对一主动侧壁相变存储单元改善热绝缘的结构及方法

文档序号:6775122阅读:90来源:国知局

专利名称::对一主动侧壁相变存储单元改善热绝缘的结构及方法
技术领域
:本发明涉及非易失性存储器设备,特别涉及使用相变存储材料的存储元件及其制造方法。
背景技术
:硫族化物(Chalcogenide)材料广泛用于读写光盘。这些材料具有至少二种固相,通常为非晶及结晶固相。激光脉冲用于读写光盘以在这些状态之间切换及在相变后读取材料的光学特性。以相变材料为基础的存储材料,如硫族化物材料及其类似材料,也可以通过施加适于集成电路操作的电流而改变状态。通常的非晶态具有比通常的晶态高的电阻率,其可以被快速感应以指示数据。该特性有利于作为非易失性存储电路的可编程电阻材料,其可以用随机方式进行数据的读取与写入。自非晶态改变为晶态的相变通常是较低电流的操作。而自晶态改变为非晶态的相变,在此称为重置,通常是较高电流的操作,会包含短的高电流脉冲以熔化或崩解此结晶结构,当此相变材料快速冷却后,为此相变过程焠火,造成至少一部分的相变结构可以稳定在此非晶态。通常希望此相变材料自晶态改变为非晶态的重置电流是越小越好。可以通过缩小单元内相变材料尺寸以及电极与此相变材料的接触面积的方式,来减小重置所需的重置电流值,所以高电流密度可以由较小电流通过此相变材料元件的方式来实现。目前的一个发展方向朝向形成微小孔洞于集成电路结构内,和利用少量可编程电阻材料填充于此微小孔洞中。示出朝向微小孔洞发展的专利有Ovshinsky于1997年11月11日发布的美国专利第5,687,112号、发明名称为“具尖形接触的多位单一单元存储元件(MultibitSingleCellMemoryElementHavingTaperedContact)”的专利,Zahorik等人于1998年8月4日发布的美国专利第5,789,277号、发明名称为”制造硫族化物[sic]存储设备的方法(MethodofMakingChalogenide[sic]MemoryDevice)”的专利,Doan等人于2000年11月21日发布的美国专利第6,150,253号,发明名称为”可控制双向相变半导体存储设备及其制造方法(ControllableOvonicPhase-ChandeSemiconductorMemoryDeviceandMethodsofFabricatingtheSame)”。以及Reinberg于1999年7月6日发布的美国专利第5,920,788号,发明名称为”有许多硫族化物电极的硫族化物存储单元(ChalcogenideMemoryCellwithaPluralityofChalcogenideElectrodes)”。当使用传统的相变存储结构时,一个特殊的热传导问题会在此传统设计中发生。通常,这些现有技术教导使用金属电极于相变存储单元的两侧,且金属电极的大小相当于相变构件的大小。如此的电极会构成热导体,金属的高导热性会很快将热带离此相变材料。因为此相变的产生是由于热,此热传导效应会造成需要更高的电流,才能产生所预期的相变。一种解决此热传导效应问题的方式可见于美国专利第6,815,704号,发明名称为”用于纳米等级硫族化物电子(NICE)随机存取存储器(RAM)的自动对准空气间隙热绝缘(SelfAlignedAir-GapThermalInsulationforNano-scaleInsulatedChalcogenideElectronics(NICE)RAM)”,其中公开对此存储单元的绝缘。此结构及其制造过程是非常复杂的,然而仍无法达到此存储元件内的最小电流通过。因此,必须要发展出提供有着小尺寸以及低重置电流的存储单元结构,此外此结构必须解决热传导问题,且其制造方法必须符合大规模存储元件所需的紧密工艺变型规范。还需要提供一结构及其制造方法,可以同时适用于同一芯片中外围电路的制造。
发明内容本发明的目的为提供一种具有改善热绝缘的存储元件。此元件包含电极堆叠,包括第一电极和第二电极元件,大致上是平坦的,通过侧壁子元件隔离且与之相互接触,其中该电极堆叠包括侧表面;相变元件,具有底表面与该电极堆叠侧表面接触,包括与该第一电极和该第二电极元件作电性接触;以及介电填充材料,环绕并覆盖该存储元件,其中该介电填充材料与该相变元件分离,导致该介电填充材料与该相变元件定义邻近于该相变元件的凹洞,且其中该凹洞容纳低气压环境。图1示出根据现有技术的相变存储元件的剖面图;图2A至图2D示出根据本发明实施例的相变存储元件的剖面图;图3示出根据本发明一实施例的制造相变存储元件的起始步骤;图4示出根据本发明一实施例的制造相变存储元件的进一步的步骤;图5A及图5B示出根据本发明的替代实施例制造相变存储元件的进一步的步骤;图6A及图6B示出根据本发明的替代实施例制造相变存储元件的进一步的步骤。具体实施例方式以下通过图1至图6来详细说明本发明的结构与方法。本
发明内容说明章节目的并非在于限制本发明。本发明由权利要求所限制。所有本发明的实施例、特征、观点及优点等将可透过下列说明权利要求及所附图示获得充分了解。本发明的一般环境,就如现有技术一样,是如图1所示的存储元件10。如此处所示以及本
技术领域
内所公知的,存储单元是电路设备,其设计用来保存电荷或状态以指示单一位的给定逻辑电平。存储单元通常排列为阵列,如,计算机中的随机存取存储器。在某些存储单元内,存储元件执行实际存储电荷或状态的功能。在传统的随机存取存储单元中,如,电容器指示此单元的逻辑电平,其完全充电状态表示一逻辑1,或高状态,而其完全放电状态表示一逻辑0,或低状态。如图中所示,此存储元件10包含两个电极12和14,由绝缘层16所分隔。相变材料薄膜18,将会于之后详细描述,桥接此二电极,其上有介电材料19。此电极的排列会决定此元件的几何形状,所以,举例而言,此相变材料形成此电极结构的侧壁。其它结构或许造成垂直的电极结构,本发明可适用于其它结构。可以进一步注意到图1仅是功能性的介绍,因此其它传统结构的细节被忽略。流入第一电极12的操作电流,标示为Iin,跟着箭头进入此相变材料,流出方向标示为Iout,导致此元件中央的温度上升。当此温度超过相变所需时,此相变材料的一部分20发生相变。此相变材料的温度会决定何种效果产生,所以电流的选择必需要能达到所要产生的结果—不是非晶态就是晶态—在部分20。假如希望读取此元件状态,一低电流为了感测目的而使用。此读取操作是非破坏性的,因为其元件温度被保持低于一相变的临界温度。图2A到图2D示出本发明的实施例。每一图均示出此相变存储元件10延着AA方向的剖面,以便简易明了。图中的相同元件为相变材料薄膜18,和介电材料19。此外,这四个实施例皆有热绝缘元件22介于相变材料薄膜与介电材料之间。此绝缘元件的组成(及其描述的技术)在其下所描述每一实施例中均不同,但均是提供相变材料薄膜与介电材料之间的热绝缘之用。因此,热会被限制在相变材料之内,这有许多好处。第一,可防止热自相变材料扩散出去,此种设计会减少产生相变所需的热能,因此减少每一设置或重置操作所需的电流。同时,此相变材料元件内剩余的热可以减少传导至存储阵列内其它部分的热,即导致此元件的生命周期延长。对于完整集成电路内的存储元件数目而言-对于一1GB存储元件至少有八十亿个元件为例,所以应该可以明了这种热减少的效应是很重大的。此相变材料18可以选自一组优选包含硫族化物(Chalcogenide)材料的族群之中。硫族化物材料包括具氧(O)、硫(S)、硒(Se)及碲(Te)四个化学周期表上VI族的一部份元素中的任何一个组成。硫族化物包括硫族化物族群与多个带正电元素或取代基的化合物。硫族化物合金包括硫族化物与其它如过渡金属材料的组合。硫族化物通常包含一种或一种以上选自元素周期表第六栏的其它元素,例如锗(Ge)及锡(Sn)。通常,硫族化物合金包括含有锑(Sb),镓(Ga),铟(In)及银(Ag)其中一种或多种的组合。许多以相变为主的存储材料已经被公开于技术文献中,包括Ga/Sb,In/Sb,In/Se,Sb/Te,Ge/Te,Ge/Sb/Te,In/Sb/Te,Ga/Se/Te,Sn/Sb/Te,In/Sb/Ge,Ag/In/Sb/Te,Ge/Sn/Sb/Te,Ge/Sb/Se/Te及Te/Ge/Sb/S的合金。在Ge/Sb/Te合金族群里,有许多的合金组成可以使用。组成的特征在于TeaGebSb100-(a+b),其中a及b代表占构成元素总原子数的原子百分比。有一位研究人员指出最有用的合金为Te在已经沉积的材料内的平均浓度远低于70%,典型低于约60%且一般低到约23%而高到约58%Te,优选为约48%到58%Te。Ge的浓度超过约5%,平均材料内的Ge浓度从约8%到约30%,一般保持低于50%。优选地,Ge的浓度从约8%到约40%。组成内其余的主要构成元素为Sb。(Ovshinsky‘112专利第10-11栏)。特别被其它研究人员肯定的合金包括Ge2Sb2Te5,GeSb2Te4及GeSb4Te7(NobomYamada,“Ge-Sb-Te相变光盘在高数据速度记录上的可能性”SPIEv.3109,pp.28-37(1997))。更一般而言,过渡金属,例如铬(Cr),铁(Fe),镍(Ni),铌(Ni),钯(Pd),铂(Pt)及混合物或合金可与Ge/Sb/Te形成可编程绝缘特性的相变合金。有用的存储材料的特定实例请参考Ovshinky’112第11-13栏所述,该公开内容在此以参考方式并入本案。相变合金能在此单元的主动信道区域内依其位置顺序于材料为一般非晶固相的第一结构状态与为一般结晶固相的第二结构状态之间切换。这些相变合金至少是双向稳定(bistable)的。在此所称非晶指相当没有秩序的结构,比单晶更无秩序,具有可被侦测的特征,例如比晶态更高的电绝缘性。在此所称的结晶性指相当有秩序的结构,比非晶结构更有秩序,具有可被侦测的特征,例如比非晶态更低的电绝缘性。典型而言,相变材料可以电性方式在不同可被侦测状态之间切换以跨越完全非晶及完全晶态之间的光谱。受到非晶及晶态之间变化影响的其它材料特征包括原子顺序,自由电子密度及活化能。材料可以转换至不同固相或转换至二个或更多的固相,以提供介于完全非晶及完全晶态之间的灰色地带。此材料的电特性也可以据此对应地改变。相变材料可以通过施加电脉冲从一相状态变化成另一相状态。已经观察出一较短较高振幅脉冲容易使相变材料变成一般非晶态,一般称作为重设脉冲。较长较低振幅脉冲容易使相变材料变成一通常晶态,一般称作为编程脉冲。较短较长振幅脉冲内的能量够高到使结晶结构的键断裂,并且短到足以避免原子重新排成晶态。适当的脉冲分布可以依照经验法则判断,不需要过多的实验,而能找出适用于一特定的相变材料及元件结构的条件。下列说明里,相变材料称为GST,应了解其它类型相变材料也可以使用。用以实施在此所述的计算机存储器的材料为Ge2Sb2Te5。其它可编程电阻存储材料也可以使用于本发明的其它实施例中,包括N型掺杂相变材料(GST),GexSbb,或是其它可用不同结晶相变来决定电阻值的材料;PrxCayMnO3,PrSrMnO,ZrOx或其它可用电子脉冲来改变电阻状态的材料;掺杂有其它金属的TCQN,PCBM,TCNQ-PCBM,Cu-TCNQ,Ag-TCNQ,C60-TCNQ,TCNQ,或是其它任何有着可用电子脉冲来控制的双向稳定或多重稳定的电阻状态的高分子材料。图2A中的元件通过邻近于此相变元件设置绝缘室来使用此热绝缘元件22。可以轻易了解,一良好的真空可以阻绝各种形式(除了热辐射)的热传导,大幅减少热自此相变材料流出。虽然要达到纯真空是十分困难的,本发明的结构提供真空室及其方法来达到低气压环境以限制反应气体。如之后的描述,此相变材料的厚度介于10纳米到50纳米之间,优选是30纳米(即自此元件长轴横切方向量测)。此真空室的厚度可介于10纳米到30纳米之间,优选是20纳米。以下结合此存储元件的制造过程的讨论,结构的细节将会更加清晰。如图2B中替代实施例所示,绝缘室22被包括,但是密封层24被加入此相变元件之上。在低气压环境中,某些相变材料具有自此相变薄膜扩散到低气压环境中的倾向。此倾向可通过增加具有与相变材料的较佳附着力且具有良好扩散阻障作用的薄材料层而避免。优选是Al2O3,氧化硅,氮化硅,或是HFO2。此密封层24的厚度可介于5纳米到20纳米之间,优选是10纳米。假如特定用途对于形成绝缘室有困难,则可以使用如图2C所示的结构,利用热阻障层23来取代绝缘室仍可以获得本发明的优点。此阻障层为额外的层,具有与绝缘室相同的厚度(介于10纳米到30纳米之间,优选是20纳米)。此材料的特性须要有较低的热传导系数,结合有较低的介电系数(通常称为low-k)。优选是使用一高分子材料或是其它本领域所公知的有机材质作为此用途。此热绝缘材料的代表物质可包括具硅(Si)、碳(C)、氧(O)、氟(F)及氢(H)等的组合。做为热绝缘覆盖层的热绝缘材料例如包括氧化硅(SiO2)、SiCOH、聚酰胺及碳氟聚合物。若是氧化硅作为热绝缘覆盖层的热绝缘材料的话,则此热绝缘材料应该具有低于氧化硅的导热性,或是小于0.014J/cm*degK*sec。许多低介电系数材料有着低于氧化硅的介电系数,也是合适的热绝缘物质。其它可作为热绝缘覆盖层的材料的实例包括氟氧化硅、倍半氧硅烷(silsesquioxane)、聚环烯醚(polyaryleneether)、聚对二甲苯(parylene)、氟聚合物、氟化无定型碳、类钻石碳、多孔性氧化硅、中孔性(mesoporous)氧化硅、多孔性倍半氧硅烷、多孔性聚亚酰胺及多孔性环烯醚。在其它具体实施例里,热绝缘结构包括位于介电填充部分内横跨桥段以提供热绝缘作用的填充栅极空隙。单层或多层可以作为提供热绝缘及电绝缘之用。图2D中的实施例结合以上所述的例子,具有密封层24介于此相变元件与热阻障层23之间。先前关于两者功用上以及尺寸上的描述在此实施例中均可适用。根据本发明实施例中如何制造相变存储元件的制作流程图,自图3开始显示。为了简明起见,图示中仅显示此相变元件及其相关特征,并没有显示图1中的电极及其相关结构。可以明了的是,电极结构与相变结构两者结合构成本发明实施例的一部份,本领域技术人员均能轻易明了如何将本发明所教示的特征运用于传统的制造过程与技术之中。根据本发明实施例中如何制造相变存储元件的制作流程图,自基板102开始,优选是二氧化硅的形式或是其它介电填充材料,其具有良好绝缘和低介电系数等特性。在此基板之上形成相变材料104区块以及介电填充材料106。这些区块可以个别的形成,或是此介电材料已经存在。在后者的情况下,凹洞可以于此介电材料和相变材料内形成。为本领域所熟知的传统沉积技术,可以适用于此层。此热绝缘元件优选是利用光阻及传统的光刻工艺所形成。此工艺显示于图4中,其中蚀刻掩膜108经过沉积、曝光然后除去此光阻物质所形成。图5A显示此光刻工艺的结果。利用光阻所构成的掩膜,选择性蚀刻可以除去此相变材料至基板的高度,仅留下薄膜18与电极结构接触且形成凹洞140。优选是利用干式各向异性蚀刻,优选是一反应式离子蚀刻(RIE)技术。在蚀刻之后,除去剩余的光阻物质。假如密封层24被使用,此层于蚀刻步骤之后沉积,如图5B所示。优选使用顺形沉积,此步骤必须被仔细控制以使沉积厚度小于凹洞140的一半宽度,所以凹洞可以延伸在相变材料的整个长度,以节省密封层在凹洞穴底部的厚度。通过沉积覆盖层110以覆盖整个由图5A所定义的绝缘室22之上,图2A中所示的相变存储元件被完成于图6A。此层优选是二氧化硅或是其它介电填充材料。此处优选是使用非顺形沉积,以减少进入此绝缘室中的介电材料112。此覆盖层的厚度须大于此绝缘室的宽度,亦可减少进入此绝缘室中的材料。此步骤必须于低气压的环境下进行,如同本领域熟知的溅镀或是其它技术一般,因此可以确保绝缘室的内壁处于低气压的环境下。具有阻障层24的结构,在此步骤也执行如图6A所示的步骤。同样希望在图2B和图2C中用热绝缘材料来取代此绝缘室(分别是有或没有此扩散阻障层)的相变存储元件,其工艺仅与其上所述有少许的变化。唯一的不同是在6A/6B的沉积步骤之前增加扩散阻障层沉积的步骤。优选也能对此结构进行平坦化至此相变材料层的高度,使用某些本领域所熟知的化学机械研磨技术。虽然本发明已参照优选实施例来加以描述,将了解的是,本发明并非受限于其详细描述的内容。替换及修改已于先前描述中所建议,并且其它替换及修改可被本领域技术人员所想到。特别是,根据本发明的结构与方法,所有具有实质上相同于本发明的构件组合、达成与本发明实质上相同结果的,皆不脱离本发明的精神和范围。因此,所有这些替换及修改均意欲落在本发明于所附权利要求及其等同物所界定的范围之中。权利要求1.一种存储元件,包括电极堆叠,其包含第一电极和第二电极元件,大致上是平坦的,通过绝缘元件隔离且与之相互接触,其中所述电极堆叠包括侧表面;相变元件,具有底表面与所述电极堆叠的侧表面接触,包括与所述第一电极和所述第二电极元件电性接触;以及介电填充材料,环绕并覆盖所述相变元件,其中所述介电填充材料与所述相变元件分离,导致所述介电填充材料与所述相变元件定义邻近于所述相变元件的凹洞,且其中所述凹洞容纳低气压环境。2.如权利要求1所述的存储元件,其中所述凹洞容纳热绝缘材料,其具有比所述介电填充材料低的热传导系数。3.如权利要求1所述的存储元件,其中所述相变元件包含锗(Ge)、锑(Sb)、碲(Te)的组合。4.如权利要求1所述的存储元件,其中所述相变元件包括两种或两种以上选自由锗(Ge)、锑(Sb)、碲(Te)、硒(Se)、铟(In)、钛(Ti)、镓(Ga)、铋(Bi)、锡(Sn)、铜(Cu)、钯(Pd)、铅(Pb)、银(Ag)、硫(S)及金(Au)所组成的族群的材料组合。5.如权利要求1所述的存储元件,还包括于所述相变元件之上的阻障层,以使所述相变元件与所述凹洞分离。6.一种形成存储元件的方法,所述方法包括设置电极堆叠,包含第一电极和第二电极元件,大致上是平坦的,通过绝缘元件隔离且与之相互接触,其中所述电极堆叠包括侧表面;形成相变材料层,与所述电极堆叠侧表面接触,且具有与所述电极堆叠大致相同的高度;以及形成介电填充材料层,邻近于所述相变材料层,且具有与所述电极堆叠大致相同的高度;切割间隙以分离所述相变材料层与所述介电填充材料层;沉积介电层于所述相变材料层与所述介电填充材料层之上,其中所述沉积材料桥接并封闭所述间隙,且其中沉积步骤在低气压环境下进行。全文摘要一种具有改善的热绝缘的存储元件。此元件包含电极堆叠,包括第一电极和第二电极元件,大致上是平坦的,通过侧壁子元件隔离且与之相互接触,其中该电极堆叠包括侧表面;相变元件,具有底表面与该电极堆叠侧表面接触,包括与该第一电极和该第二电极元件作电性接触;以及介电填充材料,环绕并覆盖该存储元件,其中该介电填充材料与该相变元件分离,导致该介电填充材料与该相变元件定义邻近于该相变元件的凹洞,且其中该凹洞容纳低气压环境。文档编号G11C11/56GK1971961SQ20061013602公开日2007年5月30日申请日期2006年10月20日优先权日2005年11月21日发明者龙翔澜申请人:旺宏电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1