基于纳米纤维阵列结构的3维质子导体、膜电极及其制备的制作方法

文档序号:7101775阅读:178来源:国知局
专利名称:基于纳米纤维阵列结构的3维质子导体、膜电极及其制备的制作方法
技术领域
本发明涉及一种具有纳米纤维阵列结构的3维(3D)质子导体,该3D结构质子导体可同时作为质子交换膜及催化剂层中具有定向纤维状排布特征的质子导体。该3D结构质子导体的特点是在质子交换膜的一侧定向生长着质子导体纳米纤维。该结构质子导体特别适用于作为燃料电池的有序化膜电极。本发明还涉及该种3D结构的质子导体及膜电极的制备方法。
背景技术
在能源危机日益严重的今天,质子交换膜燃料电池(Proton Exchange MembraneFuel Cell简称PEMFC)作为一种新型的能源装置以其节能、无污染、启动迅速等诸多优点备受人们的关注,成为世界各国竞相研究的热点。质子交换膜(PEM)是质子交换膜燃料电池的核心部件之一,在PEMFC中起传导质子、隔离燃料和氧化剂、防止电子短路等作用,因此 对PEM性能有诸多要求。其中主要包括优良的质子传导性能,以减小电池内阻,减小欧姆过电位,提高电池效率;良好的水合与脱水性能,水分子在膜表面有足够大的扩散速度,防止局部脱水;膜表面与催化层结合良好;良好的化学和电化学稳定性等。目前对质子交换膜的研究主要集中在两个方面一是对现有的全氟磺酸膜进行改性;二是研制新型、低成本、无氟的聚合物质子交换膜。如 Kim (Journal of Power Sources, 2004, 135;66-71)等采用共混法制得 Nafion /PVDF 复合膜。Adjemian (Chem Mater, 2006, 18; 2238-2248)等通过在Nafion溶液中参入无机氧化物微粒(Si02、Ti02、A1203、ZrO2)制得复合膜,研究发现以SiO2和TiO2参杂的复合膜作为电池隔膜时,电池电极在130°C耐CO能力比Nafion膜电池电极强,但无机物的加入对膜的机械性能有负面影响。何荣恒等对磷酸参杂的ab-PBI膜在不同条件下的质子电导率进行研究,发现在一定温度和湿度下,磷酸的参杂量越高,膜的质子电导率越高。但论其综合性能还是全氟磺酸膜要远远优于其他膜。武汉理工大学木士春等(ZL 200810046954. O )制备了一种多孔Nafion膜,通过在孔洞中添加催化剂,制得了一种具有反气体渗透层及增湿功能的质子交换膜。近期,清华大学朱静等(Advanced Materials 2008. 20. 1644-1648)通过不同方法制备了单根的Nafion纳米纤维,测试了其质子传导速率,发现在直径小于2. 5mm时,随着直径的减小,纤维的质子传导速率急剧增加,在298k时最大传到速率I. 21 μ A/ μ m2,是传统电池膜的10000倍。研究认为质子传导速率的提高是由于形成纳米纤维过程中对磺酸基团和氟的挤压使其有了规则的趋向性,更有利于质子的传递。由于纳米导质子高聚物纤维具有导质子高聚物膜所无法相比的质子传导效率,通过在导质子高聚物膜表面生长导质子高聚物纤维,构建燃料电池3D膜电极,可以极大地增加膜层与催化层之间的接触面积,加快质子传输和传质,使三相界面反应所需要的各种反应物种以及反应产物更容易得到扩散,有利于提高催化剂的利用率,而且在不影响质子传导效率条件下大大减少了贵金属催化剂及导质子高聚物的用量。

发明内容
本发明的目的是提供一种具有纳米纤维阵列结构的3D质子导体及膜电极,还提供该种3D结构质子导体及膜电极的制备方法。如附图I所示,本发明的3D结构质子导体表面一侧定向生长着纳米纤维阵列,适用于做燃料电池的膜电极。由于纳米导质子高聚物纤维具有导质子高聚物膜所无法相比的质子传导效率,在导质子高聚物膜表面生长的导质子高聚物纤维,可以在保证质子传导效率的同时极大的增加膜层与催化层之间的接触面积,并在催化层中增加三相界面的面积和有利于传质,提高催化剂的利用率,大幅减少了贵金属催化剂及导质子高聚物的用量。本发明的一种具有纳米纤维阵列结构的3维质子导体,成分为导质子高聚物,其特证在于它的结构形貌是在膜的一侧定向生长着导质子高聚物纳米纤维阵列。本发明所述的质子导体材料包括具有磺酸基团的全氟磺酸树脂(美国DuPont公 司的Nafion树脂,包括各种长短链的Nafion)、部分氟化的BAM3G质子交换树脂(Ballard公司生产的BAM3G)或非氟化的质子交换树脂,非氟化的质子交换树脂是磺化聚砜类树脂、磺化聚苯硫醚树脂、磺化聚苯并咪唑、磺化聚磷腈、磺化聚酰亚胺树脂、磺化聚苯乙烯树脂或磺化聚醚醚酮树脂。本发明所述的导质子高聚物纳米纤维直径小于500纳米,长度小于10微米;最佳导质子高聚物纳米纤维直径为1(Γ200纳米,长度为50纳米 2微米。本发明中作为质子导体纳米纤维基地的质子交换膜厚度通小100微米。本发明所述的具有纳米纤维阵列结构的3维质子导体同时作为质子交换膜及催化剂层中具有定向纤维状排布特征的质子导体使用。本发明的一种基于3维结构质子导体的燃料电池膜电极,其3维结构质子导体为具有纳米纤维阵列结构的3维质子导体,膜电极中的质子交换膜及催化剂层中质子导体均为具有纳米纤维阵列结构的3维质子导体,而且在纳米纤维表面沉积有活性金属催化剂颗粒或活性金属催化剂纳米薄膜层。本发明所述的活性金属催化剂为贵金属单质或贵金属合金,所述贵金属合金为MxNy 或 MxNyOz,其中 Μ、N、O 分别为 Pt、Ru、Pd、Rh、Ir、Os、Fe、Cr、Ni、Co、Mn、Cu、Ti、Sn、V、Ga及Mo中的任一金属兀素,Μ、Ν、0三者互不相同,但至少有一种为贵金属钼,x、y和z为催化剂中各金属质量比,其数值分别为大于O至100,且x+y=100或x+y+z=100,所述的贵金属单质为Pt、Ru、Pd、Rh、Ir和Os中的任意一种。本发明所使用的催化剂可以是担载的活性金属催化剂颗粒,载体是碳载体、陶瓷载体等。本发明所述的碳载体为纳米碳黑、纳米石墨球、纳米碳纤维、纳米碳管或介孔碳微球,所述的纳米碳黑和纳米石墨球,其颗粒的粒径为1(Γ100纳米,所述的纳米碳纤维和纳米碳管,其直径为2 200纳米,长度为10(Γ10000纳米,所述的介孔碳微球的孔径大小为2 50纳米。本发明所述的纳米碳管是单壁碳纳米管或多壁碳纳米管。本发明所述的陶瓷载体是 Si02、TiSi2, TiB2, TiN, TiC、TiO2, SiC、PbTi03、Ti3SiC' BaPbO3' LaCrO3, TiC/Si3N4 或 TiAl/TiB2,其粒径为 10 200 纳米。本发明的具有纳米纤维阵列结构的3维质子导体的制备方法,采用模板法制备所述的3维质子导体,其中模板为硬模板,主要是氧化铝模板、二氧化硅模板、高分子模板,其制备步骤如下
1)将洗净、烘干的一端封孔的模板使孔道向上放入培养皿,将培养皿放入真空烘箱,烘箱温度定在3(T80°C,抽真空度到O. I大气压;待烘箱内环境稳定,在真空环境下,加入导质子高聚物溶液;静置待溶液充分浸入模板孔道后,调至标准大气压;在3(T8(TC和标准大气压的气氛下烘干后,将烘箱温度上调至9(T240°C恒温使之玻璃化;然后自然冷却,一起取出模板和3 维质子导体膜坯样,放入到腐蚀液中腐蚀到模板从膜上自然脱落;
2)去离子水清洗干净步骤I)中制备的坯样,再放入装有去离子水的培养皿中,纤维膜面向上浸没在去离子水中,用冻干机冻干,即得到单侧表面具有纳米纤维阵列结构的3维质子导体。采用冻干法的作用在于,在真空冷冻的条件下蒸干水分,使纳米纤维充分分散,从而避免了纳米晶须的相互纠缠和团聚;
本发明的基于3维结构质子导体的燃料电池膜电极的制备方法,其制备步骤如下
1)将活性金属催化剂、质子交换树脂、溶剂混合均匀制备成含Pt胶体溶液,其胶体溶液的各种成分的质量份数关系为催化剂质子交换树脂溶剂=10 :2飞5(Γ1000,其中所述的溶剂为水、I-甲氧基2-丙醇、乙醚、石油醚、乙酸乙酯、丙酮、醇或醇水溶液,醇为甲醇、乙醇、异丙醇、乙二醇、丙三醇中的任一种,醇水溶液中水与醇的质量比为I 100 ;
2)将步骤I)制备的部分胶体溶液涂敷在质子导体膜具有纳米纤维阵列的一侧;
3)称取催化剂载体,用醇水充分分散后加入到其余含Pt胶体溶液中,继续搅拌3飞小时制得复合催化剂;其中Pt在复合催化剂中的质量分数209Γ70%。4)采用聚四氟乙烯疏水处理的碳纸作为气体扩散层,将碳纸浸入到聚四氟乙烯疏水剂中,时间为5 10分钟,并在34(T350°C下煅烧2(Γ30分钟,其中聚四氟乙烯疏水剂的固含量20 wt9T30wt% ;之后,再在其一侧涂敷一层由聚四氟乙烯和导电碳黑微粒组成的微孔复合材料,构成微孔层,其中聚四氟乙烯的固含量为20 wt9T30wt% ;经34(T350°C下煅烧20^30分钟后成型,得到预处理的气体扩散层;
5)将步骤3)制备的复合催化剂涂敷于步骤4)制备的气体扩散层表面,并在8(TlO(rC下真空干燥,制得气体扩散层电极;
或者将步骤3)制备的复合催化剂涂敷在纳米纤维阵列结构质子导体纤维阵列的对面一侧制得的燃料电池芯片;
6)将步骤4)制备的气体扩散层贴于步骤2)制备的纳米纤维阵列结构质子导体有纤维阵列的对面一侧,将步骤5)制备的气体扩散层电极贴于其对面,一起热压或冷接触,获得高性能燃料电池膜电极,热压的压力为l 4MPa,温度9(Tl20°C,时间6(Tl20秒。或者将步骤5)制备的燃料电池芯片与两片步骤4)制备的气体扩散层进行热压或冷接触,获得高性能燃料电池膜电极,热压的压力l 4MPa,温度9(Tl20°C,时间6(Tl20秒。将制备的膜电极组装成单电池,进行电性能测试过程如下
单电池组装及测试将膜电极、集流板、端板及密封材料组装成单电池。单电池操作条件为
(I)直接氢燃料电池(PEMFC) =H2/空气,空气背压为O ;阳极增湿,增湿度为(Γ100% ;单电池工作温度为6(Tl00°C,增湿温度为6(Tl00°C ;
(2 )直接甲醇燃料电池(DMFC):阳极甲醇浓度为2摩尔,流量为5毫升/分钟,阴极为空气,背压为O。与现有的背景技术相比,本发明的膜电极具有以下的优点
I、由于纳米导质子高聚物纤维具有导质子高聚物膜所无法相比的质子传导效率,可以减少导质子高聚物的用量。2、表面生长导质子高聚物纤维,可以极大的增加膜层与催化层之间的接触面积,增加三相反应界面和传质能力,以提高催化剂的利用率,从而大幅减 少催化剂的用量。


图I具有纳米纤维阵列结构的3维质子导体正面照片2模板法制备3维质子导体工艺示意图
图中a_模板,b-加入导质子高聚物后静置,C-烘干成膜_,d-去掉模板。
具体实施例方式下面通过实施例详述本发明。下述实施例中预处理的气体扩散层是按上述膜电极制备方法中步骤4)制备的。实施例I
用乙醇将孔径为70nm厚度5微米的氧化铝模板清洗干净、烘干后孔道向上放入直径5cm的培养皿,将培养皿放入真空烘箱。烘箱温度定在50°C,抽真空到O. I个大气压。待烘箱内环境稳定,在真空环境下,加入20晕升质量浓度5%的Nafion溶液。静置5分钟。待溶液充分浸入模板孔道,调至标准大气压。在50°C标准大气压的气氛下烘36小时。烘干后,将烘箱温度上调至120°C恒温20分钟使之玻璃化。自然冷却,一起取出模板和交换膜,放入质量浓度5%的磷酸溶液中,腐蚀掉氧化铝模板。用去离子水清洗干净,再放入装有去离子水的培养皿中,纤维膜面向上浸没在去离子水中,采用普适冻干机冻干即得到单侧表面有纳米纤维阵列的3D结构质子导体;
取2毫升质量浓度5%的Nafion溶液加入到IOOml醇水混合物(乙醇与水质量比
O.5:1)中,搅拌10分钟后,加入含钼32毫克的H2PtCl6溶液继续搅拌,用NaOH调溶液的PH=8, 90°C加热回流,溶液由浅黄色逐渐变黑,并最终变成深黑色,制得稳定的含Pt胶体溶液,取部分含Pt胶体溶液涂敷在上述质子导体具有纳米纤维阵列的一侧。然后称取80毫克的载体导电碳黑XC-72,用20ml醇水(乙醇与水的比例I :1)充分分散后加入到剩余含Pt胶体溶液中,继续搅拌4小时制得碳载钼(Pt/C)催化剂。将催化剂敷于预处理的气体扩散层表面,并在90°C下真空干燥,制得气体扩散层电极。将气体扩散层贴于3D结构质子导体具有纳米纤维阵列的一面,气体扩散层电极贴于其背面,一起热压,获得高性能燃料电池膜电极。阳极催化层中的Pt载量为O. 15毫克/厘米2 ;有纳米纤维阵列的一侧做阴极,其催化层中的Pt载量为O. 15毫克/厘米2。热压的压力为3MPa,温度110°C,时间70秒。将制备的膜电极组装成单电池。单电池操作条件为=H2/空气,空气背压为O ;阴极和阳极100%增湿;单电池工作温度为75°C,增湿温度为75°C。测试结果如下
权利要求
1.一种具有纳米纤维阵列结构的3维质子导体,成分为导质子高聚物,其特证在于它的结构形貌是在膜的一侧定向生长着导质子高聚物纳米纤维阵列。
2.如权利要求I所述的具有纳米纤维阵列结构的3维质子导体,其特征在于所述的质子导体材料包括具有磺酸基团的全氟磺酸树脂、部分氟化的BAM3G质子交换树脂或非氟化的质子交换树脂,非氟化的质子交换树脂是磺化聚砜类树脂、磺化聚苯硫醚树脂、磺化聚苯并咪唑、磺化聚磷腈、磺化聚酰亚胺树脂、磺化聚苯乙烯树脂或磺化聚醚醚酮树脂。
3.如权利要求I所述的具有纳米纤维阵列结构的3维质子导体,其特征在于所述的导质子高聚物纳米纤维直径小于500纳米,长度小于10微米。
4.如权利要求I所述的具有纳米纤维阵列结构的3维质子导体,其特征在于所述的导质子高聚物纳米纤维直径为1(Γ200纳米,长度为50纳米 2微米。
5.如权利要求I所述的具有纳米纤维阵列结构的3维质子导体,其特征在于作为质子导体纳米纤维基地的质子交换膜厚度小于100微米。
6.如权利要求1-5所述的任一项具有纳米纤维阵列结构的3维质子导体的应用,其特征是,该质子导体同时作为质子交换膜及催化剂层中具有定向纤维状排布特征的质子导体使用。
7.一种基于3维结构质子导体的燃料电池膜电极,其特征在于所述的3维结构质子导体为权利要求I所述的具有纳米纤维阵列结构的3维质子导体,膜电极中的质子交换膜及催化剂层中质子导体均为具有纳米纤维阵列结构的3维质子导体,而且在纳米纤维表面沉积有活性金属催化剂颗粒或活性金属催化剂纳米薄膜层。
8.如权利要求7所述的基于3维结构质子导体的燃料电池膜电极,其特征在于所述的活性金属催化剂为贵金属单质或贵金属合金,所述贵金属合金为MxNy或MxNyOz,其中Μ、Ν、O 分别为 Pt、Ru、Pd、Rh、Ir、Os、Fe、Cr、Ni、Co、Mn、Cu、Ti、Sn、V、Ga 及 Mo 中的任一金属元素,Μ、Ν、0三者互不相同,但至少有一种为贵金属钼,x、y和ζ为催化剂中各金属质量比,其数值分别为大于O至100,且x+y=100或x+y+z=100,所述的贵金属单质为Pt、Ru、Pd、Rh、Ir和Os中的任意一种。
9.如权利要求I所述的具有纳米纤维阵列结构的3维质子导体的制备方法,其特征在于采用模板法制备所述的3维质子导体,其中模板为硬模板,主要是氧化铝模板、二氧化硅模板、高分子模板,其制备步骤如下 1)将洗净、烘干的一端封孔的模板使孔道向上放入培养皿,将培养皿放入真空烘箱,烘箱温度定在3(T80°C,抽真空度到O. I大气压;待烘箱内环境稳定,在真空环境下,加入导质子高聚物溶液;静置待溶液充分浸入模板孔道后,调至标准大气压;在3(T8(TC和标准大气压下烘干后,将烘箱温度上调至9(T240°C恒温使之玻璃化;然后自然冷却,一起取出模板和3维质子导体膜坯样,放入到腐蚀液中腐蚀到模板从膜上自然脱落; 2)去离子水清洗干净步骤I)中制备的坯样,再放入装有去离子水的培养皿中,纤维膜面向上浸没在去离子水中,用冻干机冻干,即得到单侧表面具有纳米纤维阵列结构的3维质子导体。
10.如权利要求7所述的基于3维结构质子导体的燃料电池膜电极的制备方法,其特征在于制备步骤如下 I)将活性金属催化剂、质子交换树脂、溶剂混合均匀制备成含Pt胶体溶液,其胶体溶液的各种成分的质量份数关系为催化剂质子交换树脂溶剂=10 :2飞5(Γ1000,其中所述的溶剂为水、I-甲氧基2-丙醇、乙醚、石油醚、乙酸乙酯、丙酮、醇或醇水溶液,醇为甲醇、乙醇、异丙醇、乙二醇、丙三醇中的任一种,醇水溶液中水与醇的质量比为I 100 ; 2)将步骤I)制备的部分胶体溶液涂敷在质子导体膜具有纳米纤维阵列的一侧; 3)称取催化剂载体,用醇水充分分散后加入到其余含Pt胶体溶液中,继续搅拌3飞小时制得复合催化剂; 4)采用聚四氟乙烯疏水处理的碳纸作为气体扩散层,将碳纸浸入到聚四氟乙烯疏水剂中,时间为5 10分钟,并在34(T350°C下煅烧2(Γ30分钟,其中聚四氟乙烯疏水剂的固含量·20 wt9T30wt% ;之后,再在其一侧涂敷一层由聚四氟乙烯和导电碳黑微粒组成的微孔复合材料,构成微孔层,其中聚四氟乙烯的固含量为20 wt9T30wt% ;经34(T350°C下煅烧20 30分钟后成型,得到预处理的气体扩散层; 5)将步骤3)制备的复合催化剂涂敷于步骤4)制备的气体扩散层表面,并在8(TlO(rC下真空干燥,制得气体扩散层电极; 6)将步骤4)制备的气体扩散层贴于步骤2)制备的纳米纤维阵列结构质子导体有纤维阵列的对面一侧,将步骤5)制备的气体扩散层电极贴于其对面,一起热压或冷接触,获得高性能燃料电池膜电极,热压的压力为l 4MPa,温度9(Tl20°C,时间6(Tl20秒。
11.如权利要求10所述的基于3维结构质子导体的燃料电池膜电极的制备方法,其特征在于其步骤5)是将步骤3)制备的复合催化剂涂敷在纳米纤维阵列结构质子导体纤维阵列的对面一侧制得的燃料电池芯片;步骤6)将步骤5)制备的燃料电池芯片与两片步骤·4)制备的气体扩散层进行热压或冷接触,获得燃料电池膜电极,热压的压力f4MPa,温度·90 120°C,时间60 120秒。
全文摘要
该3维结构质子导体是在质子交换膜的一侧表面定向生长着质子导体纳米纤维。该3维结构质子导体可同时作为质子交换膜及催化剂层中具有定向纤维状排布特征的质子导体。该结构质子导体特别适用于作为燃料电池的有序化膜电极。由于纳米导质子高聚物纤维具有导质子高聚物膜所无法相比的质子传导效率,通过在导质子高聚物膜表面生长导质子高聚物纤维,构建燃料电池3D膜电极,极大地增加了膜层与催化层的接触面积,加快质子传输和传质,使三相界面反应所需要的各种粒子以及反应的产物更容易扩散,利于提高催化剂的利用率;并能在不影响质子传导效率条件下减少贵金属催化剂及导质子高聚物的用量。
文档编号H01M8/02GK102723509SQ20121019792
公开日2012年10月10日 申请日期2012年6月15日 优先权日2012年6月15日
发明者木士春, 袁庆 申请人:武汉理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1