光记录介质的制作方法

文档序号:6754313阅读:184来源:国知局
专利名称:光记录介质的制作方法
技术领域
本发明涉及一种通过照射激光来进行信息的记录、消除、播放的光记录介质。本发明尤其涉及一种在光盘、光卡等光记录介质中能在高温高湿以及光照射等苛刻保存条件下也能维持优异的记录性能的光记录介质。
背景技术
光记录介质可以列举近年来的CD-R以及CD-RW,或者更高密度化的DVD-RW、DVD-RAM、DVD-R、蓝光盘等。此处CD表示压缩盘,DVD表示数字化多用途盘。这种光记录介质是通过光使记录膜升温而形成记录标记,该记录标记为播放介质中的凹痕,利用反射率变化作为信息。光记录介质具有与播放专用介质的互换性高的特点。
光记录介质的构造是在基板上至少具有记录层和反射层。公知的是,在该记录层的材料上,以偶氮类、花青类、钛花青类等有机色素,及以SbTe作为主要成分的相变型无机材料、把无机材料做成2层的结构。还有,作为材料,反射层多使用以反射率高的Ag或Al或Au作为主要成分的材料,由于高的导热率以及在大范围的波长段的反射率高,因此最近多使用Ag或Ag合金。但是Ag或Ag合金与S和O2的反应性高,光活性高,粒状结晶形成能高,因此存在在高温高湿以及光照射条件下的保存稳定性明显差的缺点。
特许1709731公报(专利文献1)中提出,在反射层上涂布形成有机物类的保护层,使得反射层与空气等气氛隔断,由此抑制反射层在高温高湿条件下的腐蚀。通过本发明人研究的结果,虽然提高了高温高湿条件下的保存稳定性,但是在反射层中采用Ag或Ag合金的情况下,发现从记录面的相反侧照射在反射层面的光(荧光灯以及太阳光等)会使记录特性劣化,因此难以具有充分的保存稳定性。
为了提高高温高湿条件下的保存稳定性,特开平7-201075号公报(专利文献2)提出了在Ag或Ag合金的反射层和有机物保护层之间使用防腐蚀层。在该公报中,披露了出于抑制反射层的腐蚀的目的、通过在Ag或Ag合金的反射层上层叠耐腐蚀性高的防腐蚀层而成的介质结构。但是本发明人研究后认为,专利文献2中实施例记载的防腐蚀层在使用Al、Cu或者它们的合金的情况下会在高温高湿条件下在Ag或者Ag合金反射层的界面发生剥离,而后通过光照射而进行记录的特性变差,不能保证在高温高湿条件以及光照射条件下两种情况的保存稳定性。
专利文献1 特公平3-75939号公报(特许1709731号)专利文献2 特开平7-201075号公报发明内容如前所述,反射层优选使用Ag或者Ag合金,不过,在这种材料的反射层与有机物保护层层叠的条件下,存在在反射层中照射光后保存稳定性明显变差的缺点。即使还有防腐蚀层,由防腐蚀层的材料也难以兼顾在高温高湿条件下以及光照射条件下的保存稳定性。此处本发明是为了解决上述问题而作出的,其目的在于提供一种在高温高湿以及光照射等苛刻的保存条件下也能维持优异的记录特性的光记录介质。
本发明鉴于上述问题,提供一种具有如下(a)~(d)的构成的光记录介质。
(a)一种利用记录光来记录信息的光记录介质,其特征在于,具有信号基板(A)以及在该信号基板上层叠的支持体(B,C),所述信号基板,从所述信号基板的底面侧向所述支持体侧,由具有所述记录光入射的第一入射面(A1)的第一基板(1)以及在所述第一基板上顺次层叠的至少以下部分构成记录层(3);由含有Ag的物质构成的反射层(5);以及,由有机物类物质形成的保护层(6),从作为所述支持体的表面的第二入射面(B1)照射波长为350nm的特定波长的光时,从所述第二入射面至所述反射层的表面的范围所构成的层对于所述特定波长的光的透射率T为0%≤T≤25%。
(b)如(a)记载的光记录介质,其特征在于,所述支持体包括具有所述第二入射面的空(dummy)基板(B)以及粘结层(C)。
(c)如(b)记载的光记录介质,其特征在于,所述空基板具有第二基板(8)以及透过率控制部件(9),通过使得所述透过率控制部件的透过率为0~25%来设定所述透过率T。
(d)如(b)记载的光记录介质,其特征在于,所述空基板具有第二基板(8),通过使得所述第二基板作为透过率为0~25%的透过率控制部件(8,9),来设定所述透过率T。
(e)一种利用记录光来记录信息的光记录介质,其特征在于,具有信号基板(A)以及在该信号基板上层叠的支持体(B,C),所述信号基板,从所述信号基板的底面侧向所述支持体侧,由具有所述记录光入射的第一入射面(A1)的第一基板(1)以及在所述第一基板上顺次层叠的至少以下部分构成记录层(3);由含有Ag的物质构成的反射层(5);以及,由有机物类物质形成的保护层(6),所述非活性层抑制所述反射层与所述保护层的化学反应。
(f)如(e)记载的光记录介质,其特征在于,所述支持体具有空基板(B)以及粘结层(C)。
(g)如(e)或(f)记载的光记录介质,其特征在于,所述反射层(5)和所述非活性层(7)之间的粘接强度大于等于1.6MPa。
按照本发明的光记录介质,在高温高湿以及光(荧光灯、太阳光)等苛刻的环境条件下,即使在光记录介质的材质易于变质的恶劣条件下,也能维持优异的记录播放性能。


图1是表示本发明光记录介质的各实施方式的概略构成的图;图2是表示本发明的信号基板A的第一构成例的图;图3是表示本发明的空基板B的各构成例的图;图4是表示空基板B的波长350nm照射光下的透过率T与记录播放误差率的关系的图;图5是表示遮光层9(A1)的层厚与透过率T之间的关系的图;图6是表示本发明的信号基板A的第二构成例的图;图7是表示高粘接活性层7与反射层5的粘接强度与记录播放误差率之间的关系的图;图8是拉伸试验的说明图。
具体实施例方式
以下参考附图描述本发明的光记录介质的实施方案。另外,在以下的说明中,作为本发明的光记录介质的一个实施方案,采用相变型光盘进行说明,无须说明,除此以外的光盘、光卡等具有同样构成的光记录介质也可以适用本发明。
(光记录介质的构成)图1是光记录介质的各实施方式的概略构成的示意图。光记录介质D可以是DVD-RW等相变型光盘、光卡等可以反复重写信息的介质。还有,光记录介质D如图1所示,是将信号基板A和空基板B利用粘结层C粘合而构成的。此处还由空基板B和粘结层C构成支持体。记录播放用的激光从信号基板的入射面A1(第一入射面)入射。保存试验光从空基板B的入射面B1(第二入射面)入射。
<光记录介质D的第一实施方式>
图2是作为信号基板A的第一构成例的信号基板Aa的示意图。信号基板Aa是在基板1上顺次层叠第一保护层2、记录层3、第二保护层4、反射层5、第三保护层6而构成的。采用信号基板Aa构成光记录介质D作为第一实施方式。另外,可以适宜地设置阻挡层10。如后所述。
作为基板1的材料,可以使用透明的各种合成树脂、透明玻璃等。基板1优选的是具有光透过率大致在100%的光透过特性。为了避免尘埃的附着或者基板1的划伤等的影响,使用透明基板,使用聚光的激光从基板1一侧在记录层3上记录信息。作为这种基板1的材料,可以列举玻璃、聚碳酸酯、聚甲基丙烯酸甲酯、聚烯烃树脂、环氧树脂、聚酰亚胺树脂等。由于光学双折射、吸湿性小,容易成形,因此特别优选聚碳酸酯树脂。
基板1的厚度没有特别的限制,出于和DVD互换性的考虑,优选0.01mm~0.6mm,其中更优选0.6mm(DVD的整个厚度为1.2mm)。该基板1的厚度在不足0.01mm的情况下,即使从基板1的入射面A1一侧采用会聚的激光进行记录的时候,也容易受到灰尘的影响。还有,对光记录介质的整体厚度没有限制,从实用角度来说是在0.01mm~5mm的范围内。在5mm以上时,难以增大物镜的数值孔径,照射激光的光斑尺寸大,因此难以提高记录密度。
基板1可以是柔性的,也可以是刚性的。柔性的基板1在带状、片状、卡状光记录介质中使用。刚性基板1在卡状或者盘状光记录介质中使用。
第一保护层2和第二保护层4用于防止在记录时基板1和记录层3等因为热变形而损害记录特性等,具有对基板1和记录层3的防热保护的效果,以及通过光学干涉效果,改善播放时信号的对比度的效果。
希望第一保护层2以及第二保护层4分别对于记录播放用激光是透明的,折射率n在1.9≤n≤2.3的范围内。而且,第一保护层2和第二保护层4的材料根据热特性,优选使用SiO2、SiO、ZnO、TiO2、Ta2O5、Nb2O5、ZrO2、MgO等氧化物、ZnS、In2S3、TaS4等硫化物、SiC、TaC、WC、TiC等碳化物的单体以及它们的混合物。ZnS以及SiO2的混合膜,即使反复进行记录和消除,也难以引起记录灵敏度、C/N、消除率等的恶化,因此特别优选。
还有,第一保护层2和第二保护层4,可以采用同样的材料、不同组成,也可以采用不同的材料构成。
第一保护层2的厚度约在5nm~500nm之间。为了避免从基板1以及记录层3上剥离、产生裂纹等缺陷,第一保护层2的厚度优选在40nm~300nm。比40nm薄的时候,难以确保盘的光学性能,比300nm厚时,生产性变差。更优选在50nm~80nm的范围内。
第二保护层4的厚度,考虑C/N、消除率等记录特性以及稳定的多次书写的可能性,优选在5nm~40nm。比5nm薄时,记录膜的热确保是困难的,因此提高了最适合的记录功率,比40nm厚时,导致重写特性的恶化。更优选的是在10nm~20nm范围内。
记录层3是在Ag-In-Sb-Te合金以及Ge-In-Sb-Te合金或者Ge-In-Sb-Te合金中含有Ag或者Si、Al、Ti、Bi、Ga中的至少一种的合金层。记录层3的厚度优选10nm~25nm。层厚小于10nm时,结晶化速度低,高速记录特性差,层厚大于25nm时,记录时必须要使用大的激光功率。
作为反射层5的材料,从高导热率、大范围的波长段中的反射率高的角度而言,优选使用Ag或者Ag合金。作为Ag合金的示例,是在Ag中混合Cr、Au、Cu、Pd、Pt、Ni、Nd、In、Ca、Bi等中的至少一种元素而成的合金等。
反射层5的厚度,根据形成反射层5的金属或者合金的导热率大小而变化,优选在50nm~300nm。反射层5的厚度在50nm以上时,反射层5不会发生光学变化,不会影响反射率值,随着反射层5厚度的增加,对冷却速度的影响增大。另外,形成超过300nm的厚度需要花费制造时间。因此采用导热率高的材料,尽量将反射层5的厚度控制在该最佳范围内。
此处,第二保护层4中使用含有S化合物的混合物的时候,为了抑制与反射层5生成AgS化合物,优选使用不含有S的材料作为阻挡层10插入到第二保护层4和反射层5之间。
第三保护层6是为了提高耐擦伤性和耐腐蚀性而设置的。第三保护层6优选由各种有机物质构成,特别优选是放射线硬化型化合物以及其组合物,采用电子射线、紫外线等放射线进行硬化。第三保护层6的厚度通常在0.1μm~100μm。可以通过旋涂、凹印涂布、喷涂、浸涂等通常采用的方法来形成该层。
图3(A)~(D)是空基板B的各构成例的示意图。
空基板B在不用记录播放用激光照射的情况下不必是透明的,为了例如提高介质光照射时的保存特性,可以考虑在基板8上以有色膜或者金属膜形成遮光层9。特别优选波长λ=350nm处的透过率T为0%~25%。透过率大于25%时耐光性效果差。此处,透过率T是指构成从空基板B的入射面B1至反射层5的表面(空基板B侧的面)的范围的层的光透过率。即该透过率是从入射面B1至反射层5的表面的范围内所含有的所有物质(层)所决定的光透过率。
图3(A)~(D)表示采用用于控制透过率的透过率控制部件作为遮光层9的空基板B的各种构成例,此处认为作为优选的构成例的第一构成例Ba~第四构成例Bd。图3(A)是空基板B的第一构成例Ba,图3(B)是空基板B的第二构成例Bb,图3(C)是空基板B的第三构成例Bc,图3(D)是空基板B的第四构成例Bd。
在第一构成例Ba中,基板8设置在空基板Ba的入射面侧B1,遮光层9设置在空基板Ba的粘合面侧B2,在第二构成例Bb中,遮光层9设置在空基板Bb的入射面侧B1,基板8设置在空基板Bb的粘合面侧B2,在第三构成例Bc中,两个基板8之间插入遮光层9,在第四构成例Bd中,基板8中带有颜色而使得基板8整体作为遮光层。由各构成例Ba~Bd来控制空基板B的透过率。
图4中显示了空基板B对350nm的照射光(特定波长光)的透射率T(transmittancy)与3万勒克司(1x)白色光在600小时照射之后光记录介质中记录播放的误差率之间的关系。由图4可以知道,透射率T在30%以上时,误差率超过1×10-3。如果误差率超过1×10-3,误差的修正就会变得困难,因此空基板B的透射率T优选在0~25%,更优选在10%以下。
特定波长光的波长为350nm是由于第三保护层6是一般的紫外光硬化型有机物类保护层,因此紫外线区域即波长350nm附近光化学反应最剧烈。
上述的透射率T是从入射面B1至反射层5表面的光的透过率,因此可以通过空基板B单独的透过率来控制透过率T。例如,如空基板B与粘接层,在从空基板B至反射层5的表面之间存在的各材料(各层、各膜)的各光透过率的合计的光透过率优选在上述透射率T的0~25%范围内,更优选在10%以下。
作为基板8的材料,可以使用透明的各种合成树脂、玻璃等。作为基板8的材料的例子,可以列举玻璃、聚碳酸酯、聚甲基丙烯酸甲酯、聚烯烃数值、环氧树脂、聚酰亚胺树脂等。特别是,由于吸湿性小容易成形,优选聚碳酸酯树脂。
遮光层9的材料只要能遮挡从入射面B1的入射光即可。另外,考虑到生产性,遮光层9优选薄的。因此,遮光层9的材料中,优选采用Al合金等金属材料。
图5中显示了Al合金的遮光层9的层厚与透过率T(基板8采用0.6mm厚的聚碳酸酯,测定波长λ=350nm)的关系的一例。作为空基板B,采用与图3(A)~(D)同样的构成。从图5中可以知道,遮光层9的层厚小于40nm时,透射率T急剧增加。可以知道,为使透过率T为25%以下,确保层厚在14nm以上就可以,为使透过率为10%以下,确保层厚在25nm以上就可以。
使信号基板A与空基板B粘合的粘接方法,可以是利用电子线、紫外线等放射线对由有机物质构成的放射线硬化型化合物以及组合物进行硬化粘接的方法,以及采用粘接片进行粘接的方法。还有,为了获得耐光性效果,作为图1的粘接层C而使用的粘接剂以及粘接片的光透过率优选(在测定波长λ=350nm时)在0~25%。
信号基板A与空基板B的粘接,是夹着空气的构造、伴随有空气的构造、紧密粘接的构造等。另外,又可以在信号基板A上层叠除了基板1的构成的信号基板A,通过粘接层C与空基板B粘接,形成单面2层的光记录介质。
(光记录介质的制造方法)以下描述第一实施方式的光记录介质的制造方法。
首先,作为在基板1上层叠第一保护层2、记录层3、第二保护层4、反射层5等的方法,可以列举公知的在真空中形成薄膜的方法。例如,真空蒸镀方法(电阻加热型和电子束型)、离子镀覆、溅射法(直流或交流溅射、反应性溅射)等。特别是由于组成和层厚的控制容易性,优选溅射法。
还有,优选采用真空槽内多个基板1同时成膜的成批方法,以及每个基板1逐一处理的逐片式成膜装置。对于形成的第一保护层2、记录层3、第二保护层4、反射层5等的层厚的控制,通过控制溅射电源的投入功率和时间,用水晶振动型膜厚计监控堆积状态,就容易进行。
对于第一保护层2、记录层3、第二保护层4、反射层5等的形成,固定或者移动、旋转基板1的状态,哪种都可以。从层厚的面内均匀性优异的角度来说,优选使基板1自转,更优选进一步与公转相结合。根据需要对基板1进行冷却,以减少基板1的翘曲量。
在不明显损害本发明的效果的范围内,在形成反射层5等之后,为了防止薄膜的变形,优选根据需要设置ZnS、SiO2等介电质层或者紫外线硬化树脂等第三保护层等。
在形成反射层5、或者再形成第三保护层6之后,将图2所示的第三保护层6(在没有设置第三保护层6的情况下是反射层5)的粘接面A2与空基板B的粘接面B2利用粘接剂等粘接层C进行粘合。
记录层3优选在实际进行记录之前,预先利用激光、氙闪光灯等的光进行照射加热,使之结晶化。特别是为了减少播放噪音,优选利用激光进行初始化。
以下顺序说明第一实施方式的光记录介质D的实施例1~实施例3以及比较例1和2。此处以相变型光盘为例进行描述。
在以下的实施例以及比较例中,用装有波长为658nm的激光二极管、NA=0.60的光学透镜的帕卢斯太可(パルステック)公司制造的光盘驱动测试仪(DDU1000)进行记录播放,通过误差率来评价记录特性。
保存特性试验,是在作为高温高湿条件的温度80℃并且相对湿度为85%的条件下(80℃,85%RH)将光记录介质放置100小时,然后,作为光照射条件,以3万lx的白色光(保存试验光)对入射面B1照射600小时。在以上的高温高湿条件以及光照射条件下保存处理(以下称之为保存处理)之后,在未记录部分进行记录,然后测定误差率,以难以修订误差的1×10-3以上的误差率为不良。
透过率的测定采用日立制作所制造的330型分光光度计。
实施例1信号基板A是在直径为120mm、板厚为0.6mm的聚碳酸酯树脂制成的基板1上形成各薄膜而制成的。基板1中按照轨距为0.74μm交替形成空沟(沟槽)和接合面。沟深25nm,沟槽宽度和接合面的宽度的比值为40∶60。
将真空容器排气至3×10-4Pa之后,采用高频磁控溅射方法,在基板1的一面中在2×10-1Pa的氩气氛中用按照20mol%添加了SiO2的ZnS形成层厚为70nm的第一保护层2。
然后顺次层叠层厚为16nm的Ge-In-Sb-Te的四种元素的单一合金靶的记录层3、与第一保护层2同样材料的厚度为16nm的第二保护层4、利用GeN的厚度为2nm的阻挡层10、以及Ag-Pd-Cu靶的厚度为120nm的反射层5。
从真空容器中取出基板1之后,在反射层5上旋涂丙烯酸类紫外线硬化树脂(ソニ-ケミカル公司制造的SK5110),利用紫外线照射使之硬化,形成层厚为3μm的第三保护层6,得到如图2所示的信号基板A。
如上所述,与形成基板1的各层的面相反的面(另一面)为照射面A1,不与第三保护层6的反射层5相接的面为粘接面A2。
空基板B形成如下由与基板1同样的直径120mm和板厚0.6mm的聚碳酸酯树脂制成基板8,在基板8的一面采用A1靶溅射法形成层厚为35nm的遮光层9。本实施例中空基板B的构成为图3(A)所示的第一构成例Ba,形成遮光层9的面为粘接面B2。如此形成的空基板B的波长λ=350nm的透过率T为3%。
在粘接层C上利用粘接密封材料,粘合信号基板A(Aa)的粘接面A2与空基板B(Ba)的粘接面B2。然后用初始化装置(日立コンピュ-タ机器制造的POP120),采用径向激光宽度250μm、扫描方向激光宽度为1.0μm的激光,按照扫描线速度为4.5m/s、激光功率为1600mW、输送间距为220μm的条件进行记录层3的初始化,由此制造光记录介质。
利用如此制造的光记录介质,从基板1侧(入射面A1)在作为记录层3的引导槽的沟槽部分进行记录。从播放用的激光的入射方向可以看见沟槽为凸起状。
上述记录是以3.5m/s的线速度(DVD规格的一倍速)的条件进行的,测定误差率,确认保存前的记录特性为2×10-5。再进行高温高湿条件以及光照射条件的保存处理,然后记录并测定误差率,如表1所示,5×10-5为良好,保存处理后得到了良好的特性。
表1中,误差率良好为OK,误差率不良为NG。
表1

实施例2除了空基板B的遮光层9的层厚为70nm之外,其它与实施例1同样来制造光记录介质。如此作出的空基板B在波长λ=350nm的光的透过率T为0%。与实施例1同样的方法进行测定,表1显示,保存处理后的记录播放的误差率为2×10-5,与实施例1同样也在保存处理之后得到良好的记录特性。
实施例3除了空基板B的遮光层9的层厚为15nm之外,其它与实施例1同样来制造光记录介质。如此作出的空基板B在波长λ=350nm的光的透过率T为22%。与实施例1同样的方法进行测定,表1显示,保存处理后的记录播放的误差率为3×10-4,与实施例1同样也在保存处理之后得到良好的记录特性。
比较例1除了空基板B没有遮光层9(0nm)之外,其它与实施例1同样来制造光记录介质。如此作出的空基板B在波长λ=350nm的光的透过率T为82%。与实施例1同样的方法进行测定,表1显示,保存处理后的记录播放的误差率为2×10-3,与实施例1相比,保存处理之后的记录特性明显恶化。
比较例2除了空基板B的遮光层厚度为10nm之外,其它与实施例1同样来制造光记录介质。如此作出的空基板B在波长λ=350nm的光的透过率T为37%。与实施例1同样的方法进行测定,表1显示,保存处理后的记录播放的误差率为1×10-3,与实施例1相比,保存处理之后的记录特性明显恶化。
如上所述,不充分设置遮光层9,由此在反射层5中长时间照射光之后,光照射后的记录特性会明显恶化。可以推测,这是由于光照射使得第三保护层6的紫外线硬化树脂以及反射层5的Ag或者Ag合金活化,反射层5的特性发生变化,变为放热状态,记录特性由此恶化。还有,如上所述,在可以修订误差的误差率为1×10-3以下的情况,照射光对反射层5的透过率T优选在0~25%的范围内。
另外,使反射层5对照射波长λ=350nm的激光的透过率T在0~25%的范围内的方法是,通过如实施例1~3的在空基板B上附着的遮光层9的层厚来控制透过率T,控制透过率T也可以不通过空基板B进行。即在夹着反射层5,光记录介质D的记录播放用激光的入射面A1的相反侧形成的例如第三保护层6以及在使得信号基板A与空基板B粘接的粘接剂(粘接层C)中混合碳黑等粉末,由此将透过率T控制在0~25%的范围内,实现与实施例1同样的效果。
光记录介质的第二实施方式空基板B以及粘接层C的波长λ=350nm的光的透过率不在0~25%的范围内的情况下,作为提高耐光性的另一种方法,采用图6所示的高度粘接的非活性层7插入到反射层5和第三保护层6之间而构成的信号基板Ab。
本发明人研究认为,通过从入射面B1的光照射而造成的记录特性恶化,是因为Ag或者Ag合金的反射层5以及第三保护层6直接接触,并且Ag或者Ag合金的反射层5经过长时间照射导致的。这种恶化机理中,由于反射层5的金属光泽没有失去,因而推测为第三保护层6中的成分与作为反射层5的材料的Ag或者Ag合金之间的化学反应因为光照射而活化,反射层5的金属材料发生化学变化(不是腐蚀)。可以认为,由于反射层5的这种光活性的化学变化,反射层5的金属材料的导热率发生变化,由此记录层3的记录时的放热状态恶化,引起记录特性的恶化。即反射层5的化学变化不是腐蚀(金属消失的化学变化),而是从金属向金属的变化,因此在反射层5和第三保护层6之间插入高度粘接的非活性层7,提高了耐光性。
图6是显示作为信号基板A的第二构成例的信号基板Ab的示意图。信号基板Ab通过在基板1上顺次层叠第一保护层2、记录层3、第二保护层4、反射层5、高度粘接的非活性层7、第三保护层6而构成的。采用了信号基板Ab的光记录介质D的构成是第二实施方式。如上所述,可以适宜地设置阻挡层10。
形成信号基板Ab的基板和层的与第一实施方式中采用的信号基板Aa同样的部分采用同样的标记,上述基板以及层的材料、其厚度等与第一实施方式的前面描述相同的,省略其说明。
高度粘接的非活性层7的材料,可以是金属、半金属、氮化物、氧化物、碳化物或者其化合物,与反射层5中使用的Ag或者Ag合金的粘合强度优选在1.6MPa以上。
图7是表示在温度80℃相对湿度85%(高温高湿80℃,85%RH)条件下放置100小时,再用3万lx白色光照射600小时之后,高度粘接的非活性层7与Ag或者Ag合金的反射层5的粘合强度与记录播放误差率之间的关系图。从图7中可以看出,粘合强度小于1.6MPa时,误差率超过了误差难以修订的1×10-3,因而优选的是粘合强度在1.6MPa。可以认为,当粘合强度小于1.6MPa时,在高温高湿条件下(80℃,85%RH)从反射层5和高度粘接的非活性层7之间的界面就会发生剥离。发生剥离时,不仅介质变白,整体外观恶化,并且高度粘接的非活性层7的耐光性效果不好,因此光照射导致的记录特性恶化,因此不是优选的。另外,粘接强度的上限没有限制,在1.6MPa以上即可。
对于粘接强度的测定,采用图8所示的拉伸测试。作为拉伸测试的条件,先在玻璃板71上层叠200nm厚的反射层5中使用的Ag或者Ag合金的薄膜5s,再在其上层叠由高度粘接的非活性层7的材料形成的200nm厚的薄膜7s,作为试样。在试样中,采用环氧类粘合剂将SUS板72和方杆73结合成为共同的试验材料,拉伸方向h是与SUS板72相对垂直的,把共同的试验材料悬挂在C型钩74上。确认共同试验材料静止,进行拉伸试验,测定薄膜5s(反射层5)和薄膜7s(高度粘接的非活性层7)之间的界面破裂的力,除以面积得到粘接强度。
以下,描述设置了高度粘接的非活性层7的第二实施方式的光记录介质的实施例4~实施例7以及比较例3和4。
第二实施方式的光记录介质与上述第一实施方式的光记录介质按照同样的制造方法来制造。高度粘接的非活性层7,与在基板1上形成的其它层例如第一保护层2、记录层3、第二保护层4、以及反射层5同样地形成。
第二实施方式中空基板B不设置遮光层9,仅由基板8构成。空基板8用粘接层C中的粘接密封材料与信号基板Ab粘合。
还有,记录特性的评价、保存特性试验以及误差率的测定与第一实施方式的光记录介质相同。
实施例4除了空基板B没有遮光层9,而在反射层5和第三保护层6之间插入GeN的厚度为5nm的高度粘接的非活性层7之外,与实施例1同样,制造光记录介质。拉伸试验中,反射层5的材料AgPdCu与GeN的粘接强度是5.1MPa。按照与实施例1同样的测定得到的表2显示,保存处理之后的记录播放误差率为5×10-5,与实施例1同样在保存处理之后得到良好的记录特性。
表2

实施例5除了高度粘接的非活性层7为Al2O3之外,与实施例4同样地制造光记录介质。在拉伸试验中,反射层5的材料AgPdCu与Al2O3的粘接强度是3.6MPa。按照与实施例1同样的测定得到的表2显示,保存处理之后的记录播放误差率为6×10-5,与实施例1同样在保存处理之后得到良好的记录特性。
实施例6除了高度粘接的非活性层7为Ge之外,与实施例4同样地制造光记录介质。在拉伸试验中,反射层5的材料AgPdCu与Ge的粘接强度是1.6MPa。按照与实施例1同样的测定得到的表2显示,保存处理之后的记录播放误差率为9×10-5,与实施例1同样在保存处理之后得到良好的记录特性。
实施例7除了高度粘接的非活性层7为NiCr之外,与实施例4同样地制造光记录介质。在拉伸试验中,反射层5的材料AgPdCu与NiCr的粘接强度是2.5MPa。按照与实施例1同样的测定得到的表2显示,保存处理之后的记录播放误差率为6×10-5,与实施例1同样在保存处理之后得到良好的记录特性。
比较例3除了高度粘接的非活性层7为Al之外,与实施例4同样地制造光记录介质。在拉伸试验中,反射层5的材料AgPdCu与Al的粘接强度是1.2MPa。按照与实施例1同样的测定得到的表2显示,保存处理之后的记录播放误差率为3×10-3,与实施例1相比,光照射之后的记录特性明显恶化。
比较例4除了高度粘接的非活性层7为Cu之外,与实施例4同样地制造光记录介质。在拉伸试验中,反射层5的材料AgPdCu与Cu的粘接强度是1.4MPa。按照与实施例1同样的测定得到的表2显示,保存处理之后的记录播放误差率为1×10-3,与实施例1相比,光照射之后的记录特性明显恶化。
如上所述,高度粘接的非活性层7的材料变为Al以及Cu之后与反射层5的粘接强度减小。结果高温高湿条件下发生剥离,中间层的效果被削弱。可以推测,由此,高温高湿条件下的光照射条件使得第三保护层6的紫外线硬化树脂与反射层5的Ag或者Ag合金活化,记录特性因此而恶化。
在第二实施方式中,在没有在空基板B中形成遮光层9的情况下,为了抑制因为光照射导致第三保护层6的紫外线硬化树脂与反射层5的Ag或者Ag合金的化学反应活化,在反射层5和第三保护层6之间必须采用高度粘接的非活性层7。这种材料优选与反射层5的界面的粘接强度在1.6MPa以上。如果粘接强度小于1.6MPa,则在高温高湿条件下发生剥离,在光照射影响之前就发生记录特性的恶化。
如上所述,为使光不照射到Ag或者Ag合金的反射层5中,粘合的空基板B以及第三保护层6和粘接层C具有遮光性的第一实施方式的光记录介质,或者在Ag或Ag合金的反射层5与第三保护层6之间插入高度粘接的非活性层7的第二实施方式的光记录介质,哪一种介质构造都能有效维持良好的记录特性。从生产角度考虑,可以采用上述任一种构造的制造方法。
光记录介质的第三实施方式图6中显示的设置高度粘接的非活性层7的信号基板Ab与图3显示的设置遮光层9的空基板B通过粘接层C粘接构成的光记录介质为第三实施方式。把光记录介质做成本第三实施方式的构成,就能够控制向反射层5的透过率T,并且抑制反射层5的化学反应,因而能够维持高温高湿条件以及光照射条件下的记录播放特性。
权利要求
1.一种利用记录光来记录信息的光记录介质,其特征在于,具有信号基板,以及在该信号基板上层叠的支持体,所述信号基板,从所述信号基板的底面侧向所述支持体侧,由具有所述记录光入射的第一入射面的第一基板以及在所述第一基板上顺次层叠的至少以下部分构成记录层;由含有Ag的物质构成的反射层;以及,由有机物类物质形成的保护层,从作为所述支持体的表面的第二入射面照射波长为350nm的特定波长的光时,从所述第二入射面至所述反射层的表面的范围所构成的层对于所述特定波长的光的透射率T为0%≤T≤25%。
2.如权利要求1的光记录介质,其特征在于,所述支持体包括具有所述第二入射面的空基板以及粘结层。
3.如权利要求2的光记录介质,其特征在于,所述空基板具有第二基板以及透过率控制部件,通过使得所述透过率控制部件的透过率为0~25%来设定所述透过率T。
4.如权利要求2的光记录介质,其特征在于,所述空基板具有第二基板,通过使得所述第二基板作为透过率为0~25%的透过率控制部件,来设定所述透过率T。
5.一种利用记录光来记录信息的光记录介质,其特征在于,具有信号基板,以及在该信号基板上层叠的支持体,所述信号基板,从所述信号基板的底面侧向所述支持体侧,由具有所述记录光入射的第一入射面的第一基板以及在所述第一基板上顺次层叠的至少以下部分构成记录层;由含有Ag的物质构成的反射层;以及,由有机物类物质形成的保护层,所述非活性层抑制所述反射层与所述保护层的化学反应。
6.如权利要求5的光记录介质,其特征在于,所述支持体具有空基板以及粘结层。
7.如权利要求5或者6的光记录介质,其特征在于,所述反射层和所述非活性层之间的粘接强度大于等于1.6MPa。
全文摘要
一种在高温高湿以及光(荧光灯、太阳光)等苛刻的环境条件下,也能维持优异记录特性的光记录介质。光记录介质D是用粘结层C粘结信号基板A以及空基板B而成的。信号基板A在具有记录播放用的激光入射面A1的基板1上至少顺次层叠具有通过光而记录信息的记录层、由Ag或者Ag合金构成的反射层、由有机物质构成的保护层而形成。空基板B由基板和遮光层构成,从入射面B1一侧照射波长为350nm的光而得到的从入射面B1至反射层的透过率T在0~25%范围内。
文档编号G11B7/243GK1629953SQ200410100299
公开日2005年6月22日 申请日期2004年12月15日 优先权日2003年12月16日
发明者田畑浩, 久保尚之, 神原理, 出野隆之, 松本郁夫 申请人:日本胜利株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1