一种碳化硅功率器件结终端结构及其制造方法

文档序号:7041384阅读:101来源:国知局
一种碳化硅功率器件结终端结构及其制造方法
【专利摘要】本发明涉及一种碳化硅功率器件结终端结构及其制造方法。该碳化硅功率器件结终端结构包括多个场限环,其通过掺杂间隔设置于外延层上;掺杂区,其设置于所述外延层的上方;其中,所述掺杂区是在所述外延层上通过再次外延得到。本发明的结终端结构使得功率器件具有较好的耐压能力和较高的可靠性。
【专利说明】一种碳化娃功率器件结终端结构及其制造方法
【技术领域】
[0001]本发明涉及一种碳化硅功率器件结终端结构,还涉及一种制造这种结终端结构的制造方法。
【背景技术】
[0002]相对于以硅为代表的第一代半导体和以砷化镓为代表的第二代半导体,第三代半导体的碳化硅具有更大的禁带宽度和更高的临界击穿电场,非常适合制造高温大功率半导体器件。目前来看,碳化硅功率器件是国际上的开发热点。
[0003]就功率器件而言,需要对结终端进行良好设计。合理设计的结终端不仅是确保功率器件耐压能力的关键,也是保证功率器件可靠工作的重要部分。其中,场限环是纵向功率半导体器件的常用结终端结构,它可以与主结同时制作也可以单独制作。
[0004]碳化硅功率器件的结终端,特别是在高压情形下,常用浮空场限环的终端结构。但是场限环外侧(远离主结的一侧)的上表面的尖角位置更易于出现尖峰电场。此外,由于材料本身的特点,在碳化硅表面热生长较厚的二氧化硅薄膜受限制,因此碳化硅功率器件的结终端表面的介质钝化层通常是通过淀积得到的二氧化硅,其质量相对较差,相比于碳化硅较高的临界击穿电场,钝化层成为易于被击穿的地方。因此,尖角位置的电场尖峰可降低碳化硅功率器件的耐压能力以及可靠性。因此,急需一种耐压能力好、可靠性高的碳化硅功率器件结终端结构。

【发明内容】

[0005]针对上述的问题,本发明提出了一种碳化硅功率器件结终端结构,这种结终端结构耐压能力好、可靠性高。本发明还提出了制造这种结终端结构的制造方法。
[0006]根据本发明的第一方面,提出了一种碳化硅功率器件结终端结构,其包括:多个场限环,其通过掺杂间隔设置于外延层上;掺杂区,其设置于外延层的上方;其中,掺杂区是在外延层上通过再次外延得到。
[0007]通过本发明的碳化硅功率器件结终端结构,使得尖角位置的尖峰电场被转移至半导体体内。相对于现有技术中的钝化层,掺杂区具有相对较高的材料质量和更高的介电常数,从而具有更高的可靠性和更强的承受电场的能力。因此功率器件的耐压能力和可靠性得到提闻。
[0008]在一个实施例中,掺杂区包括第一掺杂区和第二掺杂区,第二掺杂区至少自最外侧场限环的外侧冶金结面向外延伸预定距离,第一掺杂区设置于其余区域,并且第二掺杂区的掺杂浓度大于第一掺杂区的掺杂浓度,但小于场限环的掺杂浓度。由此能够使得结终端的结构得到优化,提高了耐压能力。
[0009]在一个实施例中,第二掺杂区还设置于最外侧主结与最外侧场限环的外侧冶金结面之间。由此可优化最外侧主结和最外侧场限环的外侧冶金结面附近的电场分布,从而提高功率器件的耐压能力。[0010]在一个实施例中,第二掺杂区还设置于场限环之间。从而可优化场限环的电场分布,从而提高功率器件的耐压能力。
[0011]在一个实施例中,第二掺杂区还横跨场限环的外侧冶金结面,并且第二掺杂区自位于最外侧主结和最外侧场限环之间的中间场限环的外侧冶金结面向外延伸预定距离。由此使得功率器件的性能得到优化。
[0012]在一个实施例中,第一掺杂区的导电类型与外延层的导电类型相同,第二掺杂区的导电类型与场限环的导电类型相同。由此削弱半导体内的电场集中,从而提高结终端的耐压能力。
[0013]在一个实施例中,第二掺杂区的掺杂浓度为IX IO14CnT3?IX 1017cm_3。
[0014]在一个实施例中,掺杂区的厚度为IOOnm?5000nm。
[0015]根据本发明的第二方面,还提供了一种碳化硅功率器件结终端结构的制造方法,其包括以下步骤:步骤1:在外延层上制作多个主结和多个场限环;步骤2:外延生长掺杂区。由此能够使得场限环外侧的上表面的电场集中转移至半导体内,从而提高了结终端的耐压能力。
[0016]在一个实施例中,还包括以下步骤:步骤3:对多个主结补充注入离子;步骤4:制作掩膜,以在掺杂区形成第二掺杂区的注入窗口 ;步骤5:离子注入,以形成第二掺杂区,其中掺杂区的未进行离子注入的部分为第一掺杂区。第二掺杂区的引入可优化结终端的电场分布,从而使得功率器件的性能得到优化。
[0017]需要说明的是,本发明中使用的术语“外”为远离功率器件有源区的方向。
[0018]与现有技术相比,本发明的优点在于,场限环外侧的上表面的尖峰电场被转移到半导体体内,由此使得结终端能够承受更强的电场,从而提高了功率器件的耐压能力和产品的可靠性。
【专利附图】

【附图说明】
[0019]在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
[0020]图1是根据本发明一个优选实施例的碳化硅功率器件结终端结构的示意图;
[0021]图2是根据本发明另一个优选实施例的结终端结构的示意图;
[0022]图3是根据本发明再一个优选实施例的结终端结构的示意图;
[0023]图4是根据本发明又一个优选实施例的结终端结构的示意图;
[0024]图5是根据本发明一个优选实施例的碳化硅功率器件结终端结构的制造方法的流程图;
[0025]图6是图5中的步骤I的示意图;
[0026]图7是图5中的步骤2的示意图;
[0027]图8是图5中的步骤3的示意图;
[0028]图9是图5中的步骤4的示意图;
[0029]图10是图9中去除掩膜后的示意图。
[0030]在图中,相同的构件由相同的附图标记标示。附图并未按照实际的比例绘制。【具体实施方式】[0031]下面将结合附图对本发明做进一步说明。
[0032]本发明提供的碳化硅功率器件结终端结构包括多个场限环30和掺杂区40。下面将详细地描述该功率器件结终端结构及其各个部件。
[0033]如图1所示,场限环30通过掺杂间隔设置于外延层10上,掺杂区40设置于外延层10的上方,其中,外延层10外延生长掺杂区40。掺杂区的掺杂浓度相对于场限环来说相对较低,例如场限环的掺杂浓度一般为I X IO17CnT3?I X 1019cm_3,那么掺杂区的掺杂浓度可以是I X IO14CnT3?I X ΙΟ17?3,也可以是更低浓度。由于可采用外延生长的方式形成掺杂区,因此掺杂区具有相对较高的材料质量以及介电常数,从而使得结终端结构具有更高的可靠性和更强的承受电场的能力。因此功率器件的耐压能力和可靠性得到提高。
[0034]如图1所示,掺杂区40可以是同一掺杂浓度,只要能够使得场限环外侧的上表面的尖峰电场被转移至半导体内即可。在一个优选的实施例中,如图2、图3和图4所示,掺杂区40包括第一掺杂区41和第二掺杂区42,第二掺杂区42至少自最外侧场限环31的外侧冶金结面32向外延伸预定距离,第一掺杂区40设置于其余区域,并且第二掺杂区42的掺杂浓度大于第一掺杂区41的掺杂浓度,但小于场限环30的掺杂浓度。由此能够减小半导体内电场的集中,使得结终端的结构得到优化,提高了功率器件的耐压能力。作为优选地,预定距离可以是100nm-3000nm。
[0035]作为优选地,如图2所示,第二掺杂区42还设置于最外侧主结21与最外侧场限环31的外侧冶金结面32之间。由此减少了半导体内电场的集中,提高了最外侧主结21和最外侧场限环31的外侧冶金结面32之间的耐压能力。
[0036]作为另一个优选实施例,如图3所示,第二掺杂区42还设置于场限环30之间。减少了半导体内电场的集中,从而提高了场限环30之间的耐压能力。
[0037]在又一个优选实施例中,如图4所示,第二掺杂区42还横跨场限环30的外侧冶金结面32,并且第二掺杂区42自位于最外侧主结21和最外侧场限环31之间的中间场限环的外侧冶金结面32向外延伸预定距离。作为优选地,预定距离可以是100nm-3000nm。由此使得功率器件的性能得到优化。
[0038]在一个实施例中,第一掺杂区41的导电类型与外延层10的导电类型相同,第二掺杂区42的导电类型与场限环30的导电类型相同。避免半导体内的电场集中,提高结终端的耐压能力。
[0039]在一个实施例中,第二掺杂区42的掺杂浓度为IX IO14CnT3?IX 1017cnT3。
[0040]在一个实施例中,掺杂区40的厚度为IOOnm?5000nm。
[0041]如图5所示,本发明还提供了一种碳化硅功率器件结终端结构的制造方法。其包括以下步骤:步骤I为S1:在外延层10上制作多个主结20和多个场限环30 (参见图6)。如图7所示,步骤2为S2:外延生长掺杂区40。由此能够使得场限环30外侧的上表面的电场集中转移至半导体内,从而提高了结终端的耐压能力。
[0042]在一个优选的实施例中,还包括步骤3为S3:对多个主结20补充注入离子。如图8所示,在掺杂区40上方设置掩膜50,对多个主结20补充注入离子的目的是用于欧姆接触。完成多个主结的补充离子注入后,除去掩膜60。如图9所示,步骤4为S4:制作掩膜60,以在掺杂区40形成第二掺杂区42的注入窗口 70。步骤5:注入离子,以形成第二掺杂区42,其中掺杂区40的未注入离子的部分为第一掺杂区41。去除掩膜70后的结终端结构如图10所示,从而使得功率器件的性能得到优化。
[0043]虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
【权利要求】
1.一种碳化硅功率器件结终端结构,其特征在于,包括: 多个场限环,其通过掺杂间隔设置于外延层上; 掺杂区,其设置于所述外延层的上方; 其中,所述掺杂区是在所述外延层上通过再次外延得到。
2.根据权利要求1所述的结终端结构,其特征在于,所述掺杂区包括第一掺杂区和第二掺杂区,所述第二掺杂区至少自最外侧场限环的外侧冶金结面向外延伸预定距离,所述第一掺杂区设置于其余区域,并且所述第二掺杂区的掺杂浓度大于所述第一掺杂区的掺杂浓度,但小于所述场限环的掺杂浓度。
3.根据权利要求2所述的结终端结构,其特征在于,所述第二掺杂区还设置于最外侧主结与最外侧场限环的外侧冶金结面之间。
4.根据权利要求2所述的结终端结构,其特征在于,所述第二掺杂区还设置于所述场限环之间。
5.根据权利要求2所述的结终端结构,其特征在于,所述第二掺杂区还横跨所述场限环的外侧冶金结面,并且所述第二掺杂区自位于所述最外侧主结和所述最外侧场限环之间的中间场限环的外侧冶金结面向外延伸预定距离。
6.根据权利要求2至5中任一项所述的结终端结构,其特征在于,所述第一掺杂区的导电类型与所述外延层的导电类型相同,所述第二掺杂区的导电类型与所述场限环的导电类型相同。
7.根据权利要求6所述的结终端结构,其特征在于,所述第二掺杂区的掺杂浓度为IXlO1W3 ?IXlO17Cm'
8.根据权利要求1所述的结终端结构,其特征在于,所述掺杂区的厚度为IOOnm?5000nm。
9.一种碳化硅功率器件结终端结构的制造方法,其特征在于,包括以下步骤: 步骤1:在外延层上制作多个主结和多个场限环; 步骤2:外延生长掺杂区。
10.根据权利要求9所述的制造方法,其特征在于,还包括以下步骤: 步骤3:对所述多个主结补充注入离子; 步骤4:制作掩膜,以在所述掺杂区形成第二掺杂区的注入窗口 ; 步骤5:离子注入,以形成所述第二掺杂区,其中所述掺杂区的未进行离子注入的部分为第一掺杂区。
【文档编号】H01L21/04GK103824878SQ201410044259
【公开日】2014年5月28日 申请日期:2014年1月30日 优先权日:2014年1月30日
【发明者】杨勇雄, 吴煜东, 何多昌, 蒋华平, 李诚瞻, 赵艳黎, 吴佳, 唐龙谷 申请人:株洲南车时代电气股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1