带有绝缘埋层的图像传感器及其制作方法

文档序号:7156460阅读:105来源:国知局
专利名称:带有绝缘埋层的图像传感器及其制作方法
技术领域
本发明是关于一种带有绝缘埋层的图像传感器及其制作方法,特别涉及一种具有抗高能粒子辐射能力的带有绝缘埋层的图像传感器及其制作方法。
背景技术
图像传感器是一种广泛应用于数码成像、航空航天以及医疗影像领域的电子元器件。电荷耦合器件(charge coupled device, (XD)图像传感器和互补金属氧化物半导体 (complementary metal oxide semiconductor, CMOS)图像传感器是常见的两种图像传感器。CCD具有低的读出噪音和暗电流噪音,同时具有高光子转换效率,所以既提高了信噪比, 又提高了灵敏度,很低光照强度的入射光也能被侦测到,其信号不会被掩盖。另外,CCD还具有高动态范围,提高系统环境的使用范围,不因亮度差异大而造成信号反差现象,但其的功耗比较大,供给电压不一致,与传统的CMOS工艺不匹配,集成度不高,所以成本偏高。与 CCD相比,CMOS图像传感器对光线的灵敏度、信噪比都相对较差,导致它在成像质量上难以与CCD抗衡,所以以前主要用于成像质量要求不是很高的中低端市场。但是,随着CMOS技术不断改进,CMOS图像传感器在成像质量方面也越来越具有与CCD相抗衡的实力。CMOS 最明显的优势是集成度高、功耗小,具有高度系统整合的条件,CMOS芯片几乎可以将所有图像传感器所需的功能集成到一块芯片上,例如垂直位移、水平位移寄存器、时序控制和模拟数字转换等,甚至可以将图像处理芯片、快闪记忆体等整合成单晶片,大大减小了系统复杂性,降低了成本。目前的趋势就是CMOS图像传感器逐步取代CCD。附图IA所示是现有技术中一种典型的图像传感器结构示意图,所示为一个像素单元,包括驱动电路区域I和光学传感区域II,其中驱动电路区域I是典型的4T型驱动电路,包括转移晶体管Tl、复位晶体管T2、源跟随晶体管T3以及行选通开关晶体管T4,光学传感区域II包括一个光敏二极管D1。上述各个晶体管以及与光敏二极管Dl之间的连接关系、各个端口的外接信号以及工作原理请详细参考附图1所示电路结构以及现有技术中对图像传感器的介绍,此处不再赘述。附图IB所示是附图IA所示的图像传感器的器件结构示意图,本示意图意在表示驱动电路区域I和光学传感区域II相互之间的位置关系,故其中除衬底100之外,仅在光学传感区域II之中进一步示出了光敏二极管Dl的第一掺杂区域111和第二掺杂区域112, 而驱动电路区域I仅以转移晶体管Tl表示,包括栅极121、源极掺杂区域122、漏极掺杂区域123。在上述驱动电路区域I和光学传感区域II两个区域之间包括介质隔离结构130。 对于衬底100表面的金属连接线等与本发明无特别关系的结构均已省略。继续参考附图1B,第一掺杂区域111、源极掺杂区域122和漏极掺杂区域123应当具有相同的导电类型,且与衬底100的导电类型相反,而第二掺杂区域112应当与衬底的导电类型相同,例如对于N型的衬底100而言,第一掺杂区域111、源极掺杂区域122和漏极掺杂区域123应当是P型的,而第二掺杂区域112应当是N型的。为了使图像传感器能够稳定地应用在航空航天以及其他极端环境中,需要上述传感器进一步具有抵抗高能粒子辐射的能力。一种有效的方法是将附图IB所示的结构制作在SOI衬底上。SOI (silicon/semiconductor-on-insulator)指的是绝缘层上的硅/半导体,它是由“顶层半导体层/绝缘埋层/支撑衬底”三层构成。最上面的顶层半导体层用来做CMOS等半导体器件,中间的绝缘埋层用来隔离器件和支撑衬底。设置在顶层半导体层和支撑衬底之间的绝缘埋层能够抵抗一部分来自于外部空间的高能粒子辐射。附图IC所示是现有技术中一种带有绝缘埋层的图像传感器结构,同时参考附图 1B,所述带有绝缘埋层的图像传感器结构的衬底进一步包括支撑衬底101、绝缘埋层102以及顶层半导体层103,其余结构均与附图IB类似。由于光敏二极管Dl所接受的光是来自于衬底表面的,故第一掺杂区域111和第二掺杂区域112需要一定的深度来吸收入射光,故晶体管的源极掺杂区域122和漏极掺杂区域123必然与绝缘埋层102之间具有一距离,即驱动电路区域I只能制作成部分耗尽结构。显然这种部分耗尽结构并未实现驱动电路区域I 和光学传感区域II之间的介质隔离,一旦有高能粒子穿越驱动电路区域I和光学传感区域 II,仍然可以使图像传感器发生电学失效。故,现有技术的缺点在于,当用SOI衬底制作图像传感器时,由于SOI的硅膜厚度较薄,在其上制作感光二极管受到限制。较薄的硅膜限制了感光二极管耗尽层厚度,光吸收效率下降。增加硅膜的厚度则不能做全耗尽型SOI器件,或者降低部分耗尽型器件的抗辐射性能。

发明内容
本发明所要解决的技术问题是,提供一种具有抗高能粒子辐射能力的带有绝缘埋层的图像传感器及其制作方法。为了解决上述问题,本发明提供了一种带有绝缘埋层的图像传感器,所述图像传感器形成于支撑衬底表面,所述图像传感器包括驱动电路区域和光学传感区域,驱动电路区域的支撑衬底中具有顶层半导体层,顶层半导体层通过绝缘埋层与支撑衬底隔离;驱动电路区域中的晶体管形成于顶层半导体层中,光学传感区域中的光学传感器件形成于支撑衬底中并通过绝缘隔离层与支撑衬底电学隔离,所述绝缘隔离层从侧面和底部环绕光学传感器件;所述驱动电路区域和光学传感区域彼此通过绝缘侧墙横向隔离。作为可选的技术方案,所述绝缘侧墙、绝缘隔离层以及绝缘埋层的材料各自独立地选自于氧化硅、氮化硅以及氮氧化硅中的任意一种。本发明进一步提供了一种上述的带有绝缘埋层的图像传感器的制作方法,包括如下步骤提供支撑衬底;在支撑衬底的驱动电路区域形成绝缘埋层,并在光学传感区域形成绝缘隔离层;在支撑衬底中的驱动电路区域和光学传感区域之间形成绝缘侧墙;在底部绝缘隔离层、侧壁绝缘隔离层以及绝缘侧墙所围拢的支撑衬底中制作光学传感器件;在由绝缘侧墙和绝缘埋层所围拢的顶层半导体层中制作晶体管。作为可选的技术方案,在支撑衬底的驱动电路区域形成绝缘埋层,并在光学传感区域形成绝缘隔离层的步骤进一步包括在支撑衬底的光学传感区域形成凹槽;采用离子注入的手段在支撑衬底中形成驱动电路区域的绝缘埋层,以及光学传感区域的底部绝缘隔离层,并同时在绝缘埋层表面隔离形成顶层半导体层;在凹槽底部的四周形成环绕光学传感区域的侧壁绝缘隔离层;采用外延工艺形成外延半导体层以填平凹槽。
作为可选的技术方案,所述形成光学传感器件的步骤进一步包括向由底部绝缘隔离层、侧壁绝缘隔离层以及绝缘侧墙围拢的支撑衬底内注入第一掺杂离子,在支撑衬底中形成具有第一导电类型的第一掺杂区域在第一掺杂区域中的部分区域注入第二掺杂离子,形成具有第二导电类型的第二掺杂区域。作为可选的技术方案,在支撑衬底中的驱动电路区域和光学传感区域之间形成绝缘侧墙的步骤进一步包括在支撑衬底中的驱动电路区域和光学传感区域之间形成沟槽, 沟槽底部至露出绝缘隔离层;在沟槽中填充绝缘介质,以形成绝缘侧墙。作为可选的技术方案,所述在支撑衬底的中形成凹槽的工艺采用等离子体辅助刻蚀工艺。本发明的优点在于,驱动电路区域的底部进一步设置了绝缘埋层,形成完全被绝缘介质围拢的驱动电路区域,提高了驱动电路区域的抗高能粒子辐射的能力,并且底部绝缘隔离层和侧壁绝缘隔离层为光学传感区域提供了介质隔离结构,提高了光学传感区域的抗高能粒子辐射的能力。故上述方法所制作的带有绝缘埋层的图像传感器能够更好地避免了高能粒子从衬底处穿越驱动电路区域和光学传感区域而造成传感器失效。


附图IA所示是现有技术中一种典型的图像传感器的电路结构示意图。附图IB所示是附图IA所示的图像传感器的器件结构示意图。附图IC所示是现有技术中一种带有绝缘埋层的图像传感器结构示意图。附图2所示是本发明的具体实施方式
所述方法的实施步骤示意图。附图3A至附图3H所示是本发明的具体实施方式
所述方法的工艺示意图。
具体实施例方式接下来结合附图详细介绍本发明所述一种带有绝缘埋层的图像传感器及其制作方法的具体实施方式
。附图2所示是本具体实施方式
的实施步骤示意图,包括步骤S20,提供支撑衬底; 步骤S21,在支撑衬底的光学传感区域形成凹槽;步骤S22,采用离子注入的手段在支撑衬底中形成驱动电路区域的绝缘埋层,以及光学传感区域的底部绝缘隔离层,并同时在绝缘埋层表面隔离形成顶层半导体层;步骤S23,在凹槽底部的四周形成环绕光学传感区域的侧壁绝缘隔离层;步骤S24,采用外延工艺形成外延半导体层以填平凹槽;步骤S25,在支撑衬底中的驱动电路区域和光学传感区域之间形成绝缘侧墙;步骤S26,在由底部绝缘隔离层、侧壁绝缘隔离层以及绝缘侧墙所围拢的外延半导体层中制作光学传感器件;步骤S27, 在由绝缘侧墙和绝缘埋层所围拢的顶层半导体层中制作晶体管。附图3A至附图3H所示是本具体实施方式
的工艺示意图。附图3A所示,参考步骤S20,提供支撑衬底301。所述支撑衬底301的材料例如可以是单晶硅,也可以是锗硅、碳化硅以及各种III-V族化合物半导体材料等,支撑衬底301 的导电类型可以是N型或者P型中的任意一种。所述支撑衬底被划分为驱动电路区域I和光学传感区域II。顾名思义,驱动电路区域I在后续步骤中用于形成由多个晶体管(例如 MOSFET)组成的驱动电路,而光学传感区域II在后续步骤中用于形成光学传感器件。
附图;3B所示,参考步骤S21,在支撑衬底301的光学传感区域II形成凹槽310。为了获得陡直的侧壁,该形成凹槽310的工艺优选采用等离子体辅助刻蚀工艺。附图3C所示,参考步骤S22,采用离子注入的手段在支撑衬底301中形成驱动电路区域I的绝缘埋层302,以及光学传感区域II的底部绝缘隔离层331,并同时在绝缘埋层 302的表面隔离形成顶层半导体层303。以支撑衬底301的材料为是单晶硅为例,可以选择氧离子、氮离子或者上述两种离子的混合作为成核离子,离子注入的能量范围为500KeV至 1800KeV,绝缘埋层302和底部绝缘隔离层331的厚度为10至200nm,对于选取其他材料作为支撑衬底301的实施方式,可以根据实际情况选择合适的注入离子。对注入区域退火可以促进成核离子在支撑衬底301中成核而形成连续的绝缘层。由于已经在支撑衬底中形成了凹槽310,故本次离子注入在驱动电路区域I和光学传感区域II所形成的埋层位置是不同的。附图3D所示,参考步骤S23,在凹槽310底部的四周形成环绕光学传感区域II的侧壁绝缘隔离层332。此步骤可以首先在凹槽310底部的四周进一步形成环绕光学传感区域II的凹槽,再将所形成的凹槽采用绝缘介质填平以形成侧壁绝缘隔离层332。侧壁绝缘隔离层332的材料选自于氧化硅、氮化硅以及氮氧化硅中的任意一种,形成上述材料的工艺可以采用气相沉积等工艺。附图3E所示,参考步骤S24,采用外延工艺形成外延半导体层390以填平凹槽 310。注入形成底部绝缘隔离层331后,刻蚀形成的凹槽310的底部仍然是构成支撑衬底 301的材料,可以作为外延的基础。以支撑衬底301的材料为单晶硅为例,优选在凹槽中同质外延单晶硅作为外延半导体层390。生长至外延半导体层390的表面突出支撑衬底301 的表面,再采用化学机械抛光的手段进行平坦化。上述步骤S21至步骤S24的目的在于在支撑衬底301的驱动电路区域I形成绝缘埋层302,并在光学传感区域II形成绝缘隔离层,为了达到此目的,除上述方法之外,还可以采用的方法包括在平坦的支撑衬底301中通过多次离子注入,依次注入至形成绝缘埋层302、底部绝缘隔离层331以及侧壁绝缘隔离层332的位置,并退火形成上述各层。绝缘埋层302、底部绝缘隔离层331以及侧壁绝缘隔离层332为光学传感区域II提供了全介质隔离结构,提高了光学传感区域Π的抗高能粒子辐射的能力。附图3F所示,参考步骤S25,在支撑衬底301中的驱动电路区域I和光学传感区域 II之间形成绝缘侧墙350。本步骤进一步包括在支撑衬底301中的驱动电路区域I和光学传感区域II之间形成沟槽,沟槽底部至露出绝缘隔离层;在沟槽中填充绝缘介质,以形成绝缘侧墙350。绝缘侧墙350的材料选自于氧化硅、氮化硅以及氮氧化硅中的任意一种, 形成上述材料的工艺可以采用气相沉积等工艺。绝缘侧墙350与绝缘埋层302相互配合, 形成完全被绝缘介质围拢的驱动电路区域I。附图3G所示,参考步骤S26,在由底部绝缘隔离层331和侧壁绝缘隔离层332以及绝缘侧墙350所围拢的外延半导体层390中制作光学传感器件。附图3G以光敏二极管为例进行叙述。本具体实施方式
中,形成光敏二极管步骤进一步包括向底部绝缘隔离层331 和侧壁绝缘隔离层332以及绝缘侧墙350围拢的支撑衬底310 (本实施方式为外延半导体层390)内注入第一掺杂离子,在支撑衬底中形成具有第一导电类型的第一掺杂区域391 在第一掺杂区域391中的部分区域注入第二掺杂离子,形成具有第二导电类型的第二掺杂区域392。所述第一掺杂离子例如可以是磷离子,注入能量范围为IOOKeV至400KeV,剂量范围为1. OX IO12CnT2至2. OX 1013cm_2,所形成的第一掺杂区域391的导电类型为N型;所述第二掺杂离子为硼离子,离子注入的能量范围为^fev至15Kev,剂量范围为1.0X IO15至 3. OX 1016cm_2,所形成的第二掺杂区域392的导电类型为P型。所述光敏二极管390的主要构成结构即为由第一掺杂区域391和第二掺杂区域392构成的PN结。在其他实施方式中, 也可以采用光敏三极管等其他光敏器件代替光敏二极管作为光学传感器件。附图3H所示,参考步骤S27,在在由绝缘侧墙350和绝缘埋层302所围拢的顶层半导体层303中制作晶体管,附图:3H意在表示驱动电路区域I和光学传感区域II相互之间的位置关系,故仅在驱动电路区域I仅以某一晶体管的栅极121、源极掺杂区域122、漏极掺杂区域123来表示。驱动电路区域I中实际晶体管的数目以及彼此之间的位置以及连接关系请参考现有技术中附图IA所示的电路图,该电路图是一个典型的4T型驱动电路,在其他的实施方式中,驱动电路区域I也可以设置为3T型等其他形式的驱动电路。上述步骤实施完毕后,还应当继续在驱动电路区域I和光学传感区域II的表面形成介质层以及金属连线,制作器件之间的电学连接以及引出电极,上述各个步骤均可采用本领域内常见的工艺,此处不再赘述。从附图3H中可以看出,除了驱动电路区域I和光学传感区域II之间横向通过绝缘侧墙350实现电学隔离之外,驱动电路区域I的底部进一步设置了绝缘埋层302,形成完全被绝缘介质围拢的驱动电路区域I,提高了驱动电路区域I的抗高能粒子辐射的能力,并且底部绝缘隔离层331和侧壁绝缘隔离层332为光学传感区域II提供了介质隔离结构,提高了光学传感区域II的抗高能粒子辐射的能力。故上述方法所制作的带有绝缘埋层的图像传感器能够更好地避免高能粒子从衬底处穿越驱动电路区域I和光学传感区域II而造成传感器失效。综上所述,虽然本发明已用较佳实施例揭露如上,然其并非用以限定本发明,本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视权利要求书所申请的专利范围所界定者为准。
权利要求
1.一种带有绝缘埋层的图像传感器,所述图像传感器形成于支撑衬底表面,所述图像传感器包括驱动电路区域和光学传感区域,其特征在于驱动电路区域的支撑衬底中具有顶层半导体层,顶层半导体层通过绝缘埋层与支撑衬底隔离;驱动电路区域中的晶体管形成于顶层半导体层中,光学传感区域中的光学传感器件形成于支撑衬底中并通过绝缘隔离层与支撑衬底电学隔离,所述绝缘隔离层从侧面和底部环绕光学传感器件;所述驱动电路区域和光学传感区域彼此通过绝缘侧墙横向隔离。
2.根据权利要求1所述的带有绝缘埋层的图像传感器,其特征在于,所述绝缘侧墙、绝缘隔离层以及绝缘埋层的材料各自独立地选自于氧化硅、氮化硅以及氮氧化硅中的任意一种。
3.—种权利要求1所述的带有绝缘埋层的图像传感器的制作方法,其特征在于,包括如下步骤提供支撑衬底;在支撑衬底的驱动电路区域形成绝缘埋层,并在光学传感区域形成绝缘隔离层;在支撑衬底中的驱动电路区域和光学传感区域之间形成绝缘侧墙;在底部绝缘隔离层、侧壁绝缘隔离层以及绝缘侧墙所围拢的支撑衬底中制作光学传感器件;在由绝缘侧墙和绝缘埋层所围拢的顶层半导体层中制作晶体管。
4.根据权利要求3所述的方法,其特征在于,在支撑衬底的驱动电路区域形成绝缘埋层,并在光学传感区域形成绝缘隔离层的步骤进一步包括在支撑衬底的光学传感区域形成凹槽;采用离子注入的手段在支撑衬底中形成驱动电路区域的绝缘埋层,以及光学传感区域的底部绝缘隔离层,并同时在绝缘埋层表面隔离形成顶层半导体层;在凹槽底部的四周形成环绕光学传感区域的侧壁绝缘隔离层;采用外延工艺形成外延半导体层以填平凹槽。
5.根据权利要求3所述的方法,其特征在于,所述形成光学传感器件的步骤进一步包括向由底部绝缘隔离层、侧壁绝缘隔离层以及绝缘侧墙围拢的支撑衬底内注入第一掺杂离子,在支撑衬底中形成具有第一导电类型的第一掺杂区域在第一掺杂区域中的部分区域注入第二掺杂离子,形成具有第二导电类型的第二掺杂区域。
6.根据权利要求3所述的方法,其特征在于,在支撑衬底中的驱动电路区域和光学传感区域之间形成绝缘侧墙的步骤进一步包括在支撑衬底中的驱动电路区域和光学传感区域之间形成沟槽,沟槽底部至露出绝缘隔罔层;在沟槽中填充绝缘介质,以形成绝缘侧墙。
7.根据权利要求3所述的方法,其特征在于,所述在支撑衬底中形成凹槽的工艺采用等离子体辅助刻蚀工艺。
全文摘要
本发明提供了一种带有绝缘埋层的图像传感器,所述图像传感器形成于支撑衬底表面,所述图像传感器包括驱动电路区域和光学传感区域,驱动电路区域的支撑衬底中具有顶层半导体层,顶层半导体层通过绝缘埋层与支撑衬底隔离;驱动电路区域中的晶体管形成于顶层半导体层中,光学传感区域中的光学传感器件形成于支撑衬底中并通过绝缘隔离层与支撑衬底电学隔离,所述绝缘隔离层从侧面和底部环绕光学传感器件;所述驱动电路区域和光学传感区域彼此通过绝缘侧墙横向隔离。
文档编号H01L21/265GK102332463SQ20111022992
公开日2012年1月25日 申请日期2011年8月11日 优先权日2011年8月11日
发明者尚岩峰, 施琛, 汪宁, 汪辉, 田犁, 陈杰 申请人:上海中科高等研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1