电动机速度控制装置的制作方法

文档序号:6743126阅读:173来源:国知局
专利名称:电动机速度控制装置的制作方法
技术领域
本发明涉及控制电动机速度的电动机速度控制装置。更具体地说,本发明涉及能够消除扰动转矩影响的电动机控制装置。
用于VCR中的主导轴电机或磁鼓电机必须保持恒定的速度。

图11是这种电机的常规的速度控制环的原理方框图。在图11中,元件100是用在VCR中的主导轴电机或磁鼓电机;元件110是产生频率信号FG的频率发生器,其频率与电机100的速度成正比;元件120是用来检测频率信号FG的周期的周期检测器;元件130是计算周期误差△TFG的比较器,△TFG为输入的所需周期Tr与来自周期检测器120的检测到的周期TFG之差;元件140是计算控制信号C的算法单元,例如,控制信号C等于(Kp+Ki/s)△TFG,其中Kp为比例增益,Ki是积分增益,S是拉普拉斯算子。元件150是按照控制信号C供给电机100驱动电流Ia的电机驱动电路。
在图11的控制环中,由磁带输送、电机转矩脉动、外部振动等引起的扰动转矩加到电机100上。扰动转矩的影响表现在电机速度的波动。即使扰动产生速度波动,整个控制环沿方向作用以减少速度波动,控制环的增益越高,抑制扰动的程度越大。不过,增益是有限的,因为如果控制环的增益太高时将使整个系统呈振荡状态。换句话说,如果扰动转矩大,就会因为抑制程度不能增加而不能使电机速度的波动得到充分的抑制。
近来,提出了各种电机控制装置,利用扰动转矩观测器来抑制扰动转矩的影响。例如,在Proc.IEEE Int.Conference,Robotics and Automation,Vol.1,326-331(1987)中的“A Robust Decontralized Joint Control Based on Interference Estimation”,中描述了一种这样的装置。在这种装置中,扰动转矩观测器根据电机的速度和电机的驱动指令来估计加到电机上的扰动转矩。驱动转矩根据来自扰动转矩观测器的估计扰动转矩被校正。其结果是消除了扰动转矩的影响和电机速度的波动。
不过,如图11所示的用于VCR中的电机控制装置借助于使所需周期Tr与检测周期TFG之间的差减小到零来保持电机速度恒定。因此,需要把检测到的周期转换成速度,以便在VCR中用常规的扰动转矩观测器来控制电动机。这一转换使得硬件或软件程序的运行顺序复杂了。而且,采用家用VCR中使用的处理器来实现根据常规扰动转矩观测器的消除扰动转矩的处理是困难的,这种VCR的性能不是很高,因为常规的转矩观测器的结构复杂。
因而,本发明的目的在于提供一种具有较简单的转矩观测器的电机控制装置,其适用于VCR并可充分抑制由于扰动转矩而产生的电机速度的波动。
为实现上述目的,按照本发明的电机控制装置包括用来产生与电机速度成正比的频率的频率信号的频率发生器;用来检测该频率信号的周期的周期检测器;用来计算周期误差信号的比较器,该误差信号等于所需周期与由周期检测器检测到的周期之差;一个根据周期误差信号计算控制信号的算法单元;根据驱动信号给电机供电的电机驱动电路;用来计算估计扰动信号的扰动转矩观测器,估计扰动信号是根据检测周期信号和驱动信号使加在电机上的扰动转矩转换成的电信号,略去扰动转矩本身的估计,及用来借助于把控制信号加到估计扰动信号上来计算驱动信号的转矩校正单元。
扰动转矩观测器利用检测到的周期信号直接作为其输入信号。因此,不需要为扰动转矩观测器的操作而把检测到的周期转换为电机的速度。此外,扰动转矩观测器直接计算转换成电信号的扰动转矩的转换值,而不计算扰动转矩本身。结果,按照本发明的扰动转矩观测器的结构比常规的扰动转矩观测器简单。
因而,本发明提供的电机控制装置可以容易地应用在常规的电机控制装置上,这种控制装置借助于使检测到的频率信号的周期与所需周期之差减少到零来保持电机速度恒定。此外,因为转矩校正单元的作用消除了扰动转矩的影响,按照本发明的电机控制装置能够充分地抑制由扰动转矩产生的电机速度的波动。
图1A是本发明电机控制装置第一实施例的原理方框图;
图1B是第一实施例的扰动转矩观测器的方框图;
图2A是本发明电机控制装置第二实施例的原理方框图;
图2B中第二实施例的扰动转矩观测器的方框图;
图3是本发明第三或第四实施例的扰动转矩观测器的方框图;
图4A是说明第三实施例运行顺序的流程图;
图4B是说明第三实施例的扰动转矩观测器的操作顺序的详细流程图;
图5A是说明第四实施例的操作顺序的流程图;图5B是说明第四实施例的扰动转矩观测的操作顺序的一部分的详细的流程图;
图5C是说明第四实施例的扰动转矩观测器的操作顺序的其余部分的流程图;
图6是本发明第五实施例的扰动转矩观测器的方框图;
图7A是说明第五实施例操作顺序的流程图;
图7B是说明第五实施例扰动转矩观测器的操作顺序的一部分的详细流程图;
图7C是说明第五实施例扰动转矩观测器的操作顺序的其余部分的流程图;
图8是说明本发明第六实施例的操作顺序流程图;
图9是本发明第七实施例的原理方框图;
图10A是说明第七实施例的操作顺序流程图;
图10B是说明第七实施例当周期误差超出一固定边界时扰动转矩观测器的操作顺序的流程图;以及图11是用于VCR中的先有技术电机控制装置的方框图。
下面描述本发明的第一实施例。图1A中,元件100是电动机;元件110是产生频率信号FG的频率发生器,其频率正比于电机100的速度;元件120是周期检测器,它检测频率信号FG的周期;元件130是计算周期误差△TFG的比较器,△TFG是所需周期Tr与由周期检测器120输出的检测周期TFG之差;元件140是根据周期误差△TFG计算控制信号C的算法单元;元件150是根据驱动信号D供给电机100驱动电流Ia的电机驱动电路;元件1是扰动转矩观测器,用来计算估计的扰动转矩信号d1;元件10是转矩校正单元,用来根据估计扰动转矩d1校正控制信号C,并以驱动信号D作为其输出结果。
图1A所示的本发明的第一实施例的操作如下扰动转矩Td加到电机100上。周期检测器120检测由频率发生器110发生的频率信号FG的周期。比较器130从所需周期Tr(常数)中减去检测到的周期信号TFG,并以周期误差△TFG输出相减的结果。算法单元140计算控制信号C,例如它可以等于(Kp+Ki/S)△TFG,其中Kp是比例增益,Ki是积分增益,S是拉氏算子。转矩校正单元10把控制信号C加到由扰动转矩观测器1输出的估计扰动信号d1上,并以驱动信号D输出相加的结果。扰动转矩观测器1计算估计的扰动信号的操作将在后面说明。驱动电路150根据驱动信号D向电机100提供驱动电流Ia。
按照这些过程,电机100的速度被控制,使得周期误差减小到零。换句话说,电机100的速度保持为恒值。如果估计的扰动信号为零,这些过程则基本上和图11所示的常规电机控制装置相同。
在图1B中,元件11是把增益设定为常数K的增益设定单元,元件12是第一加法器;元件13是第二加法器以及元件14是一阶低通滤波器,其传递函数为ω0/(s+ω0),其中ω0是截止角频率。常数K表示如下K=ω0· (J)/(Kt) · 1/(Kamp) · (2π)/(Z) · 1/(Tr2) (1)其中J是电机100的惯量,Kt是转矩常数,Kamp是驱动电路150的增益,Z是由频率发生器100产生的每转脉冲数。
图1B所示的扰动转矩观测器1的作用如下来自周期检测器120的检测周期TFG乘以常数K,其结果借助于第一加法器12被从驱动信号D中减去。第一加法器的输出送入低通滤波器14。第二加法器13把低通滤波器14的输出和乘积的输出相加并把其结果作为估计扰动信号d1输出。
如上所述,借助于转矩校正单元10把估计扰动信号d1加到控制信号C上。借助于这一转矩校正,扰动转矩Td的影响以及电机速度的波动被消除了。
下面对实现抑制扰动转矩的影响进行说明。
从图1B所示的方框图中可以得到表明估计扰动d1,检测周期TFG以及驱动信号D之间的关系下式d1= (ω0)/(s+ω0) ·(D+ (J)/(Kt) · 1/(Kamp) · (2π)/(Z) · 1/(Tr2) ·STPG) (2)其中d1,D和TFG是s-域的函数。
然后假定x(t)代表检测周期的时域函数,y(t)代表电机100的角速度的时域函数,即假定如下TFG= (ω0)/(s+ω0) {X(t)}, ω= {y(t)} (3)其中 表示进行拉氐变换,ω表示电机100的速度的s域函数。
x(t)和y(t)之间的关系如下y(t)= (2π)/(Z) · 1/(x(t)) (4)因电机100被控制使其速度恒定,故检测周期x(t)在所需周期Tr(常数)的一邻域内变化,因此,当x(t)=Tr时,式(4)的时间微分如下
(dy)/(dt) = (2π)/(Z) · 1/(Tr2) · (dx)/(dt) (5)对式(5)两边取拉氏变换,利用式(3)得如下结果sω=- (2π)/(Z) · 1/(Tr2) ·sTPG(6)因此,利用(6)式,式(2)变成d1= (ω0)/(s+ω0) ·(D- (J)/(Kt) · 1/(Kamp) ·sω) (7)另一方面,扰动转矩Td,驱动信号D和电机100的速度ω之间有如下关系Td=KtKampD-Jsω(8)此处Td是s域函数因而,利用式(8),式(7)变成d1= (ω0)/(s+ω0) · 1/(Kt) · 1/(Kamp) ·Td (9)式(9)表明,估计扰动信号d1等于扰动转矩Td乘以转矩常数Kt的倒数,乘以驱动电路150的增益的倒数,再乘以低通滤波器14的传递函数。换句话说,估计扰动信号d1由扰动转矩Td的转换信号的低频分量组成,具有控制信号C的量纲(dimension)。
相应地,图1A中从扰动转矩Td到电机100的速度ω的传递函数G(s),利用(9)式变成G(s)=(1-ω0s+ω0)GC(s) =ss+ω0Gc(s) (10)]]>其中Gc(s)代表从扰动转矩Td到图11中常规电机控制装置的电机速度ω的传递函数。
因而,式(10)的右边第一项,即s/(s+ω0),表示由扰动转矩观测器1获得的效果。这一项表示一阶高通滤波器的传递函数,它的截止角频率为ω0。这说明扰动转矩观测器1能够消除由扰动转矩Td引起的电机100的速度的波动,扰动转矩Td具有低于ω0/(2π)的频率。
按照本发明的第一实施例,扰动转矩观测器不需要把检测周期转换成电机速度,因为扰动转矩观测器可以直接利用检测周期TFG作为其输入信号。此外,本发明的扰动转矩观测器具有比常规的扰动转矩观测器简单的结构,因为这种观测器直接地把扰动转矩Td转换为电信号C而不需确定实际的扰动转矩Td本身。因此,它可以被容易地应用于电机控制装置,以保持与频率信号周期有关的电机速度为恒值。结果,不必使用于电机控制的硬件和软件复杂化便可消除电机速度的波动。
本发明的第二实施例描述如下在图2A中,元件2是第二实施例的扰动转矩观测器。因为其它元件和图1的相同,它们的说明被省略。
在图2B中,元件11是用来把增益设定为常数K的增益设定单元;元件12是第一加法器;元件13是第二加法器;元件14是一阶低通滤波器,其传递函数为ω0/(s+ω0)。如图2B所示,扰动转矩观测器2的结构与图1B中所示的扰动转矩观测器1的结构相同。不过,扰动转矩观测器2和扰动转矩观测器1的区别在于,它用周期误差△TFG代替了检测周期TFG。换句话说,扰动转矩观测器2根据误差信号△TFG和驱动信号D计算估计扰动信号d2。
图2B中的扰动转矩观测器2的操作如下。由比较器130输出的周期误差信号△TFG乘以常数K。其结果借助于加法器12和驱动信号D相加。第一加法器的输出送至低通滤波器14。第二加法器13从乘的结果中减去低通滤波器14的输出,并把减的结果作为估计扰动信号d2输出。
估计扰动信号d2借助于转矩校正单元10加到控制信号C上。用这一转矩校正,扰动转矩Td的影响被消除,因而消除了电机100的速度波动。
下面说明抑制扰动转矩影响的实现过程。
由图2B所示的方框图可以得出下式,它表示估计扰动信号d2、误差信号△TFG以及驱动信号D之间的关系d2= (ω0)/(s+ω0) (D- (J)/(Kt) · 1/(Kamp) · (2π)/(Z) · 1/(Tr2) ·s△TPG) (11)其中d2和△TFG是s域函数。
我们可以假定ω(t)表示周期误差的时域函数。即假定如下△TFG= {ω(t)} (12)并且x(t)和ω(t)之间有如下关系ω(t)=Tr-x(t)(13)在(13)式中,因为所需的周期Tr是常数,式(13)两边的时间微分如下(dω)/(dt) =- (dx)/(dt) (14)另一方面,如上所述,x的时间微分和y的时间微分之间的关系由式(5)给出。因此,利用式(5),式(14)变成(dω)/(dt) = (2π)/(Z) · 1/(Tr2) · (dy)/(dt) (15)对式(15)两边取拉氏变换,利用式(3)和(12)得结果如下Sω= (2π)/(Z) · 1/(Tr2) ·s△TPG(16)因此,利用式(16),式(11)变为
d2= (ω0)/(s+ω0) ·(D- (J)/(Kt) · 1/(Kamp) ·sω) (17)比较式(2)和(11)可见,估计扰动信号d2等于扰动转矩观测器1输出的估计扰动信号d1。因而,估计扰动信号d2和扰动转矩Td之间的关系由同一公式(9)表示。
因此,按照本发明第二实施例,我们可以得到和第一实施例相同的结果。而且,因为周期误差信号△TFG的值小于检测到的周期TFG的值,扰动转矩观测器2的动态范围可能较扰动转矩观测器1的动态范围窄。
下面说明本发明的第三实施例,它是使用软件伺服结构(Servo arrangement)的第二实施例的改型。
第三实施例结构和图2A所示的第二实施例相同。在使用软件伺服结构的情况下,借助于周期检测器120、比较器130、算法单元140、校正单元10和扰动转矩观测器2的操作借助于使用一处理器实现,它根据存储在存贮器中的软件程序进行操作。
图3是为利用软件伺服而改型的扰动转矩观测器2的方框图,即其中低通滤波器14被数字式地仿真。
在图3中,元件41是把增益设定为α1的增益设定单元;元件45是把增益设定为常数α2的增益设定单元;元件43和46是用来实现采样时间Ts滞后的滞后单元;元件42和44是加法器。低通滤波器14的传递函数Q1(Z)由下式给出Q1(Z)= (a2(1+z-1))/(1-a1z-1) (18)
其中α1和α2在采样时间为Ts时有如下形式a1=2-ω0Ts2+ω0Ts(19)a2=ω0Ts2+ω0Ts(20)]]>用s-z变换把一阶低通滤波器的连续传递函数Q(s)=ω0/(s+ω0)进行变换,得传递函数Q1(z),s-z变换如下s= 2/(Ts) · (1-z-1)/(1+z-1) (21)因为这种变换是熟知的,其说明省略。
图4A是说明第三实施例的操作顺序的流程图,图4B是说明图3所示的扰动转矩观测器2的操作顺序的详细流程图。
方块50确定是否频率信号FG的边沿已输入给处理器。如果该边沿已被输入,操作进入下一方框51,如果没有进入,则操作返回方框50,即方框50的操作被重复进行,直到边沿输入为止。方框51存贮边沿输入的时间,并根据这一输入时间和上次输入时间的差值计算检测周期TFG。方框51相当于由图2A所示的周期检测器120进行的操作。方框52借助于从所需周期Tr中减去检测周期TFG计算周期误差△TFG。这一方框52相当于图2A所示的比较器130进行的操作。方框53由周期误差△TFG和先前存贮的存贮数据M1计算估计扰动信号d2。该方框53相当于图3所示的扰动转矩观测器2进行的操作。这些方框操作的详细情况将在后面说明。方框54计算控制信号C,它是伺服补偿,例如比例和积分补偿的结果。该方框相当于图2A所示的算法单元140进行的操作。因为如何利用软件实现这种补偿是熟知的,其详细说明被省略了。方框55计算驱动信号D,它是借助于把估计扰动信号d2加到控制信号C上获得的。该方框55相当于图2A所示的校正单元140完成的操作。方框56把驱动信号D存贮在存储器中作为存储数据M1,该数据在方框53当下一个频率信号FG的边沿输入时被使用。方框56相当于图3所示的滞后单元完成的操作。最后,方框57对驱动信号D提供D/A(数字对模拟)转换。方框57之后,操作转向方框50,上述操作被重复进行,与频率信号FG同步。
另一方面,D/A转换器提供给驱动电路150相应于驱动信号D的电压。驱动电路150根据这一电压给电机100提供驱动电流Ia。结果,电机100的速度得到控制,使周期误差减少为零,并且保持恒定。
下面描述方框53进行的操作。
如图4B所示,方框53由方框530-537组成。方框530计算数字数据a,它是周期误差△TFG乘以常数K的结果。该方框530相当于增益设定单元11进行的操作。方框531借助于把上述的存储数据M1加到数字数据a上计算数字数据b。该方框531相当于第一加法器12完成的操作。方框532计算数字数据p,它是存储数据M2乘以常数α2的结果,此处的M2已事先被存放在存储器中。该方框532相当于由增益设定单元41进行的操作。方框533借助于把数字数据b加到数字数据p上计算数字数据q。该方框533相当于由加法器42进行的操作。方框534借助于把上述的存储数据M2加到数字信号q上计算数字数据v1。该方框534相当于由加法器44进行的操作。方框535把数字数据v1存储在存储器中作为存储数据M2,当频率信号的下一边沿输入时用于方框532和534。该方框535相当于图3所示的滞后单元43进行的操作。方框536计算数字数据v2,它是数字数据v1乘以常数α2的结果。该方框536相当于由增益设定单元45进行的操作。最后,方框537借助于从数字数据v2中减去数字数据a计算估计扰动信号d2。该方框537相当于由第二加法器13进行的操作。
根据本发明的第三实施例,我们可以得到和第二实施例相同的结果,因为图3中的扰动转矩观测器2的结构使得其作用和图2A所示的相同。
本发明的第四实施例,它是第三实施例的改型,它由于处理器的操作而缩短了时间滞后,描述如下。
图5A是用来说明第四实施例操作顺序的流程图,图5B和5C是说明图3所示的扰动转矩观测器2的操作顺序的详细流程图。因为第四实施例的结构和第三实施例相同,其结构的说明被省略了,只对其操作顺序说明如下。
在图5A中,只有相当于图3中扰动转矩观测器2进行的操作的方框58和59不同于图4中的这些方框。因此,只对这些方框加以说明。
方框58根据周期误差△TFG和先前贮存的存储数据M1计算估计扰动信号d2。方框59执行由扰动转矩观测器进行的方框58未执行的操作。
方框58由图5B所示的6个方框组成。虽然每个方框都如上所述,但其操作顺序的次序不同。首先,方框530计算数字数据a,它是周期误差△TFG乘以常数K的结果。该方框530相当于由增益设定单元11进行的操作。方框531借助于把上述的存储数据M1加到数字数据a上计算数字数据b。该方框531相当于由第一加法器12进行的操作。方框533借助于把数字数据b加到先前计算出的数字数据P上计算数字数据q。该方框533相当于由加法器42进行的操作。方框534计算数字数据v1,借助于把先前存储在存储器中的存储数据M2加到数字数据q上进行计算。该方框534相当于由加法器44进行的操作。方框536计算数字数据v2,它等于数字数据v1乘以常数α2。该方框536相当于由增益设定单元45进行的操作。最后,方框537借助于从数字数据v2中减去数字数据a计算估计扰动信号d2。该方框537相当于由第二加法器13进行的操作。
方框59由两个方框组成,即方框535和532。方框535把数字数据q作为存储数据M2存储在存储器中,它是在方框533中算出的。该存储数据M2在方框534当频率信号FG的下一个边沿输入时被使用。该方框535相当于图3中的滞后单元43进行的操作。方框532计算数字数据P,借助于用常数α2乘以在前面方框535中存储的存储数据M2进行计算。该方框532相当于增益设定单元41进行的操作。
在软件伺服中,由于处理器操作的时间滞后引起变劣的伺服性能。因此,需要尽可能地减少这一时间滞后。当使用高性能的处理器时则不发生这一问题。不过,当使用的处理器的运算速度不是非常快时,例如在家用的VCR中的伺服处理器,这一问题将成为严重的。
在图4A或图5A说明的操作顺序中,这一时间滞后近似等于这样一个时间间隔,即从频率信号的边沿被输入的时刻到驱动信号D被输入D/A转换器的时刻。
在另一方面,在处理器的算术运算中,乘法一般比加减用时间长得多。
因而,为了缩短由于处理器的操作引起的时间滞后,重要的是减少在驱动信号输出之前进行的乘法次数。
根据图4A所示的第三实施例,操作顺序需要作三次乘法,它们在驱动信号D被输出之前在方框530,532和536内进行。在这些乘法运算中,方框532的乘法可以在驱动信号D输出之后进行。第四实施例的操作顺序就作了这样的修正。
因此,按照第四实施例,由于时间滞后的伺服性能的变差被减少了,这是因为时间滞后被缩短了。不用说,可以获得和第三实施例一样的抑制扰动转矩影响的相同的效果。
本发明的第五实施例描述如下,它是为利用软件伺服对第二实施例的另一改型。
第五实施例的结构和图2A所示的第二实施例的相同。如前所述,在采用软件伺服时,由周期检测器120、比较器130、算法单元140、校正单元10和扰动转矩观测器2的执行操作通过使用处理器实现,该处理器按照存储器中的软件程序进行操作。
图6是为利用软件伺服而改型的扰动转矩观测器2的另一程序框图,即,其中的低通滤波器14采用了数字仿真来实现。
在图6中,元件61是增益设定单元,把增益设定为常数β1;元件64是用来把增益设定为常数β2的增益设定单元;元件63是一滞后单元,用来提供一个采样时间Ts的滞后。低通滤波器14的传递函数Q2(z)由下式给出Q2(z)=β2(1+z-1)1-β1z-1(22)]]>此处常数β1、β2利用采样时间Ts表示如下β1=1-ω0Ts (23)
β2=ω0Ts (24)传递函数Q2(z)借助于利用s-z变换来变换一阶低通滤波器的连续传递函数Q(s)=ω0/(s+ω0)获得,s-z变换如下S= 1/(Ts) · (1-z-1)/(z-1) (25)因为这一变换是熟知的,其说明被省略。
图7A是说明第五实施例的操作顺序的流程图。图7B和7C是说明图6所示的扰动转矩观测器2的操作顺序的详细流程图。
在图7A中,只有相当于由图6中扰动转矩观测器2完成的操作的方框70和71与图4A的这些方框不同。因此,只对这些方框说明如下方框70根据周期误差△TFG和先前存储的数据M1计算估计扰动信号d2。方框71进行在方框70中没有进行的由图6所示的扰动转矩观测器2进行的操作。
主框70包括两个方框,即700-701,如图7B所示。首先,方框700借助于用常数K乘误差周期△TFG计算数字数据a。该方框700相当于由增益设定单元11进行的操作。然后,方框701借助于把数字数据a从先前计算的数字数据v3中减去计算估计扰动信号d2。该方框701相当于由第二加法器13进行的操作。
方框71由4个方框组成,即方框710-713,如图7C所示。首先,方框710借助于把先前存储在存储器中的存储数据M1加到数字数据a上来计算数字数据b。该方框710相当于由第一加法器12进行的操作。方框711计算数字数据P1,借助于用常数β1乘先前存储在存储器中的存储数据M3进行计算。该方框711相当于由增益设定单元61进行的操作。方框712借助于用常数β2乘上述的存储数据M3计算数字数据v3。该方框712相当于由增益设定单元64进行的操作,并且数字数据v3当频率信号FG的下一边沿被输入时被方框701利用。方框713把在方框710上已计算出的数字数据b加到数字数据P1上,并把其结果作为存储数据M3存储在存储器中。该存储数据M3在方框711-712当频率信号的下一边沿输入时被使用。该方块713相当于图6所示的滞后单元63进行的操作。
按照第五实施例的扰动转矩观测器的操作顺序,计算估计扰动信号d2的过程比第四实施例简单得多。在第四实施例的操作顺序中,虽然在输出估计扰动信号d2之前需要两个乘法,而在第五实施例的操作顺序中,只需要一步乘法。
按照第五实施例,因为由于处理器操作的时间滞后被缩短了,由时间滞后产生的伺服性能变差被减少了。
下面描述本发明的第6实施例,它是为了在较大程度上减少由操作时间滞后引起的伺服性能变差根据第五实施例的改型。
图8是说明第六实施例的操作顺序流程图。第六实施例的结构和第五实施例相同。
在图8中,方框80-81加到图7A所示的操作顺序上,其它方框和图7A、7B和7C的相同。
首先,通过方框50、51、52和70计算估计扰动信号d2。这些方框的操作已经说明过了。接着,在方框80,借助于把估计扰动信号d2加到控制信号C上,它是先前计算出的并且下面称为Cn-1,并且把结果作为驱动信号D输出来进行第一转矩校正。该方框80相当于转矩校正单元10进行的操作。在方框81,驱动信号D被提供给D/A转换器。该D/A转换器立即根据驱动信号D供给驱动电路150电压。
然后,在方框54计算控制信号C,下面称为Cn。在方框55,借助于把估计扰动信号d2加到控制信号Cn上并把结果作为驱动信号D输出来进行第二转矩校正,该方框55相当于转矩校正单元10进行的操作。在方框56,在方框55算出的驱动信号D和在方框54算出的控制信号Cn分别作为存储数据M1和控制信号Cn-1存储在存储器中。最后,在方框57,在方框55算出的驱动信号D再次提供给D/A转换器。该D/A转换器立即供给驱动电路150一相应于这一驱动信号D的电压。在方框57的操作之后,操作返回方框50,上述操作被重复进行,与频率信号FG同步。
在另一方面,驱动电路150供给电机100相应于其电压输入的驱动电流Ia,结果,电机100的速度被控制得减小周期误差为零因而保持恒定。
根据上述第三、第四和第五实施例的操作顺序,在估计扰动信号d2的计算完成的时刻和控制信号C的转矩校正进行的时刻之间有一时间滞后。换句话说,在方框54计算控制信号C的操作时间成为这一时间滞后。这一时间滞后引起了变差的伺服性能,如果和采样周期相比是不可忽略的话。
不过,本发明第六实施例的操作顺序设计得不产生这一时间滞后。换句话说,在第六实施例的操作顺序中,第一转矩校正在方框80在计算估计扰动d2之后立即进行并输出驱动信号。然后,第二转矩校正在方框55在计算控制信号Cn之后进行并再次输出驱动信号D。结果,按照本发明的第六实施例,即使计算控制信号C的操作时间不能忽略也不产生由于所述时间滞后引起的伺服性能变差。
本发明的第七实施例说明如下,它是第三实施例的改型。在这一实施例中,电机起动时的伺服性能也被考虑了。
图9表示本发明的第七实施例。在图9中,在图2A所示的结构中增加了判断单元20。判断单元20判断周期误差△TFG的大小并向扰动转矩观测器2提供相应于判断结果的重置信号Re。此外,图9所示的扰动转矩观测器2和图3所示的有相同的结构,并且其它元件和图2A所示的相同。
图10A是说明第七实施例的操作顺序的流程图,图10B是说明起动图3所示的扰动转矩观测器2的过程的操作顺序流程图。
首先考虑电机100由停止然后起动的情况。在这种情况下,首先,相应于电机100起动所需的起动转矩的电压借助于处理器通过D/A转换器输出。该电压被供给驱动电路150。驱动电路150把相应于所述电压的驱动电流Ia供给电机100,然后,电机100开始转动。电机100起动之后,频率发生器110发出其频率正比于电机速度的频率信号FG。频率信号FG被输入到处理器并进行图10A所示的操作顺序。
在图10A所示的操作顺序中,在图4A所示的操作顺序上增加了方框90-93。因为其它方框都已说明过了,它们的描述被省略。
在方框90,确定周期误差△TFG的大小是否在一固定的范围内。如果在此范围内,在框91把重置信号Re设定为低电平,如果不在此范围内,在方框92把重置信号Re设置为高电平。一般地,固定的范围设定为所需周期Tr的大约5%。甚至在如图11所示的常规电机控制装置中这些范围在电机起动之后立即就被满足了。
当重置信号Re被设定为低电平时,图10A所示的操作顺序和图4所示的相同。因此,当重置信号Re被置为高电平时进行的操作顺序描述如下。
当重置信号Re设置为高电平时,电机100的速度不处在稳定条件下。因而,扰动转矩观测器2不能精确地消除扰动转矩,因为电机100的速度ω的时域函数y(t)和频率信号FG的周期TFG的时域函数x(t)之间的微分方程不再满足,该方程如式(5)所示。由于这一原因,在方框93,扰动转矩观测器2的操作被初始化。
如图10B所示,方框93由两个方框930和931构成。在方框930,先前存储在存储器中的存储数据M1被置为零。在方框931,估计扰动信号d2也被置为零。
在初始化操作之后,进行方框54-57的操作。不过,在方框55,基本上不进行转矩校正,因为在方框931已把估计扰动信号d2置为零。
如上所述,在本发明的第七实施例中,当周期误差△TFG超出固定范围时,基本上不进行转矩校正。因此,按照这一实施例,电机被平滑地起动,因为阻止了相应于不精确的估计扰动信号的转矩校正。在电机起动完成并且其速度达到稳定状态之后,可以获得如式(10)所示的扰动抑制的效果。
在这一实施例的说明中,只说明了速度控制。不过,用常规技术对每一实施例增加一个对电机进行转相(rotationalphase)控制的装置是容易的、虽然被转矩校正电路10输出的驱动信号D被输入给扰动转矩观测器1或2,也可以用供给电机100的驱动电流Ia来代替驱动信号D。
在本发明的第二、第三、第四、第五、第六和第七实施例的描述中,周期误差被送入扰动转矩观测器2。不过,可以用周期检测器120输出的检测周期TFG来代替周期误差△TFG。而且,不用检测周期TFG,任何其它信号都可使用,只要这些信号本质上相当于频率信号FG的周期。
本发明的第三、第四、第五、第六和第七实施例是针对软件伺服的情况描述的。然而,这些实施例当然也可以用硬件来实现。
而且,在第四、第五、第六和第七实施例中,电机100的检测速度信号或速度误差信号可以用作扰动转矩观测器2的输入信号而不用周期误差信号△TFG。
除这些实施例之外,只要发明目的不变,任何改型都是可能的。
权利要求
1.一种电动机控制装置,用来在存在扰动转矩时根据频率信号的周期保持电机速度恒定,包括频率发生器,用来产生其频率正比于电机速度的频率信号;用来检测所述频率信号的周期的周期检测器;用来产生周期误差信号的比较器,该误差信号与所需周期和来自所述周期检测器的检测周期信号之差相对应;按照所述周期误差信号计算控制信号的算法单元,根据驱动信号给电机供给电机驱动电路;用来由所述检测周期信号和所述驱动信号产生估计扰动信号的扰动转矩观测器,所述估计扰动信号是施加到电机上的扰动转矩转换成的电信号,而不是扰动转矩本身的计算值;以及转矩校正单元,借助于把所述控制信号加到所述估计扰动信号上以产生所述驱动信号。
2.按照权利要求1的电动机控制装置,其特征在于所述扰动转矩观测器包括用固定系数乘所述检测周期信号的装置;用来从所述驱动信号中减去所述乘装置的输出的装置;用来对所述减装置的输出进行低通滤波的低通滤波器;以及借助于把所述乘装置的输出加到所述低通滤波器输出上以便计算所述估计扰动信号的装置。
3.按照权利要求2的电动机控制装置,其特征在于所述扰动转矩观测器按照与所述频率信号同步软件程序而操作。
4.按照权利要求2的电机控制装置,其特征在于所述低通滤波器的传递函数为α2(1+z-1)/(1-α1z-1),其中z-1是一个采样时间的滞后单元,α1,α2是代表用来确定所述低通滤波器截止频率的常数。
5.按照权利要求4的电动机控制装置,其特征在于,所述低通滤波器的操作部分在所述扰动转矩观测器输出估计扰动信号之后进行。
6.按照权利要求2的电动机控制装置,其特征在于,所述低通滤波器的传递函数为β2z-1/(1-β1z-1),其中z-1是一个采样时间的滞后单元,β1、β2是代表用来确定所述低通滤波器的截止频率的常数。
7.按照权利要求6的电动机控制装置,其特征在于,所述减法操作及所述低通滤波器的操作部分在所述扰动转矩观测器输出估计扰动信号后进行。
8.按照权利要求2的电动机控制装置,其特征在于,其中所述算法单元和转矩校正单元根据与所述频率信号同步的软件程序操作,在所述扰动转矩观测器输出估计扰动信号之后,所述转矩校正单元立即进行第一转矩校正,在所述算法单元输出所述控制信号之后,立即进行第二转矩校正。
9.一种电动机控制装置,用来在存在扰动转矩时根据频率信号的周期保持电动机速度恒定,包括用来产生其频率与电机速度成正比的频率信号的频率发生器;用来检测所述频率信号周期的周期检测器;用来产生周期误差信号的比较器,周期误差信号为所需周期与来自周期检测器的检测周期信号之差;用来根据所述周期误差信号计算控制信号的算法单元;用来根据驱动信号给电机供电的电机驱动电路;用来由所述周期误差信号和所述驱动信号产生估计扰动信号的扰动转矩观测器,估计扰动信号是施加在电机上的扰动转矩转换成的电信号,而不计算扰动转矩本身;以及用来把所述控制信号加到所述估计扰动信号上产生所述驱动信号的转矩校正单元。
10.按照权利要求9的电动机控制装置,其特征在于,所述扰动转矩观测器包括用固定系数乘所述周期误差信号的装置;把所述乘装置的输出加到所述驱动信号上的装置;用来对所述加装置的输出进行低通滤波的低通滤波器;以及借助于从所述低通滤波器的输出减去乘装置的输出从而计算所述估计扰动信号的装置。
11.按照权利要求10的电动机控制装置,其特征在于,其中所述扰动转矩观测器按照与所述频率信号同步的软件程序操作。
12.按照权利要求10的电动机控制装置,其特征在于,其中所述低通滤波器的传递函数为α2(1+z-1)/(1-α1z-1),其中z-1是一个采样时间的滞后单元,α1、α2代表确定所述低通滤波器的截止频率的常数。
13.按照权利要求12的电动机控制装置,其特征在于,其中所述低通滤波器操作部分在所述扰动转矩观测器输出所述估计扰动信号之后进行。
14.按照权利要求10的电动机控制装置,其特征在于,其中所述低通滤波器的传递函数为β2z-1/(1-β1z-1),其中z-1是一个采样时间的滞后单元,β1、β2代表确定所述低通滤波器截止频率的常数。
15.按照权利要求14的电动机控制装置,其特征在于,其中加装置的操作和所述低通滤波器操作部分在所述扰动转矩观测器输出所述估计扰动信号之后进行。
16.按照权利要求10的电动机控制装置,其特征在于,其中所述算法单元和转矩校正单元按照与所述频率信号同步的软件程序操作,在所述扰动转矩观测器输出估计扰动信号之后,所述转矩校正单元立即进行第一转矩校正,在所述算法单元输出所述控制信号之后,立即进行第二转矩校正。
17.按照权利要求1-16中任一个的电机控制装置,其特征在于,进一步包括用来判定所述周期误差信号是否在一固定范围之内的判定单元,当所述判定单元确定所述周期误差信号在所述范围之外时,所述转矩校正单元被禁止把估计扰动信号加到控制信号上。
全文摘要
按其频率正比于电机速度的频率信号的检测周期控制电机速度的电机控制装置,根据驱动信号驱动电机,使其速度保持恒定。电机控制装置包括接收驱动信号和检测周期信号的扰动转矩观测器,它产生相当于把扰动转矩转换成电信号的估计扰动信号;产生周期误差信号的比较器,周期误差信号是检测周期与所需周期之差;根据周期误差信号产生控制信号的算法单元;把估计扰动信号加到控制信号上产生驱动信号的转矩校正单元。
文档编号G11B15/46GK1101179SQ9312140
公开日1995年4月5日 申请日期1993年11月24日 优先权日1992年11月24日
发明者松尾景介, 稻治利夫 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1