓝中,它们分别是已知的光盘(Compact Disk)和新一代的高密度数字通用或视频盘+RW和-RAM,和数字视频记录光学存储盘的缩略语,其中RW和RAM指这种盘的可重写性,其中红和蓝是指使用的激光波长。对于这些盘,完全的擦除时间(CET)不得不低于30ns。CET被定义为在晶相环境中用于对已写的非晶标记完全结晶化的擦除脉冲的最小持续时间。使用静电测试器测量CET。对于具有每120mm盘4.7GB的记录密度的DVD+RW,需要26M位/s的用户数据位速率,对于DVR-蓝,所述用户数据位速率是35M位/s。对于高速度版本的DVD+RW和DVR-蓝,需要50M位/s和更高的数据速率。音频/视频(AV)应用的数据速率由AV信息流确定,但是对于计算机数据应用,在数据速率应用方面没有限制,即越大越好。这些数据位速率的每一个被转换成最大CET,其受几个参数的影响,例如,记录堆叠的热设计和使用的记录层材料。
另一个重要的需求是增加光学记录介质的存储容量,例如单面盘的DVD-可重写和DVR(数字视频记录器)。这可以通过减小激光波长λ和/或增加记录透镜的数值孔径(NA)来达到,因为激光点尺寸跟(λ/NA)2成比例。因为激光点尺寸越小,记录的标记就越小。因此,因为每盘的单位面积容乃更多的标记,所以盘存储容量就增加。一个可选项是多个记录堆叠的应用,这些记录堆叠被利用相同激光束光学从光盘的相同面访问。当在该光盘的相同面上使用多于两个的记录堆叠时,其就被称为多堆叠记录。当多堆叠包括两个记录堆叠时,这一特征也被称为双或两重堆叠记录。
对于双或两重堆叠记录,激光束首先穿过的第二记录堆叠必须是充足透射的、以便确保第一记录堆叠的适当的读/写特性。美国专利6,190,75 0的所述已知的介质具有可重写的相变记录的|IP2IM2I+|S|IP1IM1|结构,该结构具有两个金属反射层M1和M2,这两个反射层使用高光学反射是相对厚的,和使用相对高光学透射是相对薄的。I表示电介质层,I+表示另一个电介质层。P1和P2表示相变记录层,S表示透明衬垫层。在这一结构中,激光束首先穿过含P2的堆叠。金属层不但用作反射层,而且用作散热以便确保在写期间用于淬火非晶相的快速冷却。P1层靠近相对厚的金属镜面层M1,其使得P1层在记录期间基本冷却,同时P2层靠近相对薄的金属层M2,该金属层M2具有有限的散热特性。记录层的冷却行为很大程度上决定了在记录期间的非晶标记的正确形成。需要充足的散热活动以便在记录期间确保合适的非晶标记信息。
在已知介质中,金属层M2不可避免地阻止了大部分的激光,这使得减少了在P1层上的记录功率。结合层M2使用另一个电介质层I+,以便增加M2层的透射。要求金属层M2具有充足的散热活动。该另一个电介质层独自的导热性仍然显示太低,因此其快速降低记录层中的温度的能力不够。因为部分阻挡激光,对P1记录层需要基本上更高的激光写功率。这意味着需要相对大量的激光功率以便在光学数据存储介质中成功写或重写数据,在以需要相对于激光束更大的介质速度的高数据速率的情况下尤其如此。以更大的写和重写速度,需要更多的激光功率。在大多数情况中,使用半导体激光器来产生激光束。特别是以更短的激光波长,例如小于700nm,这些激光中的最大激光功率是有限的并且对高记录功率造成障碍。而且,优选避免大的激光功率,因为跟第一记录堆叠相邻的另外记录堆叠可不希望被该聚焦到第一记录堆叠的记录层上的激光束加热。当不使用金属层M2时,层P2的冷却行为基本不同于层P1的冷却行为。因为这种不同,所以在层P2中以给定数据速率写的方式基本不同于层P1。意味着通过写方式,如脉冲或写策略。对于在一层中利用相对慢的冷却行为以足够高的数据速率进行成功的写甚至是不可能的。换句话说,因为P层很慢的冷却速度允许大量的再结晶,所以很大程度上抵消了非晶标记的形成。
本发明的的一个目的就是提供在开篇中所述类型的多堆叠光学数据存储介质,其中该记录堆叠或另外记录堆叠包括基本上激光透明的层,该层具有充足的散热活动,以便确保在所述记录堆叠的记录层上形成合适的非晶标记。
实现该目的在于,至少一个散热层存在于记录堆叠的至少一个中,该散热层包括由公式HfNx表示的化合物,其中公式x是每Hf原于对应的原于N的数目,且1.1≤x≤1.6。
本发明是基于这样一个构思,IPIT堆叠的透射几乎唯一由P层的透射决定。T表示散热层,I和P分别表示电介质层和相变记录层。没有不可避免阻挡部分激光的金属层。由于存在散热层,在记录堆叠中就存在充足的散热活动。已经发现,当具有1.1≤x≤1.6的HfNx用作散热材料时,得到具有令人惊奇的高导热性的透明层。当值x小于1.1时,该材料对激光的吸收就变得太高,导致HfNx层的太低的透射。当值x大于1.6时,层的应力量变得不可接受的高并且在散热层中分裂(crack),以及可能发生基片的翘曲。作为本发明的结果,用于在相邻记录堆叠中写的激光功率被大幅度减小,例如高达大约50%的量。
在由申请人提交的、没有预先公开的欧洲专利申请nr.01201089.7(PHNL010374)中,讲述氧化铟锡(ITO)作为透明散热材料,其跟例如由(ZnS)80(SiO2)20制作的标准的透明电介质层相比具有相对高的导热性。已经发现,根据本发明的化合物HfNx跟ITO相比具有极大改善的导热性。
在根据本发明的光学数据存储介质的一个实施例中,散热层存在于至少一个另外记录堆叠中,位于最靠近第一记录堆叠的、另外记录堆叠的记录层的一侧,邻近透明衬垫层。
下面的结构可以示意性表示该实施例|IPnITn|Sn|IPn-1ITn-1|Sn-1|......|IP1I|。激光首先穿过第n个堆叠。IP1I堆叠是第一记录堆叠,Sn是透明衬垫层,IPnITn是第n个记录堆叠,其中I、P和T具有上面提到的意义。应该提及,多堆叠设计顺序的许多标记法是可行的。有时,多堆叠设计由Ln表示,其中n表示0或正整数。激光穿过的第一堆叠称为L0,而每一个更深的堆叠由L1......Ln表示。应该从激光束的入射方向来理解更深层。在该文件中,使用另一种标记法,其中最深的堆叠具有下标数字1。
在另一个实施例中,包括由公式HfNy表示的化合物的另外散热层存在于包括有所述散热层的另外记录堆叠中,其中y是每Hf原子对应的原子N的数目,且1.1≤y≤1.6,另外散热层存在于跟所述散热层的这一侧相对的、另外记录堆叠的记录层的一侧。应该注意,在另外散热层的化合物HfNx中的x值可以不同于在该散热层的化合物HfNx中的x值。
下面的结构可以示意性表示该实施例|TnIPnITn|Sn|Tn-1IPn-1ITn-1|Sn-1|......|IP1I|。在这种方式中,可以在记录层的两侧上利用散热层来形成对称堆叠。其优势在于,冷却行为更加对称分布,这导致更优化地写和擦除记录层中的非晶标记。特别是,化合物HfNx是有利的,其中1.2≤x≤1.3。在该范围内,散热层的材料的低吸收-即折射率的虚部小于0.2,跟淀积后的散热层的低机械应力量结合。已经发现,根据本发明的散热层的应力量在高于1.3的更高的x和y值处具有增加的趋势。当x和y值大于1.6时,层的应力量会变为不可接受的高,会发生散热层中分裂和基片的翘曲。
在有利的实施例中,另外散热层存在于第一记录堆叠中,位于最靠近另外记录堆叠的、第一记录堆叠的记录层的一侧,该散热层存在于第一记录堆叠中,位于距离该另外记录堆叠最远的、第一记录堆叠的记录层的一侧。当P层自身具有足够的反射率,可以应用第一记录堆叠而不用通常使用的金属层。第一记录堆叠的冷却行为基本等于另外记录堆叠的冷却行为,其中散热层可以存在于相同的配置中。这样,第一和另外记录堆叠的写和擦除特性基本相等,这是有利的。不需要对第一记录堆叠使用不同的记录策略。
在另一实施例中,P1层自身可以不具有充足的反射,金属反射层存在于第一记录堆叠中,位于距离另外记录堆叠最远的、第一记录堆叠的记录层的一侧,以便增强光学数据存储介质的总反射。因为第一记录堆叠是激光到达的最后堆叠,所以金属反射层可以是非透明的。而且,金属层将充当第一记录堆叠的优良的散热片。对于第一记录堆叠的金属反射层,可以使用例如Al、Ti、Au、Ni、Cu、Ag、Rh、Pt、Pd、Ni、Co、Mn和Cr之类的金属以及这些金属的合金。合适的合金的例子是AlTi、AlCr和AlTa。Ag是优选的,因为其有高导热性。该金属反射层的厚度不是至关重要的。但是为获得最大反射,透射优选为0。出于实际原因,厚度通常不高于大约100nm。
优选的,散热层具有范围在5-200nm的一个厚度值。太薄的层不能展示出充足的散热活动,而太厚的层可以破坏记录堆叠的光学透射并且产生分裂或者引起基片的翘曲。而且,对于淀积而言厚层更昂贵。
在有利的实施例中,记录层跟至少一个附加层接触,该附加层包括从由Al2O3、SiC、Si3N4、MgO、ZnO和AlN构成的组中选择的化合物,Al2O3、SiC、Si3N4、MgO、ZnO和AlN包括它们的非化学计量成分,所述附加层具有最大为10nm的厚度。在DOW期间这些层提高了非晶标记的结晶速度,直接导致更高的可能的数据速率。在这些层和记录层之间的界面充当非晶标记的结晶化的晶核形成源。附加层具有相对小的厚度。因此,附加层对在记录层中将热传送到散热层的能力仅仅具有相对小的影响。换句话说,散热活动几乎不被附加层改变。
记录层优选包括元素Ge和Te。该记录层是相变型的。相变材料显示了晶相-非晶相的转变。另外可用的化合物有In-Sb-Te、Te-Se-Sb、Ag-In-Sb-Te、Ge-Sb-Te、Ge-In-Sb-Te或Ge-Te。特别有用的是在由申请人提交的国际专利申请WO01/13370和WO97/50084中描述的化合物。在WO97/50084中的化合物具有在下列公式中用原子百分比定义的的成分Ge50xSb40-40xTe60-10x,其中0.166≤x≤0.444。这些成分在三角形的Ge-Sb-Te组成图中位于连接化合物GeTe和Sb2Te3的线上,并且包括化学计量化合物Ge2Sb2Te5(x=0.444)、GeSb2Te4(x=0.286)和GeSb4Te7(x=0.166)。这些化合物显示了短的结晶(擦除)时间。
在WO01/13370中的化合物具有在下列公式中用原子百分比定义的成分QaInbSbcTed(原子百分比),其中Q是从Ag和Ge中选择的,2<a<80<b<655<c<8015<d<30和a+b+c+d=100。
优选的,另外记录堆叠的记录层具有范围在3和25nm之间的厚度。较厚的层会导致太小的透射。第一记录堆叠的记录层可以较厚,例如在3-50nm之间。
在所有记录堆叠中,在远离基片的相变记录层的一侧的电介质层保护该记录层免受通常的有机衬垫层的影响并且优化光学对比度。根据这一光学对比度,这一层的厚度优选限制在(70+λ/2n)nm,其中λ是激光束的波长,n是电介质层的折射率。
在第一记录堆叠中,在记录层和优选的金属反射层之间的电介质层在10-50nm之间,优选在20-40nm之间。当这一层太薄时,在记录层和金属反射层之间的热绝缘受到不利影响。因此,提高了记录层的冷却,这导致很差的结晶过程并可能导致很差的可循环能力。通过增加电介质层的厚度会降低冷却速率。相对厚的电介质层是优选的,以提高第一记录堆叠的记录层的敏感性。
电介质层I优选由ZnS和SiO2的混合物构成,例如(ZnS)80(SiO2)20。这些电介质层也可以由SiO2、Ta2O5、TiO2、ZnS、包括它们的非化学计量成分制成。
在第一和另外记录堆叠之间的透明衬垫层具有大于激光束的焦距的深度的厚度,例如10μm。该厚度确保第一和第二记录堆叠在光学上被去耦合,即在第一记录堆叠的记录层上聚焦的激光束不从/向另外记录堆叠读/写信息,反之亦然。这样,相对于单层的数据存储介质,提高了存储容量。衬垫层的材料是例如UV固化的丙烯酸酯粘合剂,其中可以通过复制过程提供伺服轨道。
数据存储介质的基片对于激光波长可以是透明的,并且由例如聚碳酸脂、聚甲基丙烯酸甲酯(PMMA)、非晶聚烯烃或者玻璃构成。仅在激光束通过基片的进入面进入记录堆叠时要求基片的透明度。在典型的例子中,基片是圆盘形的并且具有120mm的直径,厚度是0.6或者1.2mm。当激光束通过跟基片的上述侧相对的侧进入该堆叠时,该基片可以是不透明的。
该圆盘形的基片在记录堆叠的该侧上的表面优选具有伺服轨道,其可以被光学扫描。该伺服轨道通常按螺旋形的槽构成并且通过在注入模制或压制期间的塑模方法形成在基片中。这些槽可选择地在复制过程中形成在衬垫层的合成树脂中,例如UV光固化的丙烯酸酯。
可选的,通过例如0.1mmUV光固化的聚(甲基)丙烯酸脂(DVR)或者0.6mm聚碳酸脂盘(DVD)的保护层将堆叠的最外层与环境隔开。当激光通过保护层进入记录堆叠时,该保护层必须具有良好的光学质量,即基本没有光学象差并且厚度基本均匀。在此情况下,很明显,保护层对于激光是透明的。
可以通过使用短波长的激光,例如利用670nm(红)至405nm(蓝)或者更短的波长,实现在记录堆叠的记录层中记录和擦除数据。
通过真空淀积来提供金属反射层和电介质层。
利用在溅射室中的可调节N2流量,通过在Ar/N2放电中从Hf靶中反应溅射来提供根据本发明的散热层。不排除提供散热层的其它的适合方法。
通过真空淀积将相变记录层施加到基片上。已知的真空淀积工艺是蒸发(电子束蒸发,从坩锅中耐加热的蒸发)、溅射、低压化学汽相淀积(CVD)、离子电镀、离子来辅助蒸发、等离子体增强CVD。通常的热度CVD工艺不可用,因为反应温度太高。


结合附图通过实例性实施例来更详细地描述本发明,其中图1-3均示出根据本发明的多堆叠光学数据存储介质的一个实施例的示意性剖面图;图4示出在HfNx层的溅射过程中使用的作为N2流QN2(按sccm)的函数的公式HfNx中的x值的曲线图;图5示出了在两个不同的波长λ=4.5nm和λ=670nm时,淀积的HfNx层的复合折射率n~=n-ik]]>的复数的实部n和虚部k的曲线图,HfNx层作为在HfNx层的溅射过程中使用的N2流QN2(按sccm)的函数。
图6示出了对于确定在Ge1Sb2Te4记录层和铝层之间的散热层的导热能力的实验性的堆叠设计。
图7示出了作为不同类型的散热层的厚度ths(nm)的函数的、图6的记录层的融化阈值功率Pt(按mW)的曲线图。
图1中,示出了用于通过聚焦的激光束30可重写地进行记录的多堆叠光学数据存储介质20的实施侧。该介质具有由聚碳酸脂(PC)构成的基片1,在该基片的一侧上淀积有第一记录堆叠2,包括相变型记录层6。第一记录堆叠2距离聚焦的激光束30最远。
第二记录堆叠3,包括相变型记录层12。
在记录堆叠2和3之间的透明衬垫层9,该透明层衬垫层9具有30μm的厚度,该厚度大于聚焦的激光束30的聚焦深度。
第一记录堆叠的记录层6包括具有原子成分Ge5.0In5.5Sb65.0Te24.5的化合物且具有10nm的厚度。金属反射层4存在于第一记录堆叠2内,位于距离另外记录堆叠3最远的、第一记录堆叠的记录层的一侧。金属反射层4包括金属Ag并具有100nm的厚度。25nm厚的电介质层5存在于记录层6和金属反射层4之间。电介质层5由化合物(ZnS)80(SiO2)20构成。由HfN1.2构成的具有130nm厚的散热层8存在于第一记录堆叠中,位于最靠近第二记录堆叠3的一侧。
第二记录堆叠3的记录层12包括具有原子成分Ge5.0In5.5Sb65.0Te24.5的化合物且其厚度是6nm。由HfN1.2构成的具有80nm厚的散热层10存在于第二记录堆叠3中,位于最靠近第一记录堆叠2的一侧,且相邻于透明衬垫层9。由HfN1.2构成的具有100nm厚的另外散热层14存在于第二记录堆叠3中,位于与散热层10的一侧相对的、第二记录堆叠3的记录层12的一侧。两个电介质层11和13都具有20nm厚并且由化合物(ZnS)80(SiO2)20构成,跟第二记录堆叠3的记录层12接触。
由例如激光透明的UV固化的树脂构成的、具有100μm厚的保护层15跟另外散热层14相邻。旋涂且随后的UV固化可以提供层15。也可以通过利用压敏粘合剂(PSA)层涂敷例如一层聚碳酸脂(PC)来提供保护层15。
第一记录堆叠2在670nm波长且当记录层6处于非晶相时的光学反射被定义为Ra,其值是1.4%。记录堆叠2在670nm波长且当记录层6处于晶相时的光学反射被定义为Rc,其值是28.7%。该光学对比度是95.2%。光学对比度被定义为|Rc-Ra|/Rmax,其中公式Rmax是Rc或Ra的最大值。对于第二记录堆叠3,这些值是Ra=3.1%,Rc=14.4%,光学对比度是78.6%。第二记录堆叠3在670nm的波长的透射率在记录层12处于非晶相时为52.2%(Ta),在记录层12处于晶体相时为39.0%(Tc)。
在图2中,示出了用于通过聚焦激光束30可重写地进行记录的多堆叠光学数据存储介质的另一个实施例。这里没有描述的图2的参考标记跟图1中的相同,并且已经被描述。另外电介质层7具有130nm厚,存在于第一记录堆叠2中,位于最靠近第二记录堆叠3的一侧。电介质层7由化合物(ZnS)80(SiO2)20构成。由HfN1.2构成的散热层10具有100nm厚,存在于第二记录堆叠3中,位于最靠近第一记录堆叠2的一侧,且相邻于透明衬垫层9。第一记录堆叠2在670nm波长且当记录层6处于非晶相时的光学反射被定义为Ra,其值是2.0%。记录堆叠2在670nm波长且当记录层6处于晶相时的光学反射被定义为Rc,其值是30.8%。该光学对比度是93.5%。光学对比度的定义同上述。对于第二记录堆叠3,这些值是Ra=4.8%,Rc=16.9%,光学对比度是72.0%。第二记录堆叠3在670nm的波长的透射率在第二在记录层12处于非晶相时为51.0%(Ta),在记录层12处于晶相时为37.5%(Tc)。
图3中,示出了用于通过聚焦激光束30可重写地进行记录的多堆叠光学数据存储介质20的另一个实施例。记录层6和12都跟由SiC构成的四个附加层5’、7’、11’和13’接触。这些附加SiC层5’、7’、11’和13’都具有5nm的厚度。图3中的其它层同图2中的实施例中的相对应的层相同,除了电介质层5,7,11和13的各自的厚度减小了5nm以外。这产生了具有同图2所述相同的光学反射率和透射率的多堆叠光学数据存储介质20。跟记录层6和12接触的SiC层5’、7’、11’和13’提高了记录层6和12的结晶速度。
在图4中,公式HfNx中的x被图绘为在Ar/N2放电中从Hf靶进行的反应溅射期间的N2流量QN2(sccm)的函数。直线41通过数据点拟合。
图5中,示出了吸收率k,对于λ= 670nm的波长,对于大于3.0sccm的N2流量值Q,淀积的HfNx层的折射率n~=n-ik]]>的虚部快速下降值0.1以下。这用曲线51表示。对于λ=405nm,吸收率略大并且保持在k=0.2,这用曲线52表示。对于完整形,n值是折射率n~=n-ik]]>的实部,在这两个不同的波长λ=670nm和λ=405nm处分别用曲线53和54表示。在选择的波长处根据测量的反射率和透射率计算n和k的值。
曲线55表示HfNx层的电导率ρ(Ω.m),只要HfNx变为光学透明,即k<0.2,其就大量升高。然而,令人惊奇的是,导热性似乎没有提高很多。因此,根据本发明的材料HfNx是极其适合供在多堆叠相变光学记录介质20中使用的透明散热片。
图6中,示出了实验性堆叠60,包括由玻璃构成的基片61、100nm的Al层62、其厚度可变的散热层63、由(ZnS)80(SiO2)20构成的10nm电介质层64、由Ge1Sb2Te4构成的40nm的相变记录层65和由(ZnS)80(SiO2)20构成的90nm的电介质层66。通过测量作为激光功率的函数的、堆叠(P层是晶体)的反射率来确定记录层65的融化阈值功率Pt(mW)。反射率(由于非晶化)开始下降所在的功率被定义为Pt。Pt值受相邻层62、63、64和66的冷却功率或散热能力的影响。Al层62和记录层65之间的层的热电阻决定了由记录层65在何种程度上感知Al层62的存在。因此,通过确定记录层65的Pt,可以间接地得到层63和64的热电阻的测量值。因为层64的厚度和成分保持不变,所以可以测量由不同材料构成的散热层的Pt值并且将这些值转换为热电阻。
图7中,曲线7是作为由(ZnS)80(SiO2)20构成的散热层63的厚度ths的函数的、记录层65的Pt。曲线72中,利用由氧化铟锡(ITO)构成的散热层63示出了相同的依赖性。曲线73和74分别示出了使用分别由HfN1.1和HfN1.2构成的散热层63的结果。最后,曲线75示出了由Al构成的散热层63的结果。正如所看到的,当ITO的值从纯Al的值进一步下降时,材料HfN1.1和HfN1.2示出了几乎接近纯Al的值的Pt值。这意味着根据本发明,这些材料HfN1.1和HfN1.2具有接近于Al的导热性的导热性,因此结合光学透明性的优势,可以得到优秀的冷却行为或散热活动。
应该注意,上述实施例和实验性数据只是说明性而不是限制于本发明,本领域的技术人员能够在不脱离附属权利要求书的范围的情况下设计许多选择性的实施例。在这些权利要求中,在圆括号中的任何标号将不构成对权利要求的限制。单词“包括”不排除在权利要求中所列元件或步骤之外的元件或步骤的存在。元件前面的单词“一个”不排除存在多个这样的元件。事实上,在相互不同的从属权利要求中所述某个测量不表示不能使用这些测量的组合。
根据本发明,提供了用于通过聚焦激光束可重写地进行记录的多堆叠光学数据存储介质。该介质具有包括相变型记录层的至少两个记录堆叠。结合在所述堆叠中的记录层的良好冷却行为,除了最后遇到激光束的那个记录堆叠以外的记录堆叠对于激光束具有高的透明性。可以实现,在记录堆叠的至少一个中存在由HfNx构成且1.1≤x≤1.6的至少一个散热层。
权利要求
1.一种用于通过聚焦激光束(30)可重写地进行记录的多堆叠光学数据存储介质(20),所述介质(20)具有基片(1),在该基片的一侧上淀积有第一记录堆叠(2),包括相变型记录层(6),所述第一记录堆叠(2)距离聚焦的激光束(30)最远,至少一个另外记录堆叠(3),包括相变型记录层(12),在记录堆叠(2,3)之间的透明衬垫层(9),所述透明衬垫层(9)具有大于聚焦激光束(30)的聚焦深度的厚度,其特征在于,至少一个散热层(8,10,14)存在于记录堆叠(3)的至少一个中,该散热层(8,10,14)包括由公式HfNx表示的化合物,其中x是每个Hf原子对应的原子N的数目,且1.1≤x≤1.6。
2.根据权利要求1所述的光学数据存储介质(20),其中,散热层(10)存在于至少一个另外记录堆叠中,位于最靠近第一记录堆叠(2)的、另外记录堆叠(3)的记录层的一侧,且相邻于透明衬垫层(9)。
3.根据权利要求1或2的任一项所述的光学数据存储介质(20),其中,另外散热层(14)存在于包含散热层(10)的另外记录堆叠(3)中,该另外散热层(14)包括由公式HfNx表示的化合物,其中x是每Hf原子对应的原子N的数目,且1.1≤x≤1.6,该另外散热层(14)存在于跟该散热层(10)的一侧相对的、另外记录堆叠(3)的记录层(12)的一侧。
4.根据权利要求1-3的任一项所述的光学数据存储介质(20)的,其中,1.2≤x≤1.3。
5.根据权利要求3或4的任一项所述的光学数据存储介质(20),其中,另外散热层(8)存在于第一记录堆叠(2)中,位于最靠近另外记录堆叠(3)的、第一记录堆叠(2)的记录层(6)的一侧,并且所述散热层存在于第一记录堆叠(2)中,位于距离另外记录堆叠(3)最远的、第一记录堆叠(2)的记录层(6)的一侧。
6.根据权利要求1-5的任一项所述的光学数据存储介质(20),其中,金属反射层(4)存在于第一记录堆叠(2)中,位于距离另外记录堆叠(3)最远的、第一记录堆叠(2)的记录层(6)的一侧。
7.根据权利要求1-6的任一项所述的光学数据存储介质(20),其中,散热层(10)和另外散热层(8,14)均具有范围在5-200nm的厚度值。
8.根据权利要求1-7的任一项所述的光学数据存储介质(20),其中,记录层(6,9)跟至少一个附加层(5’,7’,11’,13’)接触,该附加层包括从由Al2O3、SiC、Si3N4、MgO、ZnO和AlN构成的组中选择的化合物,Al2O3、SiC、Si3N4、MgO、ZnO和AlN包括它们的非化学计量成分,所述附加层(5’,7’,11’,13’)具有最大为10nm的厚度。
9.根据权利要求8所述的光学数据存储介质(20),其中,记录层(6,12)包括元素Ge和Te。
10.光学数据存储介质(20)的使用,所述光学数据存储介质符合权利要求1-9的任一项并用于多堆叠且高数据速率记录。
全文摘要
描述了一种用于通过聚焦激光束(30)可重写地进行记录的多堆叠光学数据存储介质(20),所述介质(20)具有基片(1),在该基片的一侧上淀积有第一记录堆叠(2),包括相变型记录层(6);至少一个另外记录堆叠(3),包括相变型记录层(12);相邻于每一个另外记录堆叠(3)的透明衬垫层(9);该另外记录堆叠(3)具有充足的透射性,以便确保在第一记录堆叠(2)中读和记录的合适敏感性。为了该目的,由HfN
文档编号G11B7/258GK1589470SQ02823228
公开日2005年3月2日 申请日期2002年10月24日 优先权日2001年11月23日
发明者J·C·N·里佩斯, 周国富 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1