悬臂件、含有该悬臂件的磁头折片组合及磁盘驱动单元的制作方法

文档序号:6773759阅读:143来源:国知局
专利名称:悬臂件、含有该悬臂件的磁头折片组合及磁盘驱动单元的制作方法
技术领域
本发明涉及一种磁盘驱动单元,具体地讲涉及一种具有优化刚度的悬臂件的磁头折片组合(head gimbal assembly,HGA);本发明还涉及含有一种悬臂件的磁头折片组合,该悬臂件具有用于支撑悬臂件上复数电缆的电缆支撑架(tracesupport bridge)。
背景技术
一种常见的信息存储设备是利用磁性媒介存储数据的磁盘驱动系统。消费者总是希望这类磁盘驱动系统的存储容量不断增加,同时希望其读写速度更快更精确。因此磁盘制造商一直致力于开发具有较高存储容量的磁盘系统,比如通过减少磁盘上的磁轨宽度或磁轨间距的方式增加磁轨的密度。然而,随着磁轨密度的增加,对读写头的位置控制精度也必须相应的提高,以便在高密度磁盘中实现更快更精确的读写操作。随着磁轨密度的增加,使用传统技术来实现更快更精确将读写头定位于磁盘上适当的磁轨变得更加困难。因此,磁盘制造商一直寻找提高对读写头位置控制的方式,以便利用不断增加的磁轨密度所带来的益处。
作为提高读写头位置控制的方法,在过去曾经开发出许多用于提高存取速度及读写头在高密度磁盘的适当磁轨上定位精度的双驱动器系统。这种双驱动器系统通常包括主音圈马达驱动器(voice-coil motor actuator,VCM)及副微驱动器,比如PZT元件微驱动器(即压电元件微驱动器)。该音圈马达驱动器由伺服控制系统控制,该伺服控制系统导致驱动臂旋转,该驱动臂上承载读写头以便将读写头定位于存储盘上适当的磁轨上。PZT元件微驱动器与音圈马达驱动器配合使用共同提高存取速度及实现读写头在磁轨上位置的微调。音圈马达驱动器对读写头的位置粗调,而PZT元件微驱动器对读写头相对于磁盘的位置的精调。通过两个驱动器的配合,共同实现数据在存储盘上高效而精确的读写操作。
图1a所示为典型的具有磁头位移控制系统的磁盘驱动系统。图1a展示了传统磁盘驱动单元的一部分,磁盘101安装在旋转马达102上并由其旋转。音圈马达臂104上承载有磁头折片组合100,该磁头折片组合100包括微驱动器105及读写头103。一音圈马达控制音圈马达臂104的运动,进而控制磁头103在磁盘101的表面上的磁轨之间的移动,最终实现读写头在磁盘101上数据的读写。在工作状态时,包含读写头的磁头103与旋转的磁盘101之间形成空气动力性接触,并产生升力。该升力与大小相等方向相反的由磁头折片组合100的悬臂件施加的弹力互相平衡,进而导致在马达臂104旋转的全径行程中,在旋转的磁盘101的表面上方形成并维持预定的飞行高度。
图1b所示为图1a中含有双驱动器的磁盘驱动单元的磁头折片组合100。然而,由于音圈马达及磁头悬臂组合的固有误差,磁头103无法实现快速而精确的位置控制,从而影响读写头精确读写磁盘上数据的性能。为此,增加上述PZT元件微驱动器105,以便提高磁头及读写头的位置控制精度。更具体地讲,相对于音圈马达驱动器,该PZT元件微驱动器以更小的幅度来调整磁头103的位移,以便补偿音圈马达和(或)磁头悬臂组合的共振误差。该PZT元件微驱动器使得应用更小的磁轨间距成为可能,并且可以将磁盘驱动单元的磁轨密度(TPI,每英寸所含的磁轨数量)提高50%,同时可以减少磁头的定位时间。因此,PZT元件微驱动器可以大幅度提高信息存储磁盘的表面记录密度。
参考图1a及图1b,一种已知的微驱动器为U形微驱动器105。该U形微驱动器105包括两个将磁头103固持于其中的边臂107。通过边臂107的运动使得磁头103产生位移。该PZT元件微驱动器105可以更小的幅度纠正磁头103的位移,因为所述边臂107上安装有PZT元件,来自控制系统的电压将使该PZT元件变形,进而调整磁头位置。
进一步参考图1c,传统的PZT元件微驱动器105包括具有两个陶瓷边臂107的U形陶瓷框架,其中每个边臂上均安装压电元件。参考图1b-1c,该PZT元件微驱动器105物理地安装在挠性件114上。三个电连接球109(金球焊接或锡球焊接,gold ball bonding或solder ball bonding,GBB或SBB)将该PZT元件微驱动器105固定在位于上述边臂107两侧的内悬臂电缆910上。另外,四个金属球108(GBB或SBB)将磁头103安装到该悬臂电缆110上。
图1d概括地展示了将磁头103装配到微驱动器105的示范性流程。如图1d所示,该磁头103通过环氧树脂胶局部连接到所述两边臂107上的两预定位置106。该连接使得磁头103的运动依赖于所述PZT元件微驱动器105的边臂107的运动。该微驱动器的每个边臂107上安装压电元件116,从而通过激发上述压电元件而使磁头103产生可控制的移动。当通过悬臂电缆910施加电压时,所述PZT元件膨胀或收缩,导致U形微驱动器框架的两边臂107产生变形,因此使得磁头103在磁盘的磁轨上移动,以便精确调整所述读写头的位置。通过这种方式,可以实现磁头103的可控制的位移,以便实现位置微调。
在信息技术业,众所周知,随着硬盘驱动器容量的快速增加,而硬盘驱动器的实际销售价格却越来越低,为迎合市场,制造商一直在开发可以降低材料成本的方法,一个典型的例子是将磁头越做越小,比如从100%大小的磁头做到50%大小的磁头,现在的磁头为30%大小的磁头。同时,业界对20%大小的磁头更感兴趣,由于磁头的尺寸减小,空气支承面一侧的尺寸同时也减小,而对较高存储容量硬盘驱动器的需求却迫使磁头飞行高度必须不断降低,这对磁头空气支承面的形状及悬臂件的静态参数设计比如刚度来说是一个巨大挑战。由于空气支承面设计的局限性,悬臂件需要具有越来越小的刚度,尤其当采用微驱动器时,该悬臂件的设计变得越来越困难,因此需要适合于小尺寸磁头的方法及优化设计。
因此有必要提供一种优化刚度的悬臂件、含有该悬臂件的磁头折片组合及磁盘驱动单元,以克服现有技术的不足。

发明内容
本发明一方面在于提供一种具有优化刚度的悬臂件,使得安装在该悬臂件上的磁头具有良好的飞行稳定性及共振性能。
本发明另一方面在于提供一种具有优化刚度的磁头折片组合,使得其磁头具有良好的飞行稳定性及共振性能。
本发明又一方面在于提供一种具有较大伺服带宽及容量的磁盘驱动单元。
为实现上述目的,本发明一种用于磁头折片组合的悬臂件包括挠性件,该挠性件的一端具有若干连接触点,以便将该挠性件与控制系统连接,该挠性件的另一端具有若干复数电缆。该挠性件还包括用于固持磁头的舌片及将该舌片自所述挠性件上悬持的悬持部,其中该悬持部的宽度比所述舌片的宽度小。在本发明中,该挠性件还包括与所述悬持部的中间区域连接的顶支撑条及连接于该顶支撑条两端的两个侧支撑条。在一个实施例中,该顶支撑条的宽度大于0.085毫米。该侧支撑条的宽度大于0.10毫米。该悬持部的宽度位于0.5-0.9毫米之间。
在本发明中,该悬臂件还包括具有用于支撑所述舌片的小凸起的负载杆。作为本发明一个实施例,该小凸起位于所述悬持部与舌片之间的连接边上。在另一个实施例中,所述小凸起位于所述舌片相对于所述悬持部与舌片之间的连接边的一侧。该小凸起与悬持部和舌片相连接的边缘之间的距离越大越好,以避免磁头在z方向的位移。该挠性件还包括至少一个用于承载所述复数电缆的电缆支撑架。在本发明一个实施例中,该电缆支撑架由聚酰亚胺(PI)材料制成。
本发明一种磁头折片组合,包括磁头;用于承载该磁头的悬臂件;其中该悬臂件包括挠性件,该挠性件一端具有若干用于与控制系统连接的连接触点,另一端具有复数电缆;该挠性件还包括用于承载磁头的舌片;用于将所述舌片自所述挠性件悬持的悬持部;其中,该悬持部的宽度小于舌片的宽度。
本发明一种磁盘驱动单元,包括磁头折片组合;与该磁头折片组合连接的驱动臂;磁盘;及驱动该磁盘旋转的主轴马达。其中该磁头折片组合包括磁头及用于承载该磁头的悬臂件;其中该悬臂件包括挠性件,其一端具有若干用于与控制系统连接的连接触点,另一端具有复数电缆;该挠性件还包括用于承载磁头的舌片;用于将所述舌片自所述挠性件悬持的悬持部;其中,该悬持部的宽度小于舌片的宽度。
与传统技术比较,本发明悬臂件具有改良结构的挠性件,从而使该悬臂件获得优化的刚度,例如纵向刚度、横向刚度及面向刚度。即该具有改良结构的挠性件使得所述悬臂件的纵向刚度及横向刚度变小,而面向刚度则变大,从而确保磁头具有良好的飞行性能,而该悬臂件自身则具有良好的共振性能。相应地,良好的共振性能使得硬盘驱动器的伺服带宽及磁盘驱动单元的磁盘存储性能得以提高。另外,该挠性件还包括至少一个用于将所述复数电缆承载于悬臂件的电缆支撑架,该电缆支撑架将阻止所述复数电缆产生变形及减小电缆振动,从而保证了具有该挠性件的磁盘驱动单元具有良好的静态及动态性能。而且,该电缆支撑架也可以提高所述挠性件的面向刚度。相应地,具有该挠性件的磁盘驱动单元的共振性能得以提高,且所述磁盘驱动单元的磁盘存储性能得以提高。


图1a为传统磁盘驱动单元的局部立体图。
图1b为传统磁头折片组合(head gimbal assembly,HGA)的立体图。
图1c为图1b所示磁头折片组合的局部放大图。
图1d展示了将一个磁头插入到图1b所示磁头折片组合的微驱动器内的总体流程图。
图2为本发明第一个实施例所述磁头折片组合的悬臂件的立体图。
图3为图2所示悬臂件的立体分解图。
图4为图3所示悬臂件的挠性件的立体图。
图5为图4所示挠性件的悬持部宽度c与悬臂件的纵向刚度及横向刚度之间的关系曲线图。
图6为图4所示挠性件的悬持部宽度c与悬臂件的面向刚度之间的关系曲线图。
图7为图4所示挠性件的顶支撑条宽度w与悬臂件的纵向刚度及横向刚度之间的关系曲线图。
图8为图4所示挠性件的顶支撑条宽度w与悬臂件的面向刚度之间的关系曲线图。
图9为图4所示挠性件的每个边支撑条宽度y与悬臂件的纵向刚度及横向刚度之间的关系曲线图。
图10为图4所示挠性件的每个边支撑条宽度y与悬臂件的面向刚度之间的关系曲线图。
图11为图4所示挠性件的局部立体图,展示了该挠性件与图2所示悬臂件的负载杆上的小凸起之间的位置关系。
图12为当悬臂件的小凸起与悬臂舌片之间的经向距离d具有不同数值时,图11所示挠性件的悬持部宽度c与相应的z向位移之间的关系曲线图。
图13为当图2所示悬臂件的面向刚度具有不同数值时,该悬臂件的共振增益与频率之间的关系曲线图。
图14为当图2所示悬臂件的面向刚度具有不同数值时,该悬臂件的共振相位与频率之间的关系曲线图。
图15为本发明另一个实施例所述的每侧具有两个电缆支撑架的挠性件的局部立体图。
图16为本发明又一个实施例所述的每侧具有一个电缆支撑架的挠性件的局部立体图。
图17为本发明又一个实施例所述的具有被减轻重量的悬臂舌片的挠性件的局部立体图。
图18为本发明一个实施例所述的含有图2所示挠性件的磁头折片组合的立体分解图。
图19为本发明一个实施例所述的含有图18所示磁头折片组合的磁盘驱动单元的立体图。
具体实施例方式
现在参考附图描述本发明的实施例,附图中类似的元件标号代表类似的元件。如上所述,本发明旨在提供一种具有改良挠性件的悬臂件,从而获得优化的刚度,尤其是纵向刚度(pitch stiffness)、横向刚度(roll stiffness)及面向刚度(lateral stiffness),这样就使得安装上去的小尺寸磁头在旋转的磁盘上飞行时,该磁头具有良好的动态、静态性能及稳定的飞行高度。另外,随着悬臂件刚度的提高,负载杆的小凸起对悬臂件的支撑位置也得以优化,当载荷力增加时,由z方向位移引起的悬臂舌片变形同样减小,这将使得磁头飞行及微驱动器工作更加稳定,从而阻止由挠性件的较大变形而引起挠性件与磁头之间的接触进而引起的伺服装置的非必要噪声。因此,本发明的悬臂件旨在优化该悬臂件的结构,以便在安装小尺寸磁头时获得良好的性能。
下面描述本发明悬臂件的若干实施例。参考图2及图3,根据本发明的一个实施例,悬臂件1包括负载杆17、挠性件13、枢接件15及基板11。该负载杆17上具有形成于其上的小凸起329。该挠性件13的一端具有若干用于与控制系统(图未示)连接的连接触点308,该挠性件13的另一端具有复数电缆309、311。
参考图4,该挠性件13还包括用于保持磁头的悬臂舌片328及将该悬臂舌片328自该挠性件13上悬持的悬持部317。在本发明中,所述悬臂舌片328包括若干用于连接上述复数电缆309的连接触点330及若干用于连接上述复数电缆311的连接触点390。所述悬持部317的宽度c小于所述悬臂舌片328的宽度。在这里,所述悬臂舌片328通过所述悬持部317而悬持于所述挠性件13,从而形成一个弹性结构。由于该悬持部317的宽度c较小,因此使得所述悬臂舌片328具有较小的纵向及横向刚度,当将磁头安装到悬臂舌片时,该较小的纵向及横向刚度将确保磁头飞行的稳定性。
参考图5,该图展示了挠性件13的悬持部317的宽度c与含有该挠性件13悬臂件1的纵向刚度及横向刚度之间的关系曲线。在这里,曲线297表示宽度c与纵向刚度之间的关系,曲线298表示宽度c与横向刚度之间的关系。由该图可知,含有挠性件13的悬臂件1的纵向刚度及横向刚度均随悬持部317的宽度c的减小而将相应减小。在该实施例中,所述悬持部317呈矩形。显然,该悬持部317也可以具有其它用以减小所述悬臂件1刚度的适当形状。参考图6,该图展示了图4所示挠性件13的悬持部317的宽度c与含有该挠性件13的悬臂件1的面向刚度之间的关系曲线。由该图可知,含有挠性件13的悬臂件1的面向刚度随悬持部317的宽度c的减小而相应减小。
一般地,安装有小尺寸磁头的悬臂件,比如含有30%大小的磁头或者小于30%大小的磁头,可以满足如下条件而保证磁头具有良好的飞行稳定性,而该悬臂件自身则具有良好的共振性能含有挠性件13的悬臂件1的纵向刚度及横向刚度均小于1.00μN.m/degree;而含有挠性件13的悬臂件1的面向刚度则大于1.00μN.m/degree。较小的纵向刚度/横向刚度更有利于磁头的飞行稳定性,较大的面向刚度更有利于磁头折片组合(head gimbal assembly,HGA)的共振性能。图13-14展示了磁头折片组合的共振性能与悬臂件的挠性件的面向刚度之间的关系曲线图。在图13中,曲线905、902、901及903是当悬臂件的面向刚度分别为1.05、1.15、1.25及1.35N/mm时相关的共振增益曲线。在图14中,曲线907、910、909及908是当悬臂件的面向刚度分别为1.05、1.15、1.25及1.35N/mm时相关的共振相位曲线。由该两图可知,当面向刚度的数值接近于1.00N/mm时,比如1.05N/mm(参考曲线905、907),在共振的低频阶段将出现峰值904/906,这意味着相对于具有较高面向刚度的部件产生的共振,共振性能变差,这将影响磁头折片组合的动态性能及磁盘驱动器的伺服性能。根据该事实并参考图5-6可知该悬持部317的宽度c最好在0.5mm-0.9mm之间。可以理解,该悬持部317的宽度c也可以根据实际要求及磁头尺寸进行调整。
参考图4,该挠性件13还可包括在悬持部317的中间与该悬持部317连接的顶支撑条319及连接于该顶支撑条319两端的两个侧支撑条315。该顶支撑条319、两个侧支撑条315、悬持部317及挠性件13构成两个凹槽340。在一个实施例中,所述凹槽340对称分布于所述悬持部317的两边。在本发明中,所述顶支撑条319与悬臂舌片328之间的距离,即悬持部317的长度可以根据实际需要而变化。
在本发明中,所述顶支撑条319具有宽度w,该宽度w也影响含有挠性件13的悬臂件1的刚度,尤其是纵向刚度、横向刚度及面向刚度。参考图7,该图展示了顶支撑条319的宽度w与含有挠性件13的悬臂件1的纵向刚度及横向刚度之间的关系曲线。在这里,曲线292表示宽度w与纵向刚度之间的关系曲线,曲线291表示宽度w与横向刚度之间的关系曲线。由图可知,含有挠性件13的悬臂件1的纵向刚度及横向刚度均随顶支撑条319的宽度w的减小而将相应减小。参考图8,该图展示了顶支撑条319的宽度w与含有挠性件13的悬臂件1的面向刚度之间的关系曲线。由该图可知,含有挠性件13的悬臂件1的面向刚度随顶支撑条319的宽度w的减小而将相应减小。类似地,为确保磁头具有良好的飞行稳定性及悬臂件具有良好的共振性能,含有挠性件13的悬臂件1的纵向刚度及横向刚度均应当小于1.00μN.m/degree;而含有挠性件13的悬臂件1的面向刚度则应大于1.00μN.m/degree。根据该事实并参考图7-8可知该顶支撑条319的宽度w最好大于0.085mm。可以理解,该顶支撑条319的宽度w可以根据实际要求及磁头尺寸调整。
在本发明中,每个侧支撑条315均具有宽度y,该宽度y也影响含有挠性件13的悬臂件1的刚度,尤其是纵向刚度、横向刚度及面向刚度。参考图9,该图展示了侧支撑条315的宽度y与含有挠性件13的悬臂件1的纵向刚度及横向刚度之间的关系曲线。在这里,曲线294表示宽度y与纵向刚度之间的关系曲线,曲线293表示宽度y与横向刚度之间的关系曲线。由图可知,含有挠性件13的悬臂件1的纵向刚度及横向刚度均随侧支撑条315的宽度y的减小而将相应减小。参考图10,该图展示了侧支撑条315的宽度y与含有挠性件1 3的悬臂件1的面向刚度之间的关系曲线。由图可知,含有挠性件13的悬臂件1的面向刚度随侧支撑条315的宽度y的减小而将相应减小。类似地,为确保磁头具有良好的飞行稳定性及悬臂件具有良好的共振性能,含有挠性件13的悬臂件1的纵向刚度及横向刚度均应当小于1.00μN.m/degree;而含有挠性件13的悬臂件1的面向刚度则应大于1.00μN.m/degree。根据该情况并参考图9-10可知该侧支撑条315的宽度y最好大于0.10mm。可以理解地,该侧支撑条315的宽度y可以根据实际要求及磁头尺寸调整。
在本发明中,参考图2-4,当将该挠性件13组装到负载杆17、枢接件15及基板11上形成悬臂件1时,所述负载杆17上的小凸起329将支撑该悬持部317,并且保持载荷力始终施加到磁头的中心区域。参考图11,由于两个凹槽340对称形成于悬持部317的两侧,因此在悬臂件1上形成了以所述小凸起329为支撑枢轴的弹性结构,根据杠杆原理,由于处于悬持状态的部件及舌片的变形,自所述小凸起329到悬臂舌片328与悬持部317的连接边缘之间形成的距离d将影响安装在所述挠性件13上磁头的z向位移。参考图12,该图展示了当距离d具有不同数值时,挠性件13的宽度c与相应的z向位移之间的关系曲线。这里,曲线200表示当距离d为0.2mm时的关系曲线;曲线201表示当距离d为0mm时的关系曲线。由图可知当所述悬持部317的宽度c相同时,距离d减小则磁头的z向位移也减小。因此,当悬臂件1的其它参数相同时,距离d最好接近于零,以防止磁头的z向位移。
参考图15,根据本发明的另一个实施例,挠性件13’具有与图2所示挠性件13类似的结构,但可以进一步包括位于该挠性件13’每一侧的两个电缆支撑架270(trace support bridge),用于支撑复数电缆309、311。在该实施例中,所述电缆支撑架270呈条状并自侧支撑条315延伸而出,且具有足够的长度来承载所述复数电缆309、311。最优地,该电缆支撑架270可由聚酰亚胺(PI)材料制成,从而具有足够的强度及刚度。可以理解地,所述电缆支撑架270可以由其它适当材料形成以便承载所述复数电缆309、311。由于所述电缆支撑架270承载所述复数电缆309、311,因此在制造过程中可以避免所述复数电缆309、311产生变形,并减少了当磁头飞行于磁盘时的导线振动,这样就确保用于磁盘驱动器的具有挠性件13’的磁头折片组合的静态及动态性能。而且,所述电缆支撑架270可同时提高挠性件13的面向刚度,这有助于提高磁头的动态及静态性能。
参考图16,根据本发明的又一个实施例,挠性件13”具有与图15所示挠性件13,类似的结构,但可以进一步包括位于该挠性件13”每一侧、用于支撑复数电缆309、311的单一电缆支撑架270。该电缆支撑架270同样从侧支撑条315延伸出来。可以理解,所述电缆支撑架270的数量可以根据挠性件及悬臂件的实际需要而改变。另外,所述电缆支撑架270可以具有其它用以承载所述复数电缆309、311的适当形状。
参考图17,根据本发明的一个实施例,挠性件13具有与图2所示挠性件13类似的结构,但具有不同的悬臂舌片328’,相对于图4所示的悬臂舌片328,该悬臂舌片328’具有减轻重量的结构。在一个实施例中,如图17所示,该悬臂舌片328’呈梯形状。然而,该悬臂舌片328’的形状并不局限于此,而是可以具有任何适当的形状使得减小相应的重量,并使挠性件13获得优化的刚度。在该实施例中,所述悬臂舌片328’具有减轻重量的结构,使得挠性件13及悬臂件的整体重量减轻,这样就使具有该挠性件的磁盘驱动器的抗震性能得以提高。
参考图18,根据本发明的一个实施例,磁头折片组合(head gimbal assembly,HGA)包括磁头203、包括将磁头203固持于其间的两边臂217的U形微驱动器205、用于承载所述磁头203及微驱动器205的悬臂件1。通过所述边臂217的运动使磁头203产生位移。在该实施例中,微驱动器205包括由两个边臂217组成的U形陶瓷框架,其中每个边臂217上均安装压电元件216。该微驱动器205借助胶比如环氧树脂胶,物理连接到挠性件13上。若干电连接球(金球焊接或锡球焊接,GBB或SBB,图未示)将该PZT元件微驱动器205固定在位于上述边臂217两侧的悬臂电缆311上。另外,若干电连接金属球(GBB或SBB,图未示)将磁头203安装到悬臂电缆309上。在本发明中,所述微驱动器205并不局限于U形微驱动器,其它合适的微驱动器,比如薄膜型微驱动器、金属支撑型微驱动器(代替U形微驱动器205的陶瓷材料)可以应用在本发明中。可以理解,该磁头折片组合也可以不具有微驱动器,所述磁头203仅仅由磁盘驱动器的音圈马达(voice coil motor,VCM)来驱动产生位移。
根据本发明的一个实施例,参考图19,通过将壳体508、磁盘501、旋转马达502、音圈马达(VCM)507及本发明的磁头折片组合2装配起来而形成磁盘驱动单元5。由于本发明所述磁盘驱动单元的结构及/或装配流程为业界普通技术人员所熟悉,在此不再详述。
以上结合最佳实施例对本发明进行了描述,但本发明并不局限于以上揭示的实施例,而应当涵盖各种根据本发明的本质进行的修改、等效组合。
权利要求
1.一种用于磁头折片组合的悬臂件,其包括挠性件,该挠性件一端具有若干用于与控制系统连接的连接触点,另一端具有复数电缆;其特征在于该挠性件还包括承载磁头的舌片;将所述舌片自所述挠性件悬持的悬持部;其中,该悬持部的宽度小于舌片的宽度。
2.根据权利要求1所述的悬臂件,其特征在于所述挠性件还包括与所述悬持部的中间区域连接的顶支撑条及连接于该顶支撑条两端的两个侧支撑条。
3.根据权利要求2所述的悬臂件,其特征在于所述顶支撑条的宽度大于0.085毫米。
4.根据权利要求2所述的悬臂件,其特征在于所述侧支撑条的宽度大于0.10毫米。
5.根据权利要求1所述的悬臂件,其特征在于所述悬持部的宽度在0.5-0.9毫米之间。
6.根据权利要求1所述的悬臂件,其特征在于所述悬臂件还包括具有用于支撑所述舌片的小凸起的负载杆,其中该小凸起被置于支撑所述悬持部的位置。
7.根据权利要求6所述的悬臂件,其特征在于所述小凸起位于所述悬持部与舌片之间的连接边上。
8.根据权利要求6所述的悬臂件,其特征在于所述小凸起位于所述舌片相对于所述悬持部与舌片之间的连接边的一侧。
9.根据权利要求2所述的悬臂件,其特征在于所述挠性件还包括至少一个用于承载所述复数电缆的电缆支撑架。
10.根据权利要求9所述的悬臂件,其特征在于所述电缆支撑架由聚酰亚胺(PI)材料制成。
11.一种磁头折片组合,包括磁头;用于承载该磁头的悬臂件;其中该悬臂件包括挠性件,该挠性件一端具有若干用于与控制系统连接的连接触点,另一端具有复数电缆;其特征在于该挠性件还包括用于承载磁头的舌片;用于将所述舌片自所述挠性件悬持的悬持部;其中,该悬持部的宽度小于舌片的宽度。
12.根据权利要求11所述的磁头折片组合,其特征在于所述悬臂件还包括具有用于支撑所述舌片的小凸起的负载杆,其中该小凸起被置于支撑所述悬持部的位置。
13.根据权利要求11所述的磁头折片组合,其特征在于所述挠性件还包括与所述悬持部的中间区域连接的顶支撑条及连接于该顶支撑条两端的两个侧支撑条。
14.根据权利要求13所述的磁头折片组合,其特征在于所述顶支撑条的宽度大于0.085毫米。
15.根据权利要求13所述的磁头折片组合,其特征在于所述侧支撑条的宽度大于0.10毫米。
16.根据权利要求12所述的磁头折片组合,其特征在于所述小凸起位于所述悬持部与舌片之间的连接边上。
17.根据权利要求12所述的磁头折片组合,其特征在于所述小凸起位于所述舌片相对于所述悬持部与舌片之间的连接边的一侧。
18.根据权利要求12所述的磁头折片组合,其特征在于该挠性件还包括至少一个用于承载所述复数电缆的电缆支撑架。
19.根据权利要求18所述的磁头折片组合,其特征在于该电缆支撑架由聚酰亚胺(PI)材料制成。
20.根据权利要求12所述的磁头折片组合,其特征在于该磁头折片组合还包括用于固定磁头并使磁头产生位移的微驱动器。
21.一种磁盘驱动单元,包括磁头折片组合;与该磁头折片组合连接的驱动臂;磁盘;及驱动该磁盘旋转的主轴马达;其中该磁头折片组合包括磁头及用于承载该磁头的悬臂件;其中该悬臂件包括挠性件,其一端具有若干用于与控制系统连接的连接触点,另一端具有复数电缆;其特征在于该挠性件还包括用于承载磁头的舌片;用于将所述舌片自所述挠性件悬持的悬持部;其中,该悬持部的宽度小于舌片的宽度。
全文摘要
一种用于磁头折片组合的悬臂件,包括挠性件,该挠性件一端具有若干用于与控制系统连接的连接触点,另一端具有若干复数电缆。该挠性件还包括用于承载磁头的舌片;用于将所述舌片自所述挠性件悬持的悬持部。其中,该悬持部的宽度小于舌片的宽度。本发明同时揭露了含有该悬臂件的磁头折片组合及含有该磁头折片组合的磁盘驱动单元。
文档编号G11B21/21GK1956061SQ200510118930
公开日2007年5月2日 申请日期2005年10月27日 优先权日2005年10月27日
发明者姚明高, 杨昭辉 申请人:新科实业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1