具有内部反应气体流动通道的sofc的隔板的制作方法

文档序号:7114008阅读:217来源:国知局
专利名称:具有内部反应气体流动通道的sofc的隔板的制作方法
技术领域
本发明涉及一种具有插设在盘状隔板之间的圆盘状电解质电极组件的燃料电池。每个电解质电极组件都包括阳极和阴极以及介于阳极和阴极之间的电介质。
背景技术
通常,固体氧化物燃料电池(SOFC)采用了离子导电固体氧化物电解质,例如稳定氧化锆。该电解质插入在阳极和阴极之间以形成电解质电极组件。该电解质电极组件插入在隔板(双极板)之间,并且该电解质电极组件和隔板构成用于产生电能的燃料电池单元。将预定数量的燃料电池堆叠在一起以形成燃料电池组。
在该燃料电池中,向阴极供应含氧气体或空气。含氧气体中的氧气在阳极和电解质之间的界面处被离子化,并且氧离子(O2-)通过电解质朝着阳极运动。向阳极供应燃料气体,例如含氢气体或CO。氧离子与含氢气体中的氢反应以生成H2O,或者与CO反应生成CO2。在反应中释放出的电子通过外部电路流向阴极,从而生成DC电流。
一般来说,固体氧化物燃料电池在800℃至1000℃范围内的高温下工作。该固体氧化物燃料电池利用用于内部重整的高温废热来产生燃料气体,并且通过使燃气轮机旋转来产生出电能。该固体氧化物燃料电池由于与其它类型的燃料电池相比较在产生电能方面的效率最高而受人瞩目,并且正在受到日益关注其除了与燃气轮机结合的用途之外在汽车中使用的可能性。
为了产生出较大的电流,需要使用大电解质。但是,供给大电解质的含氧气体和燃料气体的流速不容易一致,并且电力产生性能可能不理想。另外,在大电解质中的温度分布不均匀。因此,该电解质可能由于热应力而受损。
为了实现提供给电解质的含氧气体和燃料气体的流速一致以及在电解质中的温度分布均匀,已经建议从电解质中央区域向外供应燃料气体和含氧气体。
例如,日本特开专利公报No.11-16581(现有技术1)披露了一种由单电池制成的固体氧化物燃料电池系统。具体地说,如图11所示,电池包括具有相对主表面202a、202b的隔板201。在主表面202a上径向设有多个肋条203a,并且在主表面202b上径向设有多个肋条203b。沟槽204a、204b从外侧分别向隔板201的表面202a、202b上的中央区域延伸。沟槽204a具有预定的深度以将燃料气体供应管205放置在沟槽204a中,并且沟槽204b具有预定的深度以将含氧气体供应管206放置在该沟槽204b中。
在该燃料电池系统中,供给到燃料气体供应管205中的燃料气体朝着隔板201的主表面202a上的中央区域流动,并且供给到含氧气体供应管206的含氧气体朝着隔板201的主表面202b上的中央区域流动。燃料气体被供给位于主表面202a侧上的电解质电极组件(未示出),并且从电解质电极组件的中央区域向外流动。含氧气体被供给到位于主表面202b侧上的另一个电解质电极组件(未示出),并且从该另一个电解质电极组件的中央区域向外流动。
另外,日本特开专利公报No.5-266910(现有技术2)披露了一种固体氧化物燃料电池系统,其中在相邻隔板之间的一个表面(区域)上设有多个电池。在现有技术2中,多个电池设在隔板之间,从而增大电池电解槽的总表面积以产生大电流,同时防止对电解质板造成损坏以提高燃料电池系统的可靠性。
图12为示出了在现有技术2中所披露的燃料电池系统的立体图。如图12所示,该燃料电池系统包括多个堆叠在一起以形成堆叠体的层。每一层都包括一隔板301和四个设在隔板301上的电池302。在最下层上的燃料气体板303具有用于供应和排出燃料气体的供应口和排出口。在最上层上的含氧气体板304具有用于供应和排出含氧气体的供应口和排出口。
燃料气体供应歧管305a、305b延伸穿过隔板301,用来给每个电池302供应燃料气体,并且燃料气体排出歧管305c、305d延伸穿过隔板301,用来在反应之后从每个电池302中将该燃料气体排出。另外,含氧气体供应歧管305a、305b延伸穿过隔板301,用来给每个电池302供应含氧气体,并且含氧气体排出歧管305c、305d延伸穿过隔板301,用来在反应之后从每个电池302将含氧气体排出。
燃料气体供应歧管305a、305b在燃料气体板303处与燃料气体供应管307a、307b连接。燃料气体排出歧管305c、305d在燃料气体板303处与燃料气体排出管307c、307d连接。含氧气体供应歧管306a、306b在含氧气体板304处与含氧气体供应管308a、308b连接。含氧气体排出歧管306c、306d在含氧气体板304处与含氧气体排出管308c、308d连接。
例如,在燃料电池系统的燃料气体板303中,供应给燃料气体供应管307a、307b的燃料气体沿着堆叠方向流入到隔板301的燃料气体供应歧管305a、305b中,并且将该燃料气体供给每个电池302的阳极。在阳极处进行反应之后,燃料气体通过燃料气体排出歧管305c、305d流回到燃料气体板303,流入到燃料气体排出管307c、307d中,并且向该燃料电池外面排出。在含氧气体板304中,按照类似的方式通过含氧气体板304将含氧气体供应给该燃料电池系统并且从中排出。
在现有技术1中,每个都具有预定深度的沟槽204a、204b从外面分别向隔板201的表面202a、202b上的中央区域延伸,以将燃料气体供应管205放置在沟槽204a中,并且将含氧气体供应管206放置在沟槽204b中。因此,隔板201可能由于热应力等原因而变形或受损。由于燃料气体供应管205和含氧气体供应管206的存在,因此在电解质电极组件中的化学反应不能均匀地进行。
在现有技术2中,供应给燃料气体板3的燃料气体和供应给含氧气体板4的含氧气体沿着堆叠方向流动穿过隔板1,并且被供给每个隔板1上的四个电池2。因此,这些隔板1需要用于防止反应气体(燃料气体和含氧气体)泄漏的密封结构(每四个电池2需要一个密封结构)。在燃料电池系统中该密封结构相当复杂。
为了实现燃料气体和含氧气体在电池302中进行均匀的化学反应,必须将燃料气体和含氧气体均匀地分配给电池302的电解质电极组件。因此,这些密封结构非常复杂。

发明内容
本发明的总体目的在于提供一种紧凑且简单的燃料电池,它在电解质电极组件和隔板之间具有紧凑的密封结构,同时有效地改善了该燃料电池的电力产生性能。
根据本发明,用于夹着多个电解质电极组件的每个隔板都包括堆叠在一起的第一板和第二板,并且在第一板和第二板之间形成有用于给电解质电极组件的阳极供应燃料气体的燃料气体通道,和用于给电解质电极组件的阴极供应含氧气体的含氧气体通道。第一板具有含氧气体入口,并且第二板具有燃料气体入口,用于给电解质电极组件的中央区域供应含氧气体和燃料气体。
将燃料气体和含氧气体供应给电解质电极组件,并且燃料气体和含氧气体从电解质电极组件的中央区域向外流动。因此,在电解质电极组件中的温度分布较小,并且防止了由于热应力而对电解质电极组件造成损坏。在整个电力产生表面上均匀地进行化学反应,并且提高了电力产生效率。
另外,供应给电解质电极组件的燃料气体的流速是均匀的,并且提高了燃料气体的利用率。因此,电解质电极组件的整个表面区域得到有效利用,并且改善了电力产生性能。
将燃料气体和含氧气体供应给电解质电极组件的中央区域,并且燃料气体和含氧气体从这些电解质电极组件的中央区域向外径向流动。将在反应中所使用的燃料气体和含氧气体混合在一起,并且作为废气从这些电解质电极组件中排出。
因此,在电解质电极组件和用于使燃料气体和含氧气体与废气隔开的隔板之间不需要任何密封件。具体地说,用于隔板和插设于这些隔板之间的电解质电极组件的密封结构非常简单。因此,该燃料电池具有简单的结构。
根据本发明,可以在第一板和第二板之间形成一分隔件,用来将燃料气体通道和含氧气体通道分开。该分隔件防止了燃料气体和含氧气体在第一板和第二板之间混合在一起。因此,不需要任何复杂的密封结构。
根据本发明,该分隔件可以包括从第一板伸出以与第二板接触的脊部或者从第二板伸出以与第一板接触的脊部。通过这种简单的结构,向电解质电极组件的中央区域可靠地供应燃料气体和含氧气体。
根据本发明,可以沿着与隔板的中心轴线同心的圆来布置电解质电极组件。因此,可以将许多电解质电极组件密集地布置在这些隔板之间。通过这种紧凑的结构,改善了电力收集效率。因此,该燃料电池具有高功率输出性能。
根据本发明,第一板可以具有第一凸台,而第二板可以具有第二凸台,并且这些第一凸台和第二凸台可以彼此相向伸出以夹着所述电解质电极组件。这些电解质电极组件由第一凸台和第二凸台以最小接触的方式支撑,从而不干扰在电解质电极组件中的化学反应。这些电解质电极组件由第一凸台和第二凸台支撑,从而在电极组件和隔板之间形成燃料气体流动通道和含氧气体流动通道。因此,该燃料电池具有简单的结构。
根据本发明,第一凸台和第二凸台可以用作集流器,用来收集由供应给电解质电极组件的相对表面的燃料气体和含氧气体的化学反应所产生的电能。因此,能够可靠地收集在燃料电池中所产生的电能。
根据本发明,在隔板的中央区域可以形成一圆孔,作为用于沿着这些板的堆叠方向排出废气的排出歧管。由含氧气体和燃料气体在电解质电极组件上的化学反应而产生废气。因此,用于供应含氧气体和燃料气体的歧管以及用于排出燃料气体和含氧气体的歧管由隔板形成。因此,该燃料电池具有简单的结构。由于通过形成在隔板的中央区域处的圆孔来排出废气,因此在来自电解质电极组件的废气流中不会出现紊流,并且排出气体的流速不会出现不理想的变化。
从下面的说明中并且结合附图将更加了解本发明的上述和其它目的、特征和优点,在这些附图中以说明性示例的方式示出了本发明的优选实施例。


图1为一立体图,示意性地示出了根据本发明一实施例通过将多个燃料电池堆叠在一起所形成的燃料电池组;图2为示出了该燃料电池组的一部分的剖视图;图3为示意性地示出了包括该燃料电池组的燃气轮机的视图;图4为该燃料电池的分解立体图;图5为示出了一部分燃料电池和该燃料电池的操作的立体图;图6为示出了该燃料电池组的剖视图,且省略了其中一部分;图7为示出了燃料电池的隔板的分解立体图;图8为示出了隔板的一块板的前视图;图9为示出了隔板的另一块板的前视图;图10为示出了燃料电池的操作的视图;图11为示出了根据现有技术1的传统燃料电池系统的立体图;和图12为示出了根据现有技术2的传统燃料电池系统的分解立体图。
具体实施例方式
图1为一立体图,示意性地示出了根据本发明的实施例通过将多个燃料电池10堆叠在一起所形成的燃料电池组12,而图2为示出了该燃料电池组12的一部分的剖视图。
燃料电池10为用于固定和移动设备的固体氧化物燃料电池(SOFC)。例如,该燃料电池10安装在机动车上。在图3中所示的实施例的示例中,该燃料电池组12用在燃气轮机14中。在图3中,燃料电池组12的形状与图1和2中的那些不同,但是结构基本上相同。
燃料电池组12设置在燃气轮机14的外壳16中。燃烧器18设置在燃料电池组12的中央处。燃料电池组12将燃料气体和含氧气体在反应之后的混合气体作为废气朝着燃烧器18排入到腔室20中。该腔室20沿着由箭头X所示的废气流动方向变窄。在沿着流动方向的前端处绕着腔室20在外部设有热交换器22。另外,在腔室20的前端处设有涡轮(动力涡轮)24。压缩机26和发电机28与涡轮24共轴地连接。燃气轮机14具有整体轴向对称的结构。
涡轮24的排出通道30与热交换器22的第一通道32连接。压缩机26的供应通道34与热交换器22的第二通道36连接。通过与第二通道36连接的热空气入口通道38向燃料电池组12的外圆周表面供应空气。
如图1所示,通过沿着由箭头A所示的堆叠方向堆叠多个燃料电池10而形成燃料电池组12。每个燃料电池10的形状都为具有弯曲外部的盘状。在沿着堆叠方向的相对端部处在最外面的燃料电池10外部分别设有端板40a、40b。燃料电池10和端板40a、40b通过多个(例如,八个)拉紧螺栓42紧固在一起。在燃料电池组12的中央处,形成有一圆孔(排出歧管)44,用于从燃料电池组12排出废气。圆孔44的底部位于端板40b处,并且沿着由箭头A所示的方向延伸(参见图2)。
沿着与圆孔44同心的虚圆形成有多个(例如,四个)燃料气体供应通道46。每个燃料气体供应通道46的底部都位于端板40a处,并且沿着由箭头A所示的方向从端板40b延伸。这些端板40a、40b分别具有输出端子48a、48b。
如图4和5所示,燃料电池10包括电解质电极组件56。每个电解质电极组件56都包括阴极52、阳极54和介于阴极52和阳极54之间的电解质(电解质板)50。电解质50由离子导电固态氧化物(例如,稳定氧化锆)形成。该电解质电极组件56具有相对较小的圆盘形状。
在一对隔板58之间插设有多个(例如,16个)电解质电极组件56,以形成燃料电池10。电解质电极组件56沿着与形成在隔板58的中央处的圆孔44同心的内圆P1和外圆P2布置。内圆P1穿过八个内部电解质电极组件56的中心,并且外圆P2穿过八个外部电解质电极组件58的中心。
每个隔板58都包括堆叠在一起的多块(例如,两块)板60、62。这些板60、62中的每一块都由例如不锈合金形成。在这些板60、62上分别形成有弯曲部分60a、62a。
如图6至8中所示,板60具有围绕着圆孔44形成的内脊部(分隔件)64。内脊部64朝着板62伸出。另外,板60具有围绕着燃料气体供应通道46的伸出部65。该伸出部65离开板62伸出。另外,板60具有与内脊部64同心形成的外脊部(分隔件)66。在内脊部64和外脊部66之间形成有与燃料气体供应通道46连接的燃料气体通道67。
外脊部66包括第一壁68和第二壁70,它们每个都径向向外延伸预定的距离。第一壁68和第二壁70交替地形成。每个第一壁68都延伸至内圆P1,该内圆为经过八个内部电解质电极组件56的中心的虚拟线。第一壁68与第二壁70连接。每个第二壁70都延伸至外圆P2,该外圆为经过八个外部电解质电极组件56的中心的虚拟线。
在第一壁68的每个端部处以及在第二壁70的每个端部处,形成有三个含氧气体入口78。含氧气体入口78形成为穿过板60的表面。在板60上形成有第一凸台80。第一凸台80朝着沿着第一圆P1和第二圆P2布置的电解质电极组件56伸出,并且与之接触。
燃料气体通道67在板60和板62之间形成在内脊部64和外脊部66的内侧。另外,含氧气体通道82形成在外脊部66的外侧。含氧气体通道82与位于板60上的含氧气体入口78连接。沿着内圆P1和外圆P2形成含氧气体入口78。含氧气体入口78形成在与电解质电极组件56的阴极52的中央区域对应的位置处。
如图6、7和9中所示,板62具有绕着相应燃料气体供应通道46的伸出部84。这些伸出部84远离板60伸出。此外,板62具有第二凸台86,该凸台朝着沿着内圆P1和外圆P2布置的电解质电极组件56伸出并且与之接触。第二凸台86与第一凸台80相比较其尺寸较小(高度和直径)。
燃料气体入口88形成为穿过板62以分别通向第一壁68和第二壁70的端部内侧。与含氧气体入口78一样,沿着内圆P1和外圆P2形成燃料气体入口88。燃料气体入口88形成在与电解质电极组件56的阳极54的中央部分对应的位置处。
隔板58具有用于密封燃料气体供应通道46的绝缘密封件90(参见图6)。例如,通过将陶瓷板安放在板60或板62上来形成该绝缘密封件90,或者通过热喷涂而在板60或板62上形成该绝缘密封件90。弯曲外部60a、62a彼此远离地伸出。通过将绝缘密封件92插入在弯曲外部60a和弯曲外部62a之间而在弯曲外部60a或弯曲外部62a上设置绝缘密封件92。或者,通过热喷涂在弯曲外部60a或弯曲外部62a上形成陶瓷等绝缘密封件92。
如图5和6所示,电解质电极组件56插设在一隔板58的板60和另一隔板58的板62之间。具体地说,在电解质电极组件56外侧的板60和板62具有朝着电解质电极组件56伸出的第一凸台80和第二凸台86,用来夹着这些电解质电极组件56。
如图10所示,在电解质电极组件56和隔板58的板62之间形成有通过燃料气体入口88与燃料气体通道67连接的燃料气体流动通道94。另外,在电解质电极组件56和位于另一侧上的另一隔板58的板60之间形成有通过含氧气体入口78与含氧气体通道82连接的含氧气体流动通道96。燃料气体流动通道94的开口尺寸取决于第二凸台86的高度。含氧气体流动通道96的开口尺寸取决于第一凸台80的高度。燃料气体的流速小于含氧气体的流速。因此,第二凸台86的尺寸小于第一凸台80的尺寸。
如图6所示,形成在隔板58的板60、62之间的燃料气体通道67与燃料气体供应通道46连接。含氧气体通道82和燃料气体通道67形成在隔板58内侧的相同区域上。含氧气体通道82通过在隔板58的板60、62的弯曲外部60a、62a之间的间隔而通向外面。
沿着堆叠方向堆叠的每个隔板58都具有用于夹着电解质电极组件56的第一凸台80和第二凸台86。第一凸台80和第二凸台86用作集流器。板60的外脊部66与板62接触,以沿着由箭头A所示的堆叠方向将燃料电池10串连连接。
如图1和2所示,燃料电池10沿着由箭头A所示的方向堆叠。端部40a、40b设置在位于相对端部处的最外面燃料电池10的外面。端板40a、40b在与板60、62的弯曲外部60a、62a的向内弯曲部分对应的位置处具有孔100a、100b。绝缘部件102a、102b安装在这些孔100a、100b中。拉紧螺栓42插入在绝缘部件102a、102b中。拉紧螺栓42的端部拧入到螺母104中,用来通过适当的力紧固燃料电池10。
接下来,将对燃料电池组12的操作进行说明。
在装配该燃料电池10时,将板60和板62连接在一起以形成隔板58。具体地说,如图6所示,通过焊接使与板60一体地从板60延伸的外脊部66与板62连接,并且例如通过热喷涂在板60或板62上绕着燃料气体供应通道46设置环形绝缘密封件90。另外,具有弯曲部的绝缘密封件92例如通过热喷涂而设在板60的弯曲外部60a或板62的弯曲外部62a上。
这样形成的隔板58在板60和板62之间的相同区域上具有燃料气体通道67和含氧气体通道82。燃料气体通道67与燃料气体供应通道46连接,并且在弯曲外部60a和弯曲外部62a之间的含氧气体通道82通向外面。
然后,将电解质电极组件56插设在一对隔板58之间。如图4和5中所示,在一隔板58的板60和另一隔板58的板62之间插入16个电解质电极组件56。沿着内圆P1布置八个电解质电极组件56,并且沿着外圆P2布置八个电解质电极组件56。板60的第一凸台80和板62的第二凸台86朝着电解质电极组件56伸出并且与之接触。
如图10所示,含氧气体流动通道96形成在电解质电极组件56的阴极52和板60之间。含氧气体流动通道96通过含氧气体入口78与含氧气体通道82连接。燃料气体流动通道94形成在电解质电极组件56的阳极54和板62之间。该燃料气体流动通道94通过燃料气体入口88与燃料气体通道67连接。在隔板58之间形成有废气通道106,用来将废气(燃料气体和含氧气体在反应之后的混合气体)引导到圆孔44。
沿着由箭头A所示的方向将如上组装的多个燃料电池10堆叠在一起,以形成燃料电池组12(参见图1和2)。
将燃料气体(例如,含氢气体)供应给端板40b的燃料气体供应通道46,并且在压力下从燃料电池10外面供应含氧气体(例如,空气)。供应给燃料气体供应通道46的燃料气体沿着由箭头A所示的堆叠方向流动,并且被供应给形成在燃料电池10的每一隔板58中的燃料气体通道67(参见图6)。
如图5所示,燃料气体沿着外脊部66的第一壁68和第二壁70流动,并且流入燃料气体流动通道94中。燃料气体入口88形成在第一壁68和第二壁70的端部处,即,形成在与电解质电极组件56的阳极54的中央区域对应的位置处。供应给燃料气体流动通道94的燃料气体从阳极54的中央区域向外流动(参见图10)。
从外面将含氧气体供应给每个燃料电池10。在板60和板62之间将含氧气体供应给形成在每个隔板58中的含氧气体通道82。供应给含氧气体通道82的含氧气体从含氧气体入口78流入到含氧气体流动通道96中,并且从电解质电极组件56的阴极52的中央区域向外流动(参见图5和10)。
因此,在每一个电解质电极组件56中,燃料气体被供应给阳极54的中央区域,并且从阳极54的中央区域向外流动。同样,含氧气体被供应给阴极52的中央区域,并且从该阴极52的中央区域向外流动。氧离子从阴极52通过电解质50流向阳极54,从而通过电化学反应而产生电力。
在本实施例中,电解质电极组件56夹在第一凸台80和第二凸台86之间。因此,第一凸台80和第二凸台86用作集流器。燃料电池10沿着由箭头A所示的堆叠方向串联连接。电力可以从输出端子48a、48b输出。
在燃料气体和含氧气体反应之后,废气从电解质电极组件56的中央区域通过在隔板58之间的排气通道106向外运动,并且流向隔板58的中央。废气流入形成在隔板58中央处的圆孔44,并且从圆孔44向外排出。隔板58形成用于供应燃料气体和含氧气体的歧管以及用于排出燃料气体和含氧气体的歧管。因此,该燃料电池组12具有简单的结构,并且不需要专门的部件。废气被引导至位于隔板58中央处的圆孔44。因此,从电解质电极组件56排出的废气不会出现紊流,并且废气的流速保持恒定。
在第一实施例中,在一对隔板58之间设有多个直径相对较小的圆形电解质电极组件56。八个内部电解质电极组件56沿着内圆P1布置,而八个外部电解质电极组件56沿着外圆P2布置。内圆P1和外圆P2与设在隔板58中央处的圆孔44同心。八个外部电解质电极组件56设置成没有与八个内部电解质电极组件56径向不对准。
因此,这些电解质电极组件56可以较薄,并且减小了电阻极化。另外,温度分布较小,并且防止了由于热应力而导致的损坏。因此,有效地改善了燃料电池10的电力产生性能。电解质电极组件56可以密集地布置在隔板58之间。因此,可以使整个燃料电池10紧凑,同时保持所要求的电力产生性能。整个燃料电池10是紧凑的。
每个隔板58都具有两块板60、62,并且在这些板60、62之间形成有燃料气体通道67和含氧气体通道82。与其中反应气体通道沿着堆叠方向延伸的结构相比较,该燃料电池10的密封结构得到大大的简化。因此,理想地实现了可靠的密封性能。另外,减小了燃料电池10的整体尺寸,并且很容易实现聚能效率(collecting efficiency)的改善。
另外,在本实施例中,燃料气体从燃料气体通道67流入到燃料气体入口88中,并且含氧气体从含氧气体通道82流入到含氧气体入口78中。燃料气体入口88和含氧气体入口78设置在位于电解质电极组件56的相对表面上的中央区域处(参见图10)。可燃气态和含氧气体从电解质电极组件56的中央区域向外流动。因此,在各电解质电极组件56中的温度分布较小,并且防止了由于热应力而造成的损坏。电化学反应在整个电力产生表面上是均匀的。
在该结构中,供应给每个电解质电极组件56的燃料气体的流速是均匀的。燃料气体在电解质电极组件56中的利用率得到了提高,并且该电解质电极组件56的整个表面得到了有效利用。因此,大大改善了电力产生性能。
将燃料气体和含氧气体供应给在电解质电极组件56的相对表面上的中央区域。燃料气体和含氧气体从电解质电极组件56的相对表面上的中央区域径向向外流动。因此,在电解质电极组件56和隔板58之间不需要任何用于燃料气体和含氧气体的密封结构,并且该燃料电池10具有简单的结构。
在本实施例中,内脊部64和外脊部66形成在板60、62之间,作为用于将燃料气体通道67和含氧气体通道82分开的分隔件。因此,不用任何专门的密封结构就可以防止燃料气体和含氧气体在板60、62之间混合在一起。通过这种简单的结构,将燃料气体和含氧气体可靠地供应给电解质电极组件56的中央区域。因此,改善了燃料电池10的电力产生性能。
接下来将对在图3中所示的燃气轮机14中所使用的燃料电池组12的操作进行简要地说明。
如图3所示,在启动燃气轮机14的操作中,对燃烧器18供电以使涡轮24转动,并且对压缩机26和发电机28供电。压缩机26用来将外界空气引导进供应通道34中。空气被加压并加热到预定温度(例如,200℃),并且被供应给热交换器22的第二通道36。
作为燃料气体和含氧气体在反应之后的混合气体的热废气被供应给热交换器22的第一通道32,以对供应给热交换器22的第二通道36的空气进行加热。热空气流动通过热空气供应通道38,并且从外面供应给燃料电池组12的燃料电池10。因此,通过燃料电池10来产生电力,并且由燃料气体和含氧气体的反应所产生的废气排入到在外壳16中的腔室20中。
这时,从燃料电池(固体氧化物燃料电池)10排出的废气温度较高,在800℃至1000℃的范围内。废气使涡轮24旋转以通过发电机28产生电力。废气被供应给热交换器22以加热外部空气。因此,不必使用燃烧器18而使涡轮24旋转。
在800℃至1000℃的范围内的热废气可以用来在内部使供应给燃料电池组12的燃料重整。因此,可以使用各种燃料(例如,天然气、丁烷和汽油)进行内部重整。
在本实施例中,燃料电池组12用在燃气轮机14中。但是,该燃料电池组12可以用在其它用途中。例如,燃料电池组12可以安装在车辆上。
工业实用性根据本发明,用于夹着多个电解质电极组件的每个隔板都包括堆叠在一起的第一板和第二板,并且在这些板之间形成用于给电解质电极组件的阳极供应燃料气体的燃料气体通道和用于给电解质电极组件的阴极供应含氧气体的含氧气体通道。第一板具有燃料气体入口,而第二板具有含氧气体入口,它们用来给电解质电极组件的中央区域供应含氧气体和燃料气体。
燃料气体和含氧气体被供应给电解质电极组件,并且燃料气体和含氧气体从电解质电极组件的中央区域向外流动。因此,在电解质电极组件中的温度分布较小,并且防止了由于热应力而对电解质电极组件造成损坏。在整个电能产生表面上均匀地进行化学反应,并且提高了电能产生效率。
另外,供应给电解质电极组件的燃料气体的流速是均匀的,并且改善了燃料气体的利用率。因此,电解质电极组件的整个表面区域得到了有效利用,并且改善了电能产生性能。
将燃料气体和含氧气体供应给电解质电极组件的中央区域,并且燃料气体和含氧气体从这些电解质电极组件的中央区域径向向外流动。废气(在燃料气体和含氧气体反应之后所产生的混合气体)从电解质电极组件中排出。
因此,在电解质电极组件和用于使燃料气体和含氧气体与废气分开的隔板之间不需要任何密封件。因此,该燃料电池具有简单的结构。
虽然已经参照优选实施例对本发明进行具体显示和说明,但是要理解的是,本领域普通技术人员可以在不脱离由所附权利要求限定的本发明的精神和范围的情况下对它进行各种改变和改进。
权利要求
1.一种燃料电池,包括一对隔板(58)和插设在所述隔板(58)之间的电解质电极组件(56),每个所述电解质电极组件(56)均包括阳极(54)、阴极(52)和插设在所述阳极(54)和阴极(52)之间的电解质(50),其中每个所述隔板(58)都包括堆叠在一起的第一板(60)和第二板(62);在所述第一板(60)和所述第二板(62)之间形成有燃料气体通道(67)和含氧气体通道(82),所述燃料气体通道用于将燃料气体供给到所述阳极(54),所述含氧气体通道用于将含氧气体供给到所述阴极(52);并且所述第一板(60)具有含氧气体入口(78),并且所述第二板(62)具有燃料气体入口(88),它们用于给所述电解质电极组件(56)的中央区域供应所述含氧气体和所述燃料气体。
2.如权利要求1所述的燃料电池组,其特征在于,在所述第一板(60)和所述第二板(62)之间形成一分隔件,用来将所述燃料气体通道(67)和所述含氧气体通道(82)分开。
3.如权利要求2所述的燃料电池组,其特征在于,所述分隔件包括从所述第一板(60)伸出以与所述第二板(62)接触的脊部(66)。
4.如权利要求2所述的燃料电池组,其特征在于,所述分隔件包括从所述第二板(62)伸出以与所述第一板(60)接触的脊部。
5.如权利要求1所述的燃料电池,其特征在于,沿着与所述隔板(58)的中心轴线同心的圆来布置所述电解质电极组件(56)。
6.如权利要求1所述的燃料电池,其特征在于,沿着与所述隔板(58)的中心轴线同心的至少两个圆来布置所述电解质电极组件(56)。
7.如权利要求1所述的燃料电池,其特征在于,所述第一板(60)具有第一凸台(80),而所述第二板(62)具有第二凸台(86);并且所述第一凸台(80)和所述第二凸台(86)朝着彼此伸出以夹着所述电解质电极组件(66)。
8.如权利要求7所述的燃料电池,其特征在于,所述第一凸台(80)和所述第二凸台(86)为集流器,用来收集电能,该电能由供应给所述电解质电极组件(56)的相对表面的所述燃料气体和所述含氧气体的化学反应产生。
9.如权利要求1所述的燃料电池,其特征在于,在所述隔板(58)的中央区域形成一圆孔(44),作为用于沿着所述板的堆叠方向排出废气的排出歧管,并且由所述含氧气体和所述燃料气体在所述电解质电极组件(56)上的化学反应来产生所述废气。
全文摘要
一种燃料电池(10),它包括一对隔板(58)和在所述隔板(58)之间的多个电解质电极组件(56)。每个隔板(58)都包括堆叠在一起的一对板。在这些板(60,62)之间形成有用于给电解质电极组件(56)的阳极(54)供应燃料气体的燃料气体通道(67)和用于给电解质电极组件(56)的阴极(52)供应含氧气体的含氧气体通道(82)。这些板(60,62)具有含氧气体入口(78)和燃料气体入口(88),用于给所述电解质电极组件(56)的中央区域供应含氧气体和燃料气体。
文档编号H01M8/04GK1666368SQ0381526
公开日2005年9月7日 申请日期2003年6月26日 优先权日2002年6月28日
发明者角田正 申请人:本田技研工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1