Cmos图像传感器及其制造方法

文档序号:6857375阅读:101来源:国知局
专利名称:Cmos图像传感器及其制造方法
技术领域
本发明涉及一种图像传感器,并且更特别地,涉及一种CMOS图像传感器及其制造方法,该CMOS图像传感器能够最大化光的聚焦效率并实现其性能的改善。
背景技术
图像传感器是用于把光学图像转换成电信号的半导体器件。图像传感器基本上被分类为电荷耦合器件(CCD)图像传感器和互补型金属氧化物半导体(CMOS)图像传感器。
CMOS图像传感器包括感应照射到其上的光的光电二极管矩阵,以及把感应到的光转换成电信号、用于数据收集的CMOS逻辑电路单元。光电二极管接收的光越多,图像传感器的光感性越好。
为了提高图像传感器的光敏性,努力地增加光电二极管的面积与图像传感器的整个面积的比率,即增加填充因数。在另一种传统技术中,改变除光电二极管外的区域上的光线入射路径,以使光线聚焦在光电二极管上。
上述聚焦技术的典型实例是利用高光传输材料来形成凸微透镜。微透镜位于光电二极管上方,以折射入射光线的路径,从而允许大量光到达光电二极管。
微透镜将平行于微透镜的光轴行进的光线折射到光轴上的预定焦点。
参考


现有技术CMOS图像传感器。
图1是示出现有技术CMOS图像传感器的构造的截面图。
如图1所示,现有技术CMOS图像传感器包括一个或多个光电二极管11,形成在半导体衬底(未示出)上,以基于入射光的量产生电荷;内绝缘层12,形成在包括光电二极管11的半导体衬底的整个表面上;保护层13,形成在内绝缘层12上;红色、绿色、和蓝色滤色器层14,并列排列在保护层13上,每个均用于传输特定波长的光;平面化层(planarization layer)15,形成在滤色器层14上;以及具有预定曲率的一个或多个凸微透镜16,微透镜形成在平面化层15上,用于通过使光传输穿过相应的一个滤色器层14来将特定波长的光聚焦到光电二极管11上。
虽然在附图中没有示出,但内绝缘层12包括光学屏蔽层,以防止光到达除光电二极管11之外的区域。
容易想到,光栅(photo gate)可以代替光电二极管用作感应光的器件。
在现有技术中,微透镜16的曲率和高度由多种因素确定,如聚焦光的焦点。微透镜16主要由基于聚合物的树脂制成,并经过沉积、图案化、回流处理被制造。
特别地,微透镜16必须具有最佳尺寸、厚度、和曲率半径,这些由每个单位像素的尺寸、位置、和形状,光敏器件的厚度,以及光屏蔽层的高度、位置、和尺寸来确定。
如上所述,考虑到各种因素(例如聚焦光的焦点)来确定微透镜16的高度和曲率半径。代表性地使用光致抗蚀剂层来形成微透镜16。在涂敷光致抗蚀剂层之后,光致抗蚀剂层经由曝光及显影处理被选择性地图案化,以形成光致抗蚀剂图案。随后,光致抗蚀剂图案经受回流处理。
光致抗蚀剂图案的轮廓根据包括焦点的曝光条件而变化。
举例来说,处理执行条件根据形成薄子层的要求而改变,导致微透镜的轮廓变化。
因此,在用于制造具有上述配置的现有技术CMOS图像传感器的过程中,提供能够提高光聚焦能力的微透镜16是确定图像传感器的特性的重要因素。
如果照射自然光,微透镜16用于将大量的光聚焦到光电二极管11上,同时特定波长的光被传输穿过相应的一个滤色器层14。
特别地,如果光到达图像传感器,入射光由微透镜16收集,随后,入射光在穿过滤色器层14时被过滤,以使最后聚焦到以一对一的比率排列在滤色器层14下方的光电二极管11上。
光屏蔽层用于防止入射光沿除预定路径外的路径行进。
然而,上述用于制造CMOS图像传感器的现有技术方法还有一个问题,即,光致抗蚀剂图案的图案化条件非常不稳定。这降低了光的聚焦效率,导致CMOS图像传感器的操作性能降低。

发明内容
因此,本发明旨在提供一种CMOS图像传感器及其制造方法,其能够基本上克服由于相关技术的局限性和缺点而导致的一个或多个问题。
本发明的优点在于可以提供一种CMOS图像传感器及其制造方法,其可以通过微透镜的改善曲率而实现光聚焦能力的改善。
本发明的其他优点和特征将在随后的说明书中部分阐述,并且部分将通过实施本发明而变得显而易见。本发明的这些和其他优点可以通过在说明书、权利要求书以及附图中所特别指出的结构来实现和达到。
为了实现根据本发明的目的的这些和其它优点,如本文中所具体描述和概括描述的,提供了一种CMOS图像传感器,包括半导体衬底;多个光电二极管,相互间以预定距离排列在半导体衬底上;内绝缘层,形成在包括(设置有)光电二极管的半导体衬底的整个表面上;多个滤色器层,相互间以预定距离排列在内绝缘层上;平面化层,形成在包括滤色器层的半导体衬底的整个表面上;多个第一微透镜,形成在平面化层的上部中,每个第一微透镜分别排列在相应的光电二极管上方;以及多个第二微透镜,形成在平面化层上,多个第二微透镜的每个分别包围相应的第一微透镜。
在本发明的另一方面,提供了一种用于制造CMOS图像传感器的方法,包括以下步骤在半导体衬底上方形成内绝缘层;在内绝缘层上形成多个滤色器层,多个滤色器相互间以预定距离排列;在包括滤色器层的半导体衬底的整个表面上形成平面化层;在平面化层的上部中形成具有预定深度的多个沟槽,以一对一的比率对应于光电二极管;在沟槽中分别形成第一微透镜;以及在平面化层上分别形成第二微透镜以包围第一微透镜。
应该了解,本发明的以上概括描述以及以下详细描述均是示范性和说明性的,目的在于提供对所要求的发明的进一步的说明。

附图提供了对本发明的进一步理解,其被结合到说明书中并构成说明书的一部分,示出本发明的实施例,并且与说明书一起说明本发明的原理。
在附图中图1是示出现有技术CMOS图像传感器的结构的截面图。
图2是示出根据本发明的典型实施例的CMOS图像传感器的结构的截面图。
图3A至图3D是示出根据本发明的典型实施例的制造CMOS图像传感器的方法的顺序处理的截面图。
具体实施例方式
以下将详细描述本发明的典型实施例,其实例在附图中示出。任何可能的情况下,附图中将使用相同的附图标号来表示相同或相似的部件。
图2是示出根据本发明的CMOS图像传感器的结构的截面图。
如图2所示,本发明的CMOS图像传感器包括一个或多个光电二极管31,在半导体衬底(未示出)上形成,以基于入射光的量产生电荷;内绝缘层32,在包括(设置有)光电二极管31的半导体衬底的整个表面上形成;保护层33,在内绝缘层32上形成;红色、绿色、和蓝色滤色器层34,在保护层33上形成,每个滤色器层均排列在相应的一个光电二极管31上方,用于在将光传输到各自的光电二极管31之前过滤特定波长的光;平面化层35,在包括滤色器层34的半导体衬底的整个表面上形成;沟槽36,在平面化层35的上部中形成,以具有预定深度,每个沟槽均排列在相应的一个光电二极管31上方;第一微透镜37,分别设置在沟槽36中;以及第二微透镜38,被配置为分别包围第一微透镜37,用于聚焦光,以将聚焦光照射到各自的光电二极管31。
沟槽36以一对一的比率相对于滤色器层34排列,并且每个沟槽36的宽度均比相应的一个滤色器层34窄。
第一微透镜37容纳在沟槽36中,以使每个第一微透镜37的上部突出到平面化层35的表面外。
第一和第二微透镜37和38可由不同材料制成,其可以具有彼此不同的折射率。举例来说,第一微透镜37可以由氮氧化硅(SiON)制成,第二微透镜38由光致抗蚀剂制成,或者反之亦然。
图3A至图3D是示出根据本发明的典型实施例的制造CMOS图像传感器的方法的顺序处理的截面图。
如图3A中所示,在半导体衬底(未示出)上形成用于基于入射光的量产生电荷的一个或多个光电二极管31。随后,在包括光电二极管31的半导体衬底的整个表面上形成内绝缘层32。
内绝缘层32可以具有多层结构。尽管没有示出,在形成单个内绝缘层之后,可以在内绝缘层上形成光屏蔽层,以防止光到达除光电二极管31之外的区域,并且随后,另一内绝缘层可以再次在光屏蔽层上形成。
在形成内绝缘层32之后,在内绝缘层32上形成用于防止器件潮湿和被刮损的平面保护层33。
然后在保护层33上涂敷可染抗蚀剂层(dye-able resist layer)并使其图案化,以形成每个均用于过滤特定波长的光的滤色器层34。
随后,在滤色器层34上形成平坦的平面化层35。平面化层35用于实现所得到的CMOS图像传感器的期望平面度,用于焦距的调整和透镜层的形成。
如图3B所示,平面化层35选择性地经过光刻法和蚀刻处理被去除,使得形成从平面化层35的表面具有预定深度的多个沟槽36,以使其宽度比相应的一个滤色器层34的宽度小。
多个沟槽36对应于光电二极管31以一对一的比率设置。
如图3C所示,微透镜材料层沉积在包括沟槽36的半导体衬底的整个表面上。
随后,微透镜材料层经过曝光和显影处理被选择性地图案化,使得在沟槽36中形成第一微透镜37,以按照一对一的比率对应于光电二极管31。
特别地,第一微透镜37容纳在沟槽36中,使得每个微透镜37的上部突出到平面化层35的表面外。
每个第一微透镜37均可设置在相应的一个滤色器层34上方,并且其宽度比相应的滤色器层34的宽度窄。
如图3D所示,在包括第一微透镜37的半导体器件的整个表面上涂敷附加的微透镜材料层。
微透镜材料层可以从氧化层和抗蚀剂层中选择。
当在第一微透镜37形成的区域处半导体器件的表面上涂敷微透镜材料层时,对应于第一微透镜37的微透镜材料层的特定区域自然地突出,以形成具有预定曲率的多个圆形突起。
随后,微透镜材料层可以经过曝光和显影处理被图案化,以形成分别包围第一微透镜37的第二微透镜38。
为了维持完整的第二微透镜38的最佳曲率半径,第二微透镜38可能要经受热回流处理或者紫外线固化处理(ultraviolet curingprocess)。
已发现,通过将光传输穿过第二微透镜38和第一微透镜37,光的聚焦能力提高,并且滤色器层34实现改善的鲜明度(vividness)。
如果微透镜在完成其热回流处理后出现缺陷,它们必须被重做。因为微透镜具有多层结构,微透镜的重做可以简单地执行,而不要求滤色器层重做。这样实现了整个重做处理的简化,因此,实现了制造成本的降低。
如上所述,第一和第二微透镜37和38可由不同材料制成,其可以具有彼此不同的折射率。
从以上描述很显然看出,根据本发明示的典型实施例的CMOS图像传感器及其制造方法可以有以下效果。
首先,关于第二微透镜的形成,微透镜可以自然地在涂敷步骤被成形,以具有预定曲率。这具有提高光聚焦效率的效果。
其次,由于这种光聚焦效率的提高,大量的光能够在传输穿过滤色器层后聚焦到光电二极管上。这样能够获得更鲜明的颜色。
第三,由于获得鲜明的颜色,CMOS图像传感器的性能能够改善。
第四,第一和第二微透镜可能在在双层中一个堆叠在另一个上。因为这种结构,微透镜的曲率可以被改善,导致最大化聚焦效率。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
权利要求
1.一种CMOS图像传感器,包括半导体衬底;多个光电二极管,相互间以预定距离排列在所述半导体衬底上;内绝缘层,形成在包括所述光电二极管的所述半导体衬底的整个表面上;多个滤色器层,相互间以预定距离排列在所述内绝缘层上;平面化层,形成在包括所述滤色器层的所述半导体衬底的整个表面上;多个第一微透镜,形成在所述平面化层的上部中,每个所述第一微透镜分别排列在相应的光电二极管上方;以及多个第二微透镜,形成在所述平面化层上,所述多个第二微透镜中的每个分别包围相应的第一微透镜。
2.根据权利要求1所述的传感器,其中,所述第一微透镜从所述平面化层的表面突出。
3.根据权利要求1所述的传感器,其中,每个所述第一微透镜的宽度均比相应的滤色器层的宽度窄。
4.根据权利要求1所述的传感器,其中,所述第一和第二微透镜由具有折射率彼此不同的不同材料制成。
5.一种用于制造CMOS图像传感器的方法,包括以下步骤在半导体衬底上方形成内绝缘层;在所述内绝缘层上形成多个滤色器层,所述多个滤色器层相互间以预定距离排列;在包括所述滤色器层的所述半导体衬底的整个表面上形成平面化层;在平面化层的上部形成具有预定深度的多个沟槽,以按照一对一的比率对应于所述光电二极管;在所述多个沟槽中分别形成第一微透镜;以及在所述平面化层上分别形成第二微透镜,以包围所述第一微透镜。
6.根据权利要求5所述的方法,其中,所述第一和第二微透镜由具有折射率彼此不同的不同材料制造。
7.根据权利要求5所述的方法,其中,形成所述第二微透镜的步骤包括在包括所述第一微透镜的所述半导体衬底的整个表面上涂敷透镜形成材料层;以及选择性地图案化所述透镜形成材料层。
8.根据权利要求7所述的方法,其中,形成所述第二微透镜的步骤进一步包括执行图案化的所述透镜形成材料层的回流处理。
9.根据权利要求5所述的方法,还包括固化所述第二微透镜的步骤。
10.根据权利要求9所述的方法,其中,固化所述第二微透镜的步骤包括使紫外线照射到所述第二微透镜上。
全文摘要
本发明公开了一种能够提高光的聚焦能力的CMOS图像传感器及其制造方法。CMOS图像传感器包括多个在平面化层的上部形成的第一微透镜,每个第一微透镜均排列在相应的光电二极管上方,以及在平面化层上形成的多个第二微透镜,多个第二微透镜的每个分别包围相应的第一微透镜。
文档编号H01L21/822GK1794462SQ20051013283
公开日2006年6月28日 申请日期2005年12月22日 优先权日2004年12月24日
发明者金尚源 申请人:东部亚南半导体株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1