一种稀土硫化物量子点太阳能电池的制备及其应用的制作方法

文档序号:7015422阅读:289来源:国知局
一种稀土硫化物量子点太阳能电池的制备及其应用的制作方法
【专利摘要】一种稀土硫化物量子点太阳能电池的制备及其应用,采用溶剂热法和水热法的特点,成功了合成稀土硫化物量子点,通过改变反应温度、反应时间来调节量子点粒径,通过控制水热时间、水热温度调节量子点晶型使太阳能电池p型半导体和n型半导体能级匹配,提高太阳能电池光电转换效率。本发明的优点是:本稀土硫化物量子点制备技术稳定、量子点荧光半高峰宽大,所制备的太阳能电池易组装成本低且具有宽的吸收光谱和高的光电转换效率,具有比较高的开发价值。
【专利说明】—种稀土硫化物量子点太阳能电池的制备及其应用
【技术领域】
[0001]本发明涉及一种硫化物量子点太阳能电池的制备,尤其涉及一种稀土硫化物量子点太阳能电池的制备及其应用。
【背景技术】
[0002]太阳能作为一种干净、无污染的清洁能源分布广泛、总量巨大而被人们所利用,将太阳能转化为电能已成为能源利用的大势所趋,太阳能正在逐步替代传统化石能源,太阳能电池装置昂贵,光电转换效率低成为利用太阳能的最大障碍,设计出成本低廉且高光电转换效率的太阳能电池为目前的主要工作,量子点作为准零维(quas1-zero-dimensional)无机半导体材料被用作太阳能电池中的吸光部分。其三个维度尺寸均小于体材料激子的德布罗意波长,量子限域效应显著。量子点具有以下优点:具有高荧光量子产率;尺寸易通过改变反应条件控制;吸光范围可通过调节量子点尺寸实现;化学性质稳定,合成过程简单成本低;具有高消光系 统和本征偶极矩,吸光层可以制备的很薄以降低成本;量子点相较于体半导体材料易调控能级使得电子给体和受体之间能级匹配,大幅提高太阳能光电转换效率。稀土硫化物量子点兼顾了量子点所有的优点,同时又将稀土元素丰富的能级赋予量子点之中,使得稀土硫化物量子点(MS QDs)作为太阳能电池的吸光材料而具有非常宽的吸收峰,从而进一步提高量子点太阳能电池光电转换效率。
[0003]在太阳能电池中,P型半导体作为吸光材料对提高电池效率起着决定性的作用。合成高量子产率,宽荧光发射峰和良好稳定性的稀土硫化物量子点纳米半导体材料是制备高效率低成本太阳能电池的关键技术,本发明采用溶剂热法和水热法的特点,成功了合成稀土硫化物量子点,通过改变反应温度、反应时间来调节量子点粒径,通过控制水热时间、水热温度调节量子点晶型使太阳能电池P型半导体和η型半导体能级匹配,提高太阳能电池光电转换效率,不仅克服了传统半导体材料能级难以调控无法适用于太阳能电池的缺点,同时也解决了量子点晶型不稳定重现性差的问题。

【发明内容】

[0004]本发明的目的在于提供一种稀土硫化物量子点太阳能电池的制备及其应用,稀土硫化物量子点太阳能电池具有高光电转换效率、低成本和易组装等特点。
[0005]本发明稀土硫化物量子点太阳电池制备是这样来实现的,其特征是方法步骤如下:
(1)以三次蒸馏水为溶剂配一定浓度的稀土硝酸化合物(MNO3)作为稀土源,以三次蒸馏水为溶剂配一定浓度的硫化钠(Na2S)作为硫源,以还原谷胱甘肽(GSH)作为稳定剂,氢氧化钠(NaOH)溶液调节pH, N2氛围下反应,乙醇诱使稀土硫化物量子点(MS QDs)沉淀,离心分离提纯;
(2)硫前躯体以一定比例加入稀土溶液前驱体中反应得到稀土硫化物量子点,此时的量子点含有未反应完全的杂质,加入过量的乙醇,量子点不溶于乙醇会沉淀下来,而杂质会溶于乙醇采用离心方法可将量子点提纯;
(3)以多孔η型半导体TiO2纳米材料为光阳极,将提纯后的量子点和TiO2组装成电池;当太阳光照射光阳极时,附着在TiO2上的量子点的电子、空穴对发生分离,电子从价带跃迁至导带并注入TiO2的导带中经由FTO导电玻璃连接负载传递给钼金背电极,最后通过空穴传输层PES0T:PSS和电子复合形成电子-空穴对完成一个循环。
[0006]本发明稀土硫化物的制备及太阳能电池的组装,其特征是可通过如下步骤实现: (I)以原料配比为1:1的Na2S溶液和稀土前驱体溶液分别加入恒压滴液漏斗和三颈烧
瓶中,氮气氛围室温条件下搅拌形成前驱体。升温至100°C,将他#溶液加入稀土前驱体溶液中回流反应lh。氮气氛围下是为了避免有氧气存在而使得原料被氧化,反应之前搅拌可使得稀土硫化物充分溶解在水中。
[0007](2)所制备的稀土硫化物量子点溶于水但不溶于乙醇因而可以通过过量的乙醇诱使量子点沉淀,15000rpm高速离心分离。分离后的量子点重新分散到水中得到稀土硫化物量子点溶液。
[0008](3)以多孔TiO2为η型半导体,将TiO2旋涂到FTO导电玻璃导电层上形成一层薄膜,将其浸泡在所制备的稀土硫化物量子点中,浸泡完后往样品层上再旋涂一层空穴传递层PED0T:PSS ;选用钼金作为背电极,以模拟太阳光源照射光阳极通过电化学工作站测量太阳能电池光电转换效率。PEDOT: PSS作为空穴传输层可以促进空穴传输,避免电子-空穴对的复合;同时又可使钼金背电极和量子点薄膜更好接触避免中间存在空气使得电子和空穴都无法传递。
[0009]本发明的优点是:本稀土硫化物量子点制备技术稳定、量子点荧光半高峰宽大,所制备的太阳能电池易组装成本低且具有宽的吸收光谱和高的光电转换效率,具有比较高的开发价值。
【具体实施方式】
[0010]以下通过实施例作进一步详细描述,但本实施例并不用于限制本发明,凡是采用本发明的相似结构及其相似变化,均应列入本发明的保护范围。
[0011]本发明采用溶剂热法:即在水相中,将Na2S溶液加入可以制备出不同粒径的稀土硫化物量子点,再经水热使其晶型稳定适合制备太阳能电池。
[0012]一、本发明稀土硫化物量子点合成具体步骤如下:
(I)往250mL三颈烧瓶中加入一定摩尔的稀土硝酸化合物和还原谷胱甘肽,往250mL恒压滴液漏斗中加入一定摩尔的Na2S溶液,其中还原谷胱甘肽、稀土元素和Na2S溶液的摩尔比为13:10:9,再往烧瓶中加入40mL水使原料充分分散。同时装置需搭载球形冷凝管。
[0013](2)使装置密闭,30°C搅拌同时将装置抽成真空,然后打开三通阀往装置中充入氮气,反复三次使得装置内和溶剂中完全无氧。搅拌半小时形成稀土化合物前驱体。
[0014](3)打开球形冷凝管冷凝水,升高温度至100°C,打开恒压滴液漏斗使Na2S溶液迅速加入稀土化合物前驱体溶液中,搅拌回流反应lh。
[0015]二、本发明稀土硫化物量子点分离提纯步骤如下:
(I)将制得的量子点移入烧杯中,缓慢持续加入无水乙醇,当看到有沉淀生成时继续加入无水乙醇直至沉淀不再生成;将得到含有沉淀的溶液移入50mL离心管中,15000rmp离心5min得稀土硫化物量子点粉末。反复三次即可得纯净稀土硫化物量子点。
[0016](2)将得到的量子点重新分散在三次蒸馏水中,移入IOOmL反应釜,在180°C条件下水热反应12h。
[0017]三、本发明稀土硫化物量子点太阳能电池组装步骤如下:
(I)取1.5*2.0cm2的FTO导电玻璃于丙酮、无水乙醇和水摩尔比为2:2:1的溶液中超声清洗lOmin,随即用去离子水清洗掉有机溶剂,将洗净的导电玻璃烘干。
[0018](2)在导电玻璃导电层旋涂一层多孔TiO2膜,然后将含有TiO2膜的导电玻璃在盛有稀土量子点溶液的称量瓶中浸泡24h使得量子点充分吸附在TiO2分子上。
[0019](3)往吸附好量子点的的TiO2膜上旋涂一层PEDOT: PSS,用钼金电极夹在PEDOT: PSS上层组装成稀土硫化物量子点太阳能电池。
[0020]四、通过稀土硫化物量子点合成、稀土硫化物量子点分离提纯和稀土硫化物量子点太阳能电池组装三个步骤制备出低成本、半高峰宽大的稀土硫化物量子点,满足高效太阳能电池制备工艺的要求。
【权利要求】
1.一种稀土硫化物量子点太阳能电池的制备,其特征是方法步骤如下: (O以三次蒸馏水为溶剂配一定浓度的稀土硝酸化合物(MNO3)作为稀土源,以三次蒸馏水为溶剂配一定浓度的硫化钠(Na2S)作为硫源,以还原谷胱甘肽(GSH)作为稳定剂,氢氧化钠(NaOH)溶液调节pH, N2氛围下反应,乙醇诱使稀土硫化物量子点(MS QDs)沉淀,离心分离提纯; (2)硫前躯体以一定比例加入稀土溶液前驱体中反应得到稀土硫化物量子点,此时的量子点含有未反应完全的杂质,加入过量的乙醇,量子点不溶于乙醇会沉淀下来,而杂质会溶于乙醇采用离心方法可将量子点提纯; (3)将纯净的稀土硫化物量子点进行水热反应可使晶体生长形成更稳定的晶型; (4)以多孔η型半导体TiO2纳米材料为光阳极,将提纯后的量子点和TiO2组装成电池;当太阳光照射光阳极时,附着在TiO2上的量子点的电子、空穴对发生分离,电子从价带跃迁至导带并注入TiO2的导带中经由FTO导电玻璃连接负载传递给钼金背电极,最后通过空穴传输层PES0T:PSS和电子复合形成电子-空穴对完成一个循环。
2.一种根据权利要求1所述的稀土硫化物的制备及太阳能电池的组装,其特征在于可通过如下步骤实现: (1)以原料配比为1:1的Na2S溶液和稀土前驱体溶液分别加入恒压滴液漏斗和三颈烧瓶中,氮气氛围室温条件下搅拌形成前驱体;升温至100°C,将他#溶液加入稀土前驱体溶液中回流反应Ih ; (2)所制备的稀土硫化物量子点通过过量的乙醇诱使量子点沉淀,15000rpm高速离心分离,分离后的量子点重新分散到水中得到稀土硫化物量子点溶液; (3)将得到的溶液移入反应釜中水热反应得到稳定晶型的稀土硫化物量子点; (4)以多孔TiO2为η型半导体,将TiO2旋涂到FTO导电玻璃导电层上形成一层薄膜,将其浸泡在所制备的稀土硫化物量子点中,浸泡完后往样品层上再旋涂一层空穴传递层PEDOT:PSS ;选用钼金电极作为背电极,以模拟太阳光源照射光阳极通过电化学工作站测量太阳能电池光电转换效率。
【文档编号】H01L31/18GK103730536SQ201310725087
【公开日】2014年4月16日 申请日期:2013年12月25日 优先权日:2013年12月25日
【发明者】李清华, 程园远, 金肖, 秦元成 申请人:南昌航空大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1