光头设备的制作方法

文档序号:6744904阅读:164来源:国知局
专利名称:光头设备的制作方法
技术领域
本发明涉及光头设备,用以对诸如光盘(optical disk)或光卡(opticalcard)等光介质进行信息的记录、再现或擦除。
光存储技术采用具有一比特方式的光盘作为高密度、高容量的存储介质,而这种技术已将其实际用途拓展至数字音盘(digital au-dio disk)、视盘(video disk)、文献档案盘(document file disk)以及数据存储器(datafile)。
以高可靠地转换成微光点(micro-spot)的光束对光盘进行信息记录或再现的装置主要靠它的光学系统。装置以光头设备作为主要部件。光头设备的基本功能主要划分为光束会聚以形成具有衍射限的微光点,光学系统的会聚和跟踪控制以及凹点信号(pit signal)的检测。通过根据一个目标把各种光学系统与各种光电转变系统组合起来以及使用光头设备可以实现这些功能。
近来,由于改进了光学系统的设计和做出了能产生较短波长光的用作光源的二极管激光器,因而已开发出具有更大存储容量的更高密度的光盘。获得更高密度的一种方法是增加光学系统在光盘上的数值孔径(NA),该光学系统在光盘上将光束会聚成微光点。
在这种方法中,由于光盘倾斜而使象差增大是一个问题。即,如果数值孔径增大,则由于光盘倾斜产生的象差也增大,可以用减小光盘基片的厚度来防止出现这一问题。例如,为了与NA=0.5而厚度为1.2mm的光盘具有相同的象差容限,则对于NA=0.6的光盘,其厚度要减小到0.6mm。
于是,高密度光盘希望有较小的厚度。这样,诸如数字多用途盘(digital versatiledisk)等下一代更高密度的光盘,其基片厚度要比诸如激光唱盘(CD)等许多现有技术光盘的基片厚度更小。
所以,最终要求有这样一台光盘驱动器,它对于现有技术的光盘和更高密度的下一代光盘都能进行记录和再现。于是需要有这样一种光头设备,它能把衍射限的光束会聚在具有不同基片厚度的光盘上。
发明人已经提出一种能用于具有不同基片厚度的光盘的光头(日本专利申请NO.5-318230/1993)。在光头中,使来自光源的光束准直,并且用复合透镜将光束会聚成光盘上的微光点。被光盘反射的光沿同一条光路返回。然后,它被分束器反射以由光检测器检测。光头用一个包括物镜和使部分入射光衍射的全息透镜(hologramlens)的双焦点透镜在不同厚度的光盘上形成衍射限的会聚光点。例如,全息透镜具有一同心光栅,用以衍射一部分入射光束,而透射光(或零级衍射光)仍具有足够的强度。被全息透镜衍射的光线和不被它衍射的其他光线会聚在光轴上不同的焦点位置处。这样,能在不同厚度的基片上形成微光点。由于全息透镜起着透镜的作用,两个焦点在光轴上的位置彼此不同。当在一个焦点处记录或再现信息时,在某一个焦点上会聚的光束被大大扩展开来而只有很小的光强,从而不影响记录或再现。
在上述采用双焦点透镜的光头设备中,还有一些方面要改进或提高。例如,包含一个物镜和一个全息透镜的双焦点透镜可以具有不同的结构。
为了提供一台体积小的光头设备,需用激光二极管作为光源。然而,激光二极管有一个尚待发明解决的问题。如

图1所示,激光二极管从位于靠近激光二极管激活层2001一端的点2002发射出光束。光束的远场图样沿平行于激活层2001的X方向的发散角θX,比沿垂直于X方向的Y方向的发散角θY要小。图2A和2B分别表示激光二极管发射的光束(直径为4mm)以及从一个现有技术的全息透镜出射的光束沿X方向和Y方向的光强分布,如上所述,由激光二极管发射的光束的光强分布2003是不同的。
如图2A和2B中的打阴影线的部分所示,如果光束入射在全息透镜上,则在外侧的出射光的光强要比在内侧的光强更大。另一方面,如果光束入射在上面提及的衍射一部分入射光的全息透镜上,则在外侧的光强变得比在内侧的光强更大。由于沿Y方向的发散角较大,因此,特别沿Y方向,外侧的光强更大。
其次说明光束旁瓣的影响。图3A和3B表示,当采用衍射部分入射光的全息透镜时,在薄的信息介质上沿X方向和Y方向上的发散光点光强的计算结果,其中,将主瓣380的最大值归一化为100。主瓣380是记录和再现所需的光线,而旁瓣381是不需要的光线,它可能会使凹点图形的记录或再现信号变坏。沿X方向旁瓣381的光强低到大约1%,而沿Y方向旁瓣的光强约为4%或更高。
如果旁瓣的光强约为4%,则足以能读出信息。然而,为了能顶着诸如振动和温度等的干扰而稳定地读出信息,就需减少旁瓣以减小它带来的不利影响。
本发明的一个目的是提供一种光头设备,当在具有不同的厚度信息介质或光盘上会聚光束时,通过减少光束外侧较大光强带来的不利影响,该设备能更稳定地读出信息。
本发明的另一个目的是提供一种改进的光头设备,通过采用一个透射光具有足够强度的全息透镜,该设备能在不同厚度的信息介质或光盘上对衍射限的光束进行会聚。
本发明的还有一个目的是提供一种简单的校正元件的制造方法。
按本发明的光头设备的一个方面,透镜在信息介质上把光束会聚成微光点。本发明的一个特点是透镜具有多个焦点,这些焦点在相对于透镜的同一侧具有不同的数值孔径。透镜包括一个折射光线的物镜和一个全息透镜的组合。本发明的另一个特点是用校正元件来校正光束的光强。校正元件设置在从光源到透镜的光路中,它具有远离光轴的光强减小的部分。例如,通过提供透射比或零级衍射效率的分布来改变光强。透射比代表无反射或吸收时光透射的比值,而零级衍射效率代表无衍射时光透射的比值。校正元件在远离光轴的部分有一个光栅。相对于从光轴到校正元件外周界的径向,假想的等值曲线(透射比或零级衍射效率沿该曲线具有同样的值)最好呈凸状。在远离光轴的部分,校正元件最好包含一块金属膜或者一块电介质膜。
按本发明的另一方面,光头设备包含一个校正元件,用于校正从光源到透镜的光路长度。校正元件包含远离光轴沿第二方向的第一部分以及围绕光轴高度大于第二部分的第二部分。
按本发明的又一方面,全息透镜与一个面合为一体,该面是物镜的两个面中曲率较大的那个面。全息透镜可以与物镜的一个面的一部分合为一体。这样,可以简单地形成双焦点透镜。
按本发明的还有一个方面,提供了一种制造校正元件的方法,该校正元件包含两个第一部分以及在它们之间的第二部分,第一部分的高度小于第二部分。在该方法中,用透明板上的一块掩模来腐蚀在其上没有掩模的板。接下来,在板上形成金属膜或电介质膜,并将掩模除去。在一种不同的方法中,在透明板上形成金属膜或者电介质膜,并在金属膜或电介质膜上形成掩模。然后用此掩模,把在其上不形成掩模的金属膜或电介质膜腐蚀掉。接下来,在板上形成透明膜,并去掉掩模。在这些方法中,图案只形成一次。
本发明的一个优点在于,由于减小了会聚光点的旁瓣,使光头设备能更稳定地进行信号再现。
本发明的另一个优点在于,当采用一激光二极管作光源时,能减小象散象差。
本发明的第三个优点在于,光束具有良好的会聚特性。
本发明的第四个优点在于,可以减少许多光头设备的元件。
通过参考附图结合较佳实施例而作的下述描述,可以清楚本发明的这些和其他的目的和特点,在这些图中图1是说明激光二极管发射光束散开情况的激光二极管透视图;图2A和2B分别是光束的光量沿X方向和Y方向分布的曲线图;图3A和3B分别是信息介质上,光束会聚光点的光量沿X方向和Y方向分布的曲线图;图4是光头设备的剖视示意图;图5是全息透镜的全息光栅的平面示意图;图6是全息透镜的剖视示意图;图7是信息介质上一会聚光点的光强分布的曲线图;图8A和8B复合物镜的剖视图,用以说明当透射光透过全息透镜的光栅部分和其他部分以及当透射光只透过全息透镜的光栅部分时,透射光在两个焦点处的会聚情况;图9A是说明校正全息元件工作的示意图,而图9B是校正全息元件的剖视示意图;图10是包含校正全息元件的光头设备的剖视示意图;图11是校正全息元件的剖视图;图12是零级光透射比对沿Y方向离光轴距离的曲线图;图13A和13B分别是当采用校正全息元件时信息介质上光束会聚光点的光量沿X方向和Y方向分布的曲线图;图14A和14B分别是光盘上光束光量沿X方向和Y方向分布的曲线图;图15是具有校正全息元件的准直透镜的剖视图16是一不同实施例的光头设备的剖视示意图;图17是校正滤色片的平面示意图;图18是校正滤色片的剖视示意图;图19是说明光检测器上光分布的透视示意图;图20是复合透镜的剖视示意图;图21是本发明一不同实施例的光头设备的透视图;图22A至22F是说明校正滤色片制造方法的步骤的剖视图;图23A至23G是说明校正滤色片另一种制造方法的步骤的剖视图。
现在参看附图,其中,相同的参照符号在所有的图中表示相同或相应的部件,图4示出本发明第一实施例的光头设备。此光头设备具有下述特点,即双焦点透镜由物镜4和全息透镜107组成,为减少光束外侧的光量而设置了一个校正全息元件1221。
在光头设备中,从诸如激光二极管等光源发射的光束一般用准直透镜122来准直,并使之穿过校正全息元件1221,从而减少在光束外侧的光量。校正元件1221设置在从光源2至全息透镜107的光路中。校正元件1221具有这样的特征,其中,远离光轴的一个部分的透射比或零级衍射效率要比光路周围的另一个部分的透射比或零级衍射效率小。在其外侧光强减小的光束透过偏振分束器42并由1/4波片15使光束圆偏振。接下来,光束进入全息透镜107和物镜4。全息透镜107和物镜4组合构成双焦点透镜,而它将光束会聚在厚的信息介质5或薄的信息介质51上。诸如激光唱盘等信息介质5的基片厚度t1=1.2mm,而诸如数字多用途光盘等信息介质51的NA=0.6,小于t1的基片厚度t2=0.6mm。基片厚度定义为从光束进入的入射表面至信息介质或光盘的信息记录层的厚度。在本说明书中,术语“会聚”定义为将发散的或准直的光线转换成衍射限的微光点。
如图5和6示意地所示,全息透镜107具有在相对于光束3透明的板上形成的同心光栅107a以及没有光栅的另一个区域107b。光栅107a在小于由物镜4确定的孔径的直径内形成。光栅107a的中心或光轴在结构容限内与物镜4的中心或光轴相合。
全息透镜107是这样设计的,使+1级衍射光束的衍射效率小于100%,透射光(零级衍射光束)61a也具有足够的幅度。如果全息透镜107做成具有不平整的浮雕式样,如图4所示,这很容易实现,例如,使浮雕型的不平整光栅的高度h小于λ/(n-1),这里λ是光束3的波长,而n是全息透镜107的透明板的折射率,或者使光栅部分107a的相移小于2π。这样,在全息透镜107中的任何部分,透射光都具有足够的幅度,从而能较好地抑制透射光在光盘5,51上的会聚光束的旁瓣,如说明会聚光束的光幅度分布的图7所示。
如上所述,全息透镜107包含光栅107a和没有光栅的区域107b。光栅107a的零级衍射光(透射光)的相位具有由光栅107a产生的相位调制的平均值。通过使区域107b的相位大致等于零级衍射光的相位,能改进会聚性能,于是,如果全息透镜的光栅107a如图6所示是浮雕型的,则没有光栅的区域107b的表面的高度要与光栅的不平整度的平均高度相匹配。
被信息介质5或51反射的光束沿同一光路返回。即,透射光61再次透过全息透镜107,如实线所示,而+1级衍射光64再次被全息透镜107作为+1级衍射光衍射。在它们先透过偏振分束器42并被偏振分束器42反射后,它们经同一条光路传播。反射光由会聚透镜121会聚,而它的波前由诸如柱面透镜131等波前变换装置加以变换,以获得诸如焦点误差信号和跟踪误差信号等伺服信号。接下来,光进入光检测器71。对光检测器71的输出信号进行处理,即可获得伺服信号和信息信号。
例如,如图4所示,全息透镜107可被闪耀。于是,可以增加用于形成双焦点光束的透射光和+1级衍射光的光量之和。因而可增加使用光的效率。
如图8A所示,如此设计物镜4,从而当没有衍射地透过全息透镜107的光束61进入物镜4时,在NA=0.6或更高以及基片厚度为t2的薄光盘51上形成衍射限的光点38A。由于把光栅107a做在小于由物镜4所决定的孔径的直径范围内,因此在没有光栅的区域107b内不发生衍射。于是,较大NA的会聚光38a的光量变大。
另一方面,如图8B所示,能在较小NA(=0.5)和基片厚度为t1的厚光盘5上形成衍射限的会聚光点38b。由物镜4把由全息透镜107衍射的+1级衍射光64会聚在信息介质5上。由全息透镜107对+1级衍射光64进行象差校正,从而使光在透过基片厚度t1的基片37后能会聚至衍射限。通过计算两个光束之间的干涉图形(全息透镜107的光栅107a),可以设计出具有象差校正的全息透镜107。两个光束之一是这样产生的,即把来自会聚光点38a的球面波加以弥散,并使之相继地透过厚度t1的基片37、物镜4以及全息透镜107的透明板9,而另一个光束是对示于图8B的符号加以倒相的光束。于是,例如可通过采用计算机生成全息(computer generatedhologram,CGH)来方便地制造全息透镜107。
这样,通过把衍射部分入射光的全息透镜107和物镜4相组合,可在具有不同基片厚度(t1和t2)的光盘上形成会聚至衍射限的光点,或者说可提供一个双焦点透镜。
由于全息透镜107的作用如同一个透镜,因此两个焦点位于沿光轴的不同位置处。所以,当以一个会聚光点记录或再现信息时,以另一个焦点作为会聚点的光束就大范围散开。这样,它的光强很小,因而不会影响记录和再现。例如,当会聚光点38a位于信息介质51的焦点时,如图8A所示,+1级衍射光64在信息介质51的信息记录平面上大范围散开,因而它不影响记录和再现。在图8B中也可观察到类似的情况。
两个焦点之间的距离最好设定为50μm或尽可能更大,从而当在一个焦点处记录或再现信息时,在另一焦点处具有会聚点的光束将在介质51的信息记录平面上大范围地散开而减弱光强,从而不影响记录和再现。激光唱盘或激光视盘的基片厚度t1是1.2mm,而高密度光盘的基片厚度t2以0.4~0.8mm为宜。于是,考虑到用于物镜4会聚的驱动装置的移动范围,两个焦点位置之间的距离最好不要大大超过t1和t2之间的约0.8mm的差值,所以当数值孔径大的基片的会聚光点38a的焦距如图8A所示缩短时,两个焦点之间的距离设置在50μm与1mm之间。
这样设计物镜4,如图4所示,当光束61无衍射地透过全息透镜107而入射时,可在基片厚度为t2的薄光盘上形成衍射限的微光点。此外,如图5所示,全息透镜107的光栅做在比由物镜4所确定的孔径更小的直径范围内。所以,在没有光栅的区域107b不发生衍射。
如上所述,通过把衍射部分入射光的全息透镜107与物镜4相组合,能获得一个双焦点透镜,它能在具有不同基片厚度t1和t2的光盘上形成会聚至衍射限的会聚光点。
被介质5,51反射的透射光61再次通过全息透镜107,而被介质5,51反射的+1级衍射光64再次作为+1级衍射光被全息透镜107衍射。透射光61和+1级衍射光64被分束器42反射,并由会聚透镜121会聚。光检测器71采用会聚光束检测出伺服信号。因此,反射光束在光检测器71上的会聚点39与光源2的发射点在两者具有共轭点关系的意义上相符。因此,能够用单个光检测器既做伺服信号的检测器又做信息信号的检测器。这样,能够用单个光头设备对具有不同厚度的光盘进行信号的记录和再现,而这个光头设备尺寸很小并且所包含的部件数也不多。此外,它的重量很轻并且能以较低的成本制造。
焦点误差信号可以用光点尺寸检测法(日本专利公开公报2-185722/1990)、象散法、刀口法等方法检测。跟踪误差信号可用推挽法、外差法、三光束法等方法检测。
校正全息元件1221是本发明的特点之一。图9A示出从光源2至物镜4的光学系统。图9B示出校正全息元件1221的一个例子,该元件包含透射区域1223和光栅1222,前者使所有靠近光轴3000的光线透过,而后者位于离开光轴3000的区域。如图9A所示,当光束从光源2发射出来时,校正全息元件1221使所有在光轴3000周围的光透过,同时它使一部分光束衍射而离开光轴3000,如图中打阴影的部分。这样,离开光轴则透射比减小。
由光栅1222产生的零级衍射光(透射光)的相位具有光栅1222的相位调制的平均值。于是,为了改进物镜4的转换效率,最好使在光栅1222处零级衍射光的相位与在透射区域1223处透射光的相位区配。这样,如果校正全息元件1221是如图9B所示的浮雕型,则光栅1222的不平整度的平均值要与透射区域1223的高度匹配。
然而,如果光源2包含一个激光二极管而此激光二极管具有象散象差(参看图1),则要用示于图10的校正全息元件1221a。元件122la也包含透射区域1223a和光栅1222,前者使所有靠近光轴3000的光透过,而后者位于离开光轴3000的区域。把透射区域1223a表面的高度设置得大于光栅1222不平整度的平均值。换句话说,透射区域1223a的厚度大子光栅1222的厚度。这样,可以减小激光二极管的象散象差的缺点,并能够改进光学系统的会聚性能。如果激光二极管具有象散象差,则在沿具有较小发射光发散角方向的平面内,会聚点进入激活层。通过沿具有较大发散角方向增强光学系统的凸透镜作用,能使两个会聚点沿两个方向匹配。这样,能够减少波前象差。如下面将要说明的,校正全息元件1221a的Y方向最好与具有较大发散角的方向匹配。于是,希望沿Y方向起到凸透镜作用。这就是透射区域1223a较厚的理由。
由校正全息元件1221衍射的衍射光1224变为不需要的杂散光。于是,希望衍射光不进入物镜4的孔径,或者希望衍射光不进入光检测器71。
为防止杂散光进入物镜4的孔径,光栅1222的栅距以5μm或更小为宜,而以2μm或更小为更佳。在另一种方法中,在使光栅1222的位置沿衍射光的光强随离开光轴而增大的方向闪耀后,为防止杂散光进入物镜4的孔径,光栅1222的栅距以20μm或更小为宜,而以12μm或更小为更佳。
在另一种方法中,为防止杂散光经介质5,51反射后进入光检测器71,光栅1222的栅距以30μm或更小为宜,而以10μm或更小为更佳。
用三光束法从光检测器71的输出信号可以检测出跟踪误差信号,该输出信号是通过检测由介质5,51反射的光而获得的。在此情形中,最好使校正全息元件1221的光栅1222沿衍射光光强随位置趋向光轴而增大的方向闪耀。
图11示出校正全息元件1221的一个例子,它是沿图9A和9B的光轴或Z轴而看得的。为说明起见,标出了光轴3000和有效光束1224的记号,而实际上它们不是在校正全息元件1221中形成的。坐标轴与图1和9相同。为减小当位置离开光轴时沿Y方向的光量,或减小沿光束具有较大发散角的方向的光量,最好把光栅1222做在沿Y方向离开光轴的部位。
此外,由于远场图样(farfield pattern,FFP)光强的等场强线是椭圆,因此使光栅1222和透射区域1223之间的边界向外侧凸出,就能有效地利用光线。
图12示出校正全息元件1221沿Y方向的零级衍射效率(透射比)改变的一个例子。原点是光轴3000与校正全息元件1221的交点。随着离开光轴的距离增大,透射比减小。在透射区域1223,透射比是常数,而在光栅1222中,透射比减小。
通过使用校正全息元件1221,使透过全息透镜107的光束的FFP改变,如图13A和13B所示,这两张图分别表示沿X方向和Y方向的光强分布。藉助于校正全息元件1221减小沿Y方向的光强,如图13B所示,沿Y方向的光强分布变得与图2中所示的不同。即,沿Y方向在外侧的光强度变得小于在内侧的光强。
为了减小在外侧而不是在内侧的光强,最好使校正全息元件1221的光栅1222的零级衍射效率小于全息透镜170的零级衍射效率。
图13B中的虚线表示校正全息元件1221的零级衍射效率的分布,它是用来计算FFP的,并且它与示于图12的例子的零级衍射效率分布略有不同。
图14A和14B分别示出在信息介质51上的一个会聚光点沿X方向和Y方向光强分布的计算结果。沿两个方向,旁瓣381的高度低到只有主瓣380高度的1%。换句话说,在信息介质上光束的旁瓣(会聚光点)变得较小,因而能够获得特性极好的信号再现。
此外,如果在光学系统中采用准直透镜122,则可把校正全息元件1221a做在准直透镜122上,做在准直透镜一个表面的周边区域上。于是,可以减少光学系统的许多个部件,因而能以较低的成本制造光头设备。
在上述实施例中,校正全息元件是浮雕型的。然而,也可以类似地做出相位调制型的校正全息元件,其做法是用一块铌酸锂片,它的一部分与质子作部分交换(参看日本专利公开公报61-189504/1986和63-241735/1988)或者采用一个液晶元件。
在上述校正全息元件中,设置光栅1222来减小透射比,然而,光包含光强和相位成份,可以用一个元件代替光栅来调制光强或相位。于是,可以用金属膜或电介质膜来代替光栅。例如,如图16所示,直接在偏振分束器42上形成示于图17的校正滤色片1225代替校正全息元件1222。示于图16和17的X和Z轴是共有的。校正滤色片1225包含两个部分1226和一个透射部分1227,前者由金属膜或电介质膜做成,用于减小两侧的透射比,后者在两个部分1226之间,用于透过光束。如图17中的虚线圆所示,光束1224的有效直径大于透射部分1227的宽度。藉助于直接在分束器42上形成校正滤色片,可以减少光学系统的许多元件。此外,可以减少光学元件的许多平面,因而可以减少由于这些平面的反射而产生的损耗。就金属膜而言,最好用稳定的铬膜等。
在一改进的实施例中,用于减小透射比的部分可以做在准直透镜122的一个表面上而不做在分束器上。在此例中,激光束的透射比在外侧也减小了。校正滤色片表面的法线最好相对于光轴倾斜,以免反射光进入激光二极管造成噪声。特别,如果把校正滤色片1225设置在分束器42的表面上,如图16所示,则分束器42要倾斜。此外,如果把校正滤色片1225的透射部分1227做得较厚以增加光路长度,如图18所示,则可消除激光二极管的象散象差,这与上面说明过的校正全息元件相似。
在日本专利公开公报56-85944/1981和62-67737/1987中描述了一些元件,它们在某些方面与上述实施例的校正全息元件或校正滤色片相似。在前一份公报中,在光路中设置了一种减少辐射的元件,它包含一个透明的中央部分和吸收或反射光的边沿部分,而该元件在边沿部分降低辐射幅度以减小由于光轴倾斜而产生的冲击(stroke)。在后一份公报中,在光路中设置了一个分光装置(light di-vision means),用以在主光束外再形成两个子光束。为了减少由于旁瓣而造成的串扰,分光装置在它的周边形成主光束的光强分布。然而,这些现有技术减小了正常光束在边缘部分而不是中央部分的光强以减小光束的旁瓣。与此相反,本发明要解决作为采用双焦点透镜的光学系统的特征的问题,双焦点透镜采用了一个衍射部分入射光的全息透镜107。在这样一个光学系统中,如图2B所示,特别在沿Y方向的外侧,光强的分布很大,而这对于读取信息可能带来不稳定。于是,藉助于校正全息元件或校正滤色片,使光强的分布回到光束原先的平坦的分布。这样,实施例具有显著的优点,即旁瓣能大大减小,而且可以用单个透镜形成用于不同基片厚度的光束。
如图19所示,在光头设备中,为读取信号而会聚在光盘记录平面上的光,有一部分大范围地散布在光检测器上。例如,在用光头设备(它采用了全息透镜107)从信息介质51(基片厚度t2)再现信息时,会聚在光盘记录平面上的光再次透过全息透镜107,并由光检测器检测以读取伺服信号和信息信号。当会聚在光盘记录平面上的光被全息透镜107衍射时,如图19所示,该光如1级衍射光430那样大范围散开。于是,为检测伺服信号而在光检测器75周围设置另一个较大的光检测器(它的直径最好等于或大于1mm)来检测大范围散开的光。于是,把光检测器75和另一个光检测器75c的输出之和用作信息信号。于是,更增大了信噪比,也改进了频率特性。
在上述实施例中使用的物镜基本上包含折射光的物镜4和全息透镜107的组合。物镜和全息透镜例如可以用一个组装装置而彼此相连,或者可如图20所示那样,例如把全息透镜的光栅做在物镜4上而把两者合二为一。于是,可以减小全息透镜和物镜之间光轴的偏移。可以减小全息透镜+1级衍射光的轴外象差。光头设备具有较轻的份量和较低的成本。
如图20所示,如果把全息透镜设计得对光轴倾斜而造成了象差,则把全息透镜107a的光栅做在具有较大曲率或较小曲率半径的平面上,或者把光栅做在不正对光盘的平面上。这样,可以抑制全息透镜的轴外象差。
示于图20的光栅107a的零级衍射光(透射光)的相位是由光栅107a提供的相位调制的平均值。因此,用虚线表示的光栅107a不平整度平均面1070做得与没有光栅的面1071连续。此外,这样来设计光栅107a的平均面1070和没有光栅的面1071,使透过基片厚度t2会聚在信息介质上的光束达到衍射限。
在一个不同的实施例中,把全息透镜设计成凸透镜,从而+1级衍射光经过基片厚度t2会聚而零级光(透射光)经过基片厚度t1会聚。在此实施例中,把在外侧的+1级衍射效率设置为约100%,而在内侧的+1级衍射效率设置为小于100%。如果全息透镜107的零级衍射效率和+1级衍射效率在上述实施例中被作为全息透镜+1级衍射效率和零级衍射效率读取,则通过采用类似的光头设备结构,校正全息元件1221能提供类似的好处。在此实施例中,对于基片厚度t2,能减小或消除色象差。另一方面,如果把衍射光会聚在信息介质上,而用光检测器检测由信息介质反射的光,则能够从光检测器的输出信号中获得所谓三光束法的跟踪误差信号。在此情形中,最好让光栅1222沿衍射光强随位置趋近光轴而增大的方法闪耀。
图21示出光头设备的一个不同的实施例。此设备与图4所示的设备的不同之处在于采用一有限的光学系统,而分束器363包含一块平板。于是,可以减少多个光学元件,并降低了设备的成本。从光源2发射出的光束3经过校正全息元件1221或校正滤色片(未示出)传播,后者用于减小外侧的光强。接下来,该光束被分束器363以90°反射。然后,该光束由示于图20的物镜(双焦点透镜)会聚而会聚在信息介质5,51上。由信息介质5,51反射的光经过分束器363传播而由光检测器71检测。
校正滤色片1225具有两种样式,即减少透射比的两个部分1226以及一个中央阶梯部分。如下面所说明的,只要用一次掩模工艺就能做出这种样式的滤色片。于是,可以简单而价廉地制造出滤色片。在下面说明的例子中,对于部分1226形成一金属膜(铬膜)用来减小透射比。然而,可以形成一电介质膜来代替金属膜。
图22A至22F示出校正滤色片1225制造工艺的一个例子。光具有幅度(光量)和相位成份。校正滤色片1225设计成按所需的方式调制幅度或相位。首先,如图22A所示,在将透明板12252冲洗后,在该板上覆以光致抗蚀剂膜12251。如果把校正滤色片做在分束器42的表面上,如图16所示,则板12252就代表了分束器42。
其次,如图22B所示,提供一块光刻掩模12253,它在基片12254上具有掩蔽材料(例如铬)12255,用以部分遮蔽光。接下来,把光致抗蚀剂膜12251在放有光刻掩模的情况下曝光以形成图案和显影。
接下来,如图22C所示,移去光刻掩膜,并将光致抗蚀剂膜显影。于是,只在相应于校正滤色片1225的透射部分1227的区域留有光致抗蚀剂膜12253。
接着,用剩下的光致抗蚀剂膜12225作为掩模而进行腐蚀。在板12225的表面上,只对没有光致抗蚀剂膜12251的板12252的部分进行腐蚀,而在留有光致抗蚀剂膜12251的部分形成一个台阶。
接着,如图22E所示,再用淀积或溅射形成一层金属膜12261。金属膜12261的厚度小于板12252的台阶的高度。
最后,如图22F所示,用有机溶剂等去掉光致抗蚀剂膜12251。与此同时,在光致抗蚀剂膜12251上的金属膜也被去掉了(去除)。这样,校正滤色片的制造就完成了。
图23A至23G示出校正滤色片1225制造工艺的另一个例子。首先,如图23A所示,在将透明板12252冲洗后,在板12252的表面上淀积一层金属膜12261。
其次,如图23B昕示,在金属膜12261上再覆以光致抗蚀剂膜12251。
接下来,如图23C所示,将一块光刻掩模12253放在光致抗蚀剂膜12251上。光刻掩模12253包括形成于透明基片12254上的掩蔽材料12255,以允许光在中央部分透过。接着,把光致抗蚀剂膜12251曝光,以通过光刻掩模12253形成图案。
接下来,移去光刻掩模12253,而对光致抗蚀剂膜12251进行显影。这样,如图23D所示,只在未曝光的区域留有光致抗蚀剂膜。
接着,用留下的光致抗蚀剂膜12251作为掩模,对金属膜12251进行腐蚀。这样,如图23E所示,相应于透射部分1227的金属膜12261被去掉了。
接下来,如图23F所示,再形成一层SiO2等材料做的透明膜12262,并使该膜的厚度大于金属膜12261的厚度。
最后,如图23G所示,用有机溶剂等去掉光致抗蚀剂膜12251。与此同时,在光致抗蚀剂膜12251上的SiO2也去掉了(去除)。这样,校正滤色片的制造就完成了。
虽然参看附图结合较佳实施例充分地描述了本发明,但应指出,对于本领域的熟练人员而言,显然可进行各种改变和变更。应该明白,除非这些改变和变更背离了本发明的精神和范围,它们都属于由所附权利要求所确定的本发明的范围。
权利要求
1.一种光头设备,其特征在于包含光源,它发射光束;透镜,它将所述光源发射的光束在信息介质上会聚成微光点,在相应于所述透镜的同一侧,所述透镜具有多个焦点,而这些焦点具有不同的数值孔径,所述透镜包含折射光的物镜以及全息透镜的组合;校正元件,它校正由所述光源发射的光束的光强,所述校正元件设置在从所述光源到所述透镜的光路中,所述校正元件具有一远离光轴的部分,在那里的光强比围绕光轴的另一部分的光强减小得更多;光检测器,它检测被信息介质反射的光,以相应于光强输出电信号。
2.如权利要求1所述的光头设备,其特征在于,所述光源辐射光束,该光束沿垂直于光束光轴的相互正交的第一方向和第二方向具有不同的光强改变率,而远离光路的所述校正元件的部分沿第二方向设置,第二方向是光强改变率沿该方向为最小的方向。
3.如权利要求1所述的光头设备,其特征在于,相应于从校正元件的光轴到外围的径向,所述校正元件的假想等光强曲线是凸的,沿该曲线,透射比或零级衍射效率具有相同的值。
4.如权利要求2所述的光头设备,其特征在于,相应于从校正元件的光轴到外围的径向,所述校正元件的假想等光强曲线是凸的,沿该曲线,透射比或零级衍射效率具有相同的值。
5.如权利要求1所述的光头设备,其特征在于,所述校正元件在它远离光轴的部分具有光栅。
6.如权利要求2所述的光头设备,其特征在于,所述校正元件在它远离光轴的部分具有光栅。
7.如权利要求5所述的光头设备,其特征在于,使所述校正元件的所述光栅闪耀,从而使1级衍射光强随着离光轴距离的增加而增加。
8.如权利要求6所述的光头设备,其特征在于,使所述校正元件的所述光栅闪耀,从而使1级衍射光强随着离光轴距离的增加而增加。
9.如权利要求6所述的光头设备,其特征在于,光栅不平整部分的平均高度等于围绕光轴的另一部分的高度。
10.如权利要求6所述的光头设备,其特征在于,围绕所述校正元件光轴的另一部分的高度大于光栅不平整部分的平均高度。
11.如权利要求1所述的光头设备,其特征在于,所述校正元件在远离光轴的部分还包含金属膜或电介质膜。
12.如权利要求11所述的光头设备,其特征在于,所述校正元件围绕光轴部分的高度大于另一部分的高度。
13.如权利要求11所述的光头设备,其特征在于还包含设置在所述光源和所述物镜之间的分束器,其中,所述校正元件设置在所述分束器的表面上。
14.如权利要求1所述的光头设备,其特征在于还包含设置在所述光源和所述物镜之间的准直透镜,其中,所述校正元件与所述准直透镜合为一体。
15.如权利要求1所述的光头设备,其特征在于,所述光检测器包含第一检测器和第二检测器,前者用于检测伺服信号,后者布置在第一检测器的周围,并具有比第一检测器宽大的面积。
16.一种光头设备,其特征在于包含光源,它发射光束,该光束沿垂直于光束光轴的相互正交的第一方向和第二方向具有不同的光强改变率,第二方向定义为这样一个方向,沿该方向光强的改变率最小;校正元件,它用于校正光路长度,所述校正元件设置在从所述光源到所述透镜的光路中,所述校正元件包含第一部分和第二部分,前者位于沿第二方向远离光轴之处,而后者围绕光轴,第二部分的光路长度短于第一部分的光路长度;透镜,它将所述光源发射的光束在信息介质上会聚为微光点,在相应于所述透镜的同一侧,所述透镜具有多个焦点,而这些焦点具有不同的数值孔径,所述透镜包含折射光的物镜和全息透镜的组合;以及光检测器,它检测被信息介质反射的光,以相应于光强输出电信号。
17.如权利要求16所述的光头设备,其特征在于,第二部分的厚度小于第一部分的厚度。
18.一种光头设备,其特征在于包含光源,它发射光束;透镜,它将所述光源发射的光束在信息介质上会聚为微光点,在相应于所述透镜的同一侧,所述透镜具有多个焦点,而这些焦点具有不同的数值孔径,所述透镜包含折射光的物镜和全息透镜的组合,所述全息透镜与物镜的两个面中曲率较大的一个面合为一体;以及光检测器,它检测被信息介质反射的光,以相应于光强输出电信号。
19.一种光头设备,其特征在于包含光源,它发射光束;透镜,它将所述光源发射的光束在信息介质上会聚为微光点,在相应于所述透镜的同一侧,所述透镜具有多个焦点,而这些焦点具有不同的数值孔径,所述透镜包含折射光的物镜和全息透镜的组合;以及光检测器,它检测被信息介质反射的光,以相应于光强输出电信号;其中,所述透镜的所述全息透镜与物镜平面的一部分合为一体,所述全息透镜的光栅的不平整部分的平均高度与所述全息透镜没有光栅的部分的高度连续,而把有光栅的不平整部分的平均表面与没有光栅的部分的表面设计得能把光束会聚至衍射限。
20.一种制造校正元件的方法,这种校正元件包括两个第一部分和它们之间的第二部分,第一部分的高度小于第二部分的高度,其特征在于,该方法包含下述步骤提供一块透明板;在板上形成掩模;用此掩模来腐蚀在其上没有形成掩模的板;在板上形成一层金属膜或电介质膜;以及去除掩模。
21.一种制造校正元件的方法,这种校正元件包括两个第一部分和在它们之间的第二部分,第一部分的高度小于第二部分,其特征在于,该方法包含下述步骤提供一块透明板;在板上形成一层金属膜或电介质膜;在金属膜或电介质膜上形成掩膜;用此掩模来腐蚀在其上没有形成掩模的金属膜或电介质膜;在板上形成一层透明膜;以及去除掩模。
全文摘要
一种光头设备,它能在具有不同厚度的光盘上稳定地记录或再现信号。在光源和双焦点透镜之间设置校正全息元件或校正滤色片,用以减小远离光轴部分的透射比或改变光路长度。通过校正全息元件或校正滤色片的光在光盘上被双焦点透镜会聚为微光点。双焦点透镜包含衍射部分光束的全息透镜和物镜。
文档编号G11B7/135GK1148240SQ9610681
公开日1997年4月23日 申请日期1996年5月30日 优先权日1995年5月30日
发明者金马庆明, 水野定夫, 林秀树, 浦入贤一郎 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1