一种平面超宽频带天线的制作方法

文档序号:7218048阅读:121来源:国知局
专利名称:一种平面超宽频带天线的制作方法
技术领域
本实用新型属于超宽频带天线技术领域,特别涉及平面全向辐射天线。
背景技术
天线作为超宽频带(Ultra-Wide Band,UWB)无线通信系统中辐射、接收能量的关键性部件,其性能要求包括极大阻抗带宽、体积小且易共形、低加工成本等多个方面。
国际电子电气工程师学会《天线与传播》杂志(IEEE Transaction on Antennas andPropagation,1998年第2期,294-295页)曾介绍了作为获得极大阻抗带宽典型结构的椭圆单极天线,但由于该型天线在实际应用时需要一个较大的且与辐射片相垂直的接地平面,使得一方面该型天线仅在包含辐射单元的上半空间内具有能量辐射,无法获得全空间内的辐射特性,另一方面由于事实上的三维结构限制了天线的小型化且无法满足共形特性要求,因此在实际的通信系统尤其是小型系统中难以得到广泛利用。
为解决上述问题,2003年国际天线与传播会议(IEEE Antennas Propagation SocietyInternational Symposium)上施坎兹(Schantz)提出了一种底部馈电平面椭圆超宽带天线(Bottom fed planar elliptical UWB antennas),具有平面结构特征并可实现边沿馈电以减小馈电结构对方向图的影响,但其巴仑结构设计复杂,而且工作带宽不能完全覆盖超宽带无线通信所需的3.1GHz-10.6GHz频段范围,因此在应用上仍有不足。
实用新型内容本实用新型的目的在于提供一种平面超宽频带天线,其阻抗带宽可覆盖3.1GHz-10.6GHz频段,且易于馈电和制作,可有效应用于小型超宽频带无线通信系统。
本实用新型平面超宽带天线,包括介质基板、以及分别敷设在介质基板正、反两个平面上的辐射铜层和馈电铜层构成;其特征在于所述辐射铜层由左右对称、上下排列的两个辐射单元构成,上辐射单元为由一条垂直对称轴线的上直线边沿和下椭圆边沿包围而成的金属铜层,下辐射单元为由垂直于对称轴线的上、下两条直线边沿和左、右两条椭圆边沿共四条边沿包围而成的金属铜层,两辐射单元之间形成一椭圆边沿和直线边沿相对的宽度渐变槽线;所述馈电铜层包含矩形传输线条带和耦合段该矩形传输线条带下端边沿位置正对于介质板另一侧下辐射单元的下直线边沿中点处,上端边沿位置则正对两辐射单元间槽线的中心位置;在传输线条带上端处展开呈扇形的耦合段,其张角朝上并左右对称。
由于本实用新型采用将辐射单元、介质基板和馈电结构平面平行的方式,使得该天线具有平面结构特征,有利于加工制作和共形;由于在辐射结构上采用了经过裁剪的偶极椭圆形结构,可实现覆盖3.1GHz~10.6GHz的超宽阻抗带宽,同时还具有近似全向辐射场型;通过使用边沿-中心微带线传输能量结构以及扇形-缝隙型能量耦合结构,可在天线底端边沿馈电以简化馈电结构并降低馈电对天线方向图的影响,同时又保证天线阻抗带宽基本不变。因此,本实用新型可较好地满足小型超宽频带通信系统的要求。


图1为本实用新型平面超宽带天线的结构示意图;图2是平面超宽带天线的侧视图;图3是平面超宽带天线的的后视图;图4是平面超宽带天线的的俯视图。
图5为端口反射损耗测量结果。
图6为频率为4GHz时H面内的辐射方向图;图7为频率为4GHz时E面内的辐射方向图;图8为频率为8GHz时H面内的辐射方向图;图9为频率为8GHz时E面内的辐射方向图。
具体实施方式
实施例1本实施例平面超宽带天线可参见图1给出的结构示意图以及图2给出的侧视图、图3给出的后视图和图4给出的俯视图它由介质基板1,以及分别印刷在介质基板两侧的辐射铜层2和馈电铜层3三个部分构成。
介质基板1具有一定介电常数和厚度,其作用在于一是在馈电传输线中传递能量,二是支撑辐射铜层以及馈电铜层。为降低介质板对耦合结构处场分布的影响,通常采用较低介电常数的介质基板,并在保证一定硬度情况下选用较薄的厚度。本实施实例中采用厚度为0.5mm的聚四氟乙烯材料介质基板,其介电常数为2.64。
天线的辐射铜层2印刷在介质基板1的正面,包括上辐射片21和下辐射片22两个辐射单元。辐射单元结构左右对称,并具有相同的对称轴线。辐射单元均由椭圆状初始结构裁剪而成,裁剪后上辐射片21边沿由垂直于对称轴线的上直线边沿211和椭圆边沿212组成;下辐射片22则包括垂直于对称轴线的上直线直边221和下直边222,以及左椭圆边沿223和右椭圆边沿224共四条边沿。为使天线工作在设计频段,要求上辐射单元的上直线边沿211和下辐射单元的下边沿222之间的距离至少应为最低截止频率的半个波长长度,同时为获得较好的阻抗特性,椭圆长短半轴比例应当选择在1.0~2.0之间,两辐射单元间最近处缝隙宽度在0.2mm~1.5mm之间。综合以上考虑,在本实施例中,选取椭圆长半轴为24.0mm,短半轴为20.0mm。裁剪后,上辐射单元21的上直线边沿211与椭圆短轴线重合;下辐射单元22的上直边221距离椭圆中心的距离为10.0mm,下直边222则与短轴线重合,上辐射片椭圆边沿212与下辐射片上直边221之间缝隙宽度选取为0.2mm。
介质基板1的反面印刷有馈电铜层3。该馈电结构由两部份组成传输线条带31和扇形耦合结构32。传输线条带31为矩形,与下辐射片22、介质基板1构成微带传输线,其作用在于传输能量,为获得与馈电线匹配的性能,其条带宽度的选取应使得该微带传输线获得50欧姆特性阻抗,本实施例中该值为1.345mm;条带下边沿311中心位置正对于下辐射单元的下直线边沿222的中心,且两边沿平行;条带上边沿312终止于介质板中部,该位置对应于上辐射片椭圆边沿212和下辐射片上直边221之间的缝隙中线位置。扇形耦合结构32包含三条边沿左直边321,右直边322以及弧形边沿323,张角朝向由下至上,且呈左右对称放置,其顶点部分在条带上端面312处与条带结合于一体,并形成光滑过渡结构。扇形结构使得微带线与槽线之间可实现有效的能量耦合转换,本实施例中,选取扇形张角为120度,半径为8mm可得到最佳耦合性能。
天线的能量在条带下边沿311和下辐射片的下直边222之间馈入,可采用同轴馈电或连接微带传输线进行馈电,该馈电结构不仅制作简单,与其他型式的传输线连接方便,而且远离天线中心位置,对于天线的辐射方向图影响很小。能量经由50欧姆微带线送至中心耦合结构处,由扇形左直线边沿321和右直线边沿322向上辐射片椭圆边沿212和下辐射片的上直线边沿221构成的槽线结构进行能量耦合转换,最终沿上辐射片椭圆边沿212和下辐射片左椭圆边沿223、右椭圆边沿224向自由空间辐射。
图5给出了端口反射损耗测量结果,本实施例的端口反射损耗(Return losses)测量结果表明,反射损耗低于-10dB的频带范围为2.5GHz-10.8GHz,该天线具有超过4个倍频程、8GHz以上绝对带宽的超宽阻抗带宽,可以覆盖FCC所要求的3.1GHz-10.6GHz频带范围。图6和图7所示频率为4GHz处H面和E面内的辐射方向图,结果表明本实施例在该频率下其H面辐射方向图在变化不超过5dB,E面方向图3dB波瓣宽度超过240度,因此可认为其具有近似于全向的辐射场型;图8和图9所示频率为8GHz处H面和E面内的辐射方向图,具有类似于频率为4GHz时的结果,故对于本实施例,可认为其在整个3.1GHz-10.6GHz频段范围内均具有近似于全向的辐射场型,尤其在H面内更有较好的全向辐射特性。
权利要求1.一种平面超宽带天线,包括分别敷设在介质基板正、反两个平面上的辐射铜层和馈电铜层;其特征在于所述辐射铜层由左右对称、上下排列的两个辐射单元构成,上辐射单元为由一条垂直对称轴线的上直线边沿和下椭圆边沿包围而成的金属铜层,下辐射单元为由垂直于对称轴线的上、下两条直线边沿和左、右两条椭圆边沿共四条边沿包围而成的金属铜层,两辐射单元之间形成一椭圆边沿和直线边沿相对的宽度渐变槽线;所述馈电铜层包含矩形传输线条带和耦合段该矩形传输线条带下端边沿位置正对于介质板另一侧下辐射单元的下直线边沿中点处,上端边沿位置则正对两辐射单元间槽线的中心位置;在传输线条带上端处展开呈扇形的耦合段,其张角朝上并左右对称。
专利摘要本实用新型平面超宽带天线,包括敷设在介质基板正、反两个平面上的辐射铜层和馈电铜层构成;特征是辐射铜层由左右对称、上下排列的两个辐射单元构成,上辐射单元为由垂直对称轴线的上直线边沿和下椭圆边沿包围而成,下辐射单元为由垂直于对称轴线的上、下两条直线和左、右两条椭圆边沿包围而成,两辐射单元之间形成一椭圆边沿和直线边沿相对的宽度渐变槽线;馈电铜层的矩形传输线条带下端边沿正对于介质板另一侧下辐射单元的下直线边沿中点处,上端边沿正对两辐射单元间槽线的中心位置;在传输线条带上端处展开呈扇形的耦合段,其张角朝上并左右对称。本天线阻抗带宽可覆盖3.1GHz-10.6GHz频段,且易于馈电和制作,可有效应用于小型超宽频带无线通信系统。
文档编号H01Q5/00GK2899142SQ20062007239
公开日2007年5月9日 申请日期2006年4月7日 优先权日2006年4月7日
发明者张金平, 徐云生, 王卫东 申请人:中国科学技术大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1