光伏装置及制作方法与流程

文档序号:14721267发布日期:2018-06-17 15:23阅读:139来源:国知局

本发明一般涉及光伏装置。更特别地,本发明涉及包含硒的光伏装置,以及制作光伏装置的方法。



背景技术:

薄膜太阳能电池或光伏(PV)装置通常包含设置在透明衬底上的多个半导体层,其中一个层用作窗口层而第二层用作吸收层。窗口层允许太阳辐射穿透到吸收层,其中将光能转换为可用的电能。窗口层还运行以与吸收层结合形成异质结(p-n结)。基于碲化镉/硫化镉(CdTe/CdS)异质结光伏电池是这种薄膜太阳能电池的一个示例,其中CdS作为窗口层运行。

然而,薄膜太阳能电池可具有低的转换效率。因此,光伏装置的领域中的主要焦点的一个是转换效率的改善。由窗口层对光线的吸收可以是限制PV装置的转换效率的现象中的一个。此外,窗口层和吸收层(例如,CdS/CdTe)层之间的晶格失配可引起界面处的高缺陷密度,这可进一步引起更短的界面载流子寿命。因此,希望保持窗口层尽可能的薄以帮助降低由吸收所引起的光损耗。然而,对于薄膜PV装置的大多数,如果窗口层太薄,则能够观察到由于低开路电压(VOC)和填充因数(FF)所引起的性能中的损耗。

因此,存在对于改善薄膜光伏装置配置以及制造这些光伏装置的方法的需要。



技术实现要素:

包含本发明的实施例以满足这些及其他需要。一个实施例是光伏装置。光伏装置包含层堆栈;并且吸收层设置在层堆栈上。吸收层包括硒,其中硒的原子浓度跨吸收层的厚度变化。光伏装置基本上没有硫化镉层。

一个实施例是光伏装置。光伏装置包含层堆栈和设置在层堆栈上的吸收层。层堆栈包含设置在支承上的透明传导氧化物层和设置在透明传导氧化物层上的缓冲层。备选地,层堆栈包含设置在支承上的透明传导氧化物层、设置在透明传导氧化物层上的缓冲层和设置在缓冲层上的中间层。将吸收层直接设置为与层堆栈接触,其中吸收层包括硒,并且其中硒的原子浓度跨吸收层的厚度变化。

一个实施例是制作光伏装置的方法。方法包含在层堆栈上提供吸收层,其中吸收层包括硒,并且其中硒的原子浓度跨吸收层的厚度变化。光伏装置基本上没有硫化镉层。

附图说明

当参考附图阅读下面详细描述时,本发明的这些及其他特征、方面以及优点将变得更好理解,在附图中:

图1是根据本发明一些实施例的光伏装置的示意图。

图2是根据本发明一些实施例的光伏装置的示意图。

图3是根据本发明一些实施例的光伏装置的示意图。

图4是根据本发明一些实施例的光伏装置的示意图。

图5是根据本发明一些实施例的光伏装置的示意图。

图6是根据本发明一些实施例的光伏装置的示意图。

图7是根据本发明一些实施例的制作光伏装置的方法的示意图。

图8示出根据本发明一些实施例的光伏装置的性能参数。

图9示出根据本发明一些实施例的光伏装置的时间分辨光致发光(TRPL)寿命曲线。

图10示出根据本发明一些实施例的光伏装置的二次离子质谱(SIMS)分布图。

图11示出根据本发明一些实施例的光伏装置的硒与碲比率。

图12示出根据本发明一些实施例的光伏装置的外部测量的外部量子效率(EQE)。

图13示出根据本发明一些实施例的光伏装置的PL光谱比较。

具体实施方式

如下面所详细讨论的,本发明的一些实施例包含光伏装置,所述光伏装置包含硒。

如本文在整个说明书和权利要求书中所使用的近似语言可应用于修改任何数量表示,其能许可地变化而不导致改变与其相关的基本功能。因此,由诸如“大约”和“基本上”的一个术语或多个术语所修改的数值不是要限于所指定的精确值。在一些情况下,近似语言可对应于测量数值的器械的精度。这里以及整个说明书和权利要求书,范围限制可被组合和/或被互换,这类范围被识别并且包含在其中所包含的所有子范围,除非上下文或语言另有指示。

在下面的说明书和权利要求书中,除非上下文另有明确指示,否则单数形式“一”和“所述”包含复数对象。除非上下文另有明确指示,如本文所使用的术语“或”不意味着包含在内,并且指的是所参考组件(例如,层)的至少一个是存在的并且包含其中可存在所参考组件的结合的情况。

如本文所使用的术语“透明区域”和“透明层”指的是区域或层,其允许入射电磁辐射的至少70%的平均传播,入射电磁辐射具有从大约350nm到大约1000nm范围中的波长。

如本文所使用的术语“层”指的是以连续或非连续方式在下面的表面的至少一部分上所设置的材料。此外,术语“层”不一定意味着所设置材料的均匀厚度,并且所设置材料可具有均匀或可变厚度。此外,除非上下文另有明确指示,否则如本文所使用的术语“层”指的是单个层或多个层。

除非另有特别指示,否则如本文所使用的术语“设置在......上”指的是彼此接触地直接设置或通过在其间具有介入层间接设置的层。如本文所使用的术语“相邻”意味着两个层连续设置并且彼此直接接触。

在本公开中,在层正被描述为在另一层或衬底“上”时,要理解,层能够彼此直接接触或在层之间具有一个(或多个)层或特征。此外,术语“在......顶部”描述层彼此的相对位置,并且不一定意味着“在......之上”,因为相对位置之上或之下取决于装置对观察者的方向。而且,为了方便,使用“顶部”、“底部”、“之上”、“之下”以及这些术语的变化,并且不需要组件的任何特定的方向,除非另有规定。

如下面所详细讨论的,本发明的一些实施例指向包含硒的光伏装置。根据本发明的一些实施例,光伏装置100在图1-5中图示。如图1-5中所示,光伏装置100包含层堆栈110和设置在层堆栈110上的吸收层120。吸收层120包含硒,并且硒的原子浓度跨吸收层120的厚度变化。光伏装置基本上没有硫化镉层。

如本文所使用的术语“基本上没有硫化镉层”意味着在下面的层(例如中间层或缓冲层)上硫化镉层(如果存在的话)的覆盖百分比小于20百分比。在一些实施例中,覆盖百分比处于从大约百分之0到大约百分之10的范围中。在一些实施例中,覆盖百分比处于从大约百分之0到大约百分之5的范围中。在某些实施例中,光伏装置完全没有硫化镉层。

如本文在这个上下文中所使用的术语“原子浓度”指的是吸收层的每单位体积的硒原子的平均数量。本文中术语“原子浓度”和“浓度”在整个正文中可互换使用。如本文所使用的术语“跨厚度变化”意味着硒的浓度跨吸收层的厚度以连续或非连续的方式改变。

在一些实施例中,跨吸收层120的厚度存在硒的浓度中的阶跃变化。在一些实施例中,硒的浓度跨吸收层120的厚度连续变化。此外,在这类情况下,硒浓度中的变化可以是单调的或非单调的。在一些情况下,浓度中的变化率通过厚度可自身变化,例如在厚度的一些区域增加,而在厚度的其他区域降低。而且,在一些情况下,硒浓度对于厚度的一些部分可保持基本上不变。如在这个上下文中所使用的术语“基本上不变”意味着跨厚度的那个部分的浓度中的变化小于百分之5。

在一些实施例中,硒浓度以远离层堆栈110的方向跨吸收层120的厚度降低。在一些实施例中,硒浓度以远离层堆栈110的方向跨吸收层120的厚度单调降低。在一些实施例中,硒浓度跨吸收层120厚度的某一部分连续降低,并且在吸收层120厚度的一些其他部分中还是基本上不变。

在某些实施例中,吸收层120包含变化浓度的硒,使得相对于后界面(更靠近后接触的界面),在前界面(更靠近前接触的界面)附近存在更高浓度的硒。

在某些实施例中,吸收层120中的带隙可跨吸收层120的厚度变化。在一些实施例中,硒的浓度可跨吸收层120的厚度变化,使得前界面附近的带隙低于后界面附近的带隙。

在某些实施例中,吸收层120可包含异质结。如本文所使用的,异质结是半导体结,其由相异的半导体材料的层/区域组成。这些材料通常具有非等带隙。作为示例,异质结能够通过一个传导性类型的层或区域与相反传导性的层或区域之间的接触来形成,例如“p-n”结。

如由本领域普通技术人员中一个将领会,通过变化吸收层120中硒的浓度,吸收层120的特定区域可呈现为n型并且吸收层120的另一区域可呈现为p型。在某些实施例中,吸收层120包含“p-n”结。在不被任何理论限制的情况下,相信“p-n”结可形成在吸收层120的具有不同带隙的多个区域之间。此外,更低带隙材料可通过光子限制提高效率。在一些实施例中,吸收层120可用于与在下面的缓冲层113一起形成p-n结。

在不被任何理论限制的情况下,相信硒浓度中的变化可允许吸收层内的p-n结,因此排除形成诸如CdS层的窗口层的分开结的使用。如早先所描述的,光伏装置中通常希望窗口层的厚度被最小化以实现高效率。由于在吸收层中存在硒的变化浓度,可减小窗口层(如CdS层)的厚度或可消除窗口层,以改善本装置的性能。而且,本装置可实现在生产的成本中的降低,由于更低数量的CdS的使用或CdS的消除。

此外,相对于后界面,前界面附近的硒的更高浓度可允许吸收层120中待吸收入射辐射的更高部分。而且,Se可改善晶界和界面的钝化,这能够通过更高的本体寿命和减小的表面再组合看到。

吸收层120还包含由晶界分开的多个晶粒。在一些实施例中,晶界中硒的原子浓度高于晶粒中硒的原子浓度。在一些实施例中,晶界中硒的平均原子浓度与晶粒中硒的平均原子浓度的比率大于大约2。在一些实施例中,晶界中硒的平均原子浓度与晶粒中硒的平均原子浓度的比率大于大约5。在一些实施例中,晶界中硒的平均原子浓度与晶粒中硒的平均原子浓度的比率大于大约10。

在一些实施例中,如图2中所示,吸收层120包含第一区域122和第二区域124。如图2中所图示,第一区域122相对于第二区域124设置为接近层堆栈110。在一些实施例中,第一区域122中硒的平均原子浓度大于第二区域124中硒的平均原子浓度。

在一些实施例中,第一区域122、第二区域124或两个区域中硒浓度还可跨相应区域的厚度变化。在一些实施例中,第一区域122、第二区域124或两个区域中硒浓度可跨相应区域的厚度连续变化。如早先所提到的,在一些情况下,浓度中的变化加速率通过第一区域122、第二区域124或两个区域可自身变化,例如,在一些部分中增加而在其他部分中降低。

在一些实施例中,第一区域122、第二区域124或两个区域中硒浓度跨相应区域的厚度可以基本上不变。在一些其他实施例中,硒浓度可在第一区域122、第二区域124或两个区域的至少一部分中基本上不变。如这个上下文所使用的术语“基本上不变”意味着跨那个部分或区域的浓度中变化小于百分之5。

吸收层120可进一步由相对于第二区域124的存在于第一区域122中的硒的浓度来表征。在一些实施例中,第一区域122中硒的平均原子浓度与第二区域124中硒的平均原子浓度的比率大于大约2。在一些实施例中,第一区域122中硒的平均原子浓度与第二区域124中硒的平均原子浓度的比率大于大约5。在一些实施例中,第一区域122中硒的平均原子浓度与第二区域124中硒的平均原子浓度的比率大于大约10。

第一区域122和第二区域124可进一步由其厚度来表征。在一些实施例中,第一区域122具有在从大约1纳米到大约5000纳米范围中的厚度。在一些实施例中,第一区域122具有在从大约100纳米到大约3000纳米范围中的厚度。在一些实施例中,第一区域122具有在从大约200纳米到大约1500纳米范围中的厚度。在一些实施例中,第二区域124具有在从大约1纳米到大约5000纳米范围中的厚度。在一些实施例中,第二区域124具有在从大约100纳米到大约3000纳米范围中的厚度。在一些实施例中,第二区域124具有在从大约200纳米到大约1500纳米范围中的厚度。

再次参考附图2,在一些实施例中,第一区域122具有低于第二区域124的带隙的带隙。在这类情况下,相对于第二区域124的第一区域122中硒的浓度可在使得第一区域122的带隙低于第二区域124的带隙的范围中。

硒可以以其元素形式作为掺杂剂,作为化合物或其组合存在于吸收层120中。在某些实施例中,硒的至少一部分以化合物形式存在于吸收层中。如本文所使用的术语“化合物”指的是由两种或多种不同元素的原子或离子以限定的比例组成并且在限定的晶格位置处的宏观的均质材料(物质)。例如,镉、碲以及硒例如与硒掺杂的碲化镉对比在碲硒化镉化合物的晶体结构中具有限定的晶格位置,其中硒可以是掺杂剂,其取代嵌入在镉位置上,并且不是化合物晶格的一部分。

在一些实施例中,硒的至少一部分以三元化合物、四元化合物或其组合的形式存在于吸收层120中。在一些实施例中,吸收层120还可包含镉和碲。在某些实施例中,硒的至少一部分以具有公式CdSexTe1-x的化合物形式存在于吸收层中,其中x是大于0并且小于1的数。在一些实施例中,x处于从大约0.01到大约0.99的范围中,并且“x”的数值跨吸收层120的厚度变化。

在一些实施例中,吸收层120还可包含硫。在这类情况下,硒的至少一部分以包含镉、碲、硫和硒的四元化合物的形式存在于吸收层120中。此外,如早先所提到的,在这类情况下,硒的浓度可跨吸收层120的厚度变化。

吸收层120可进一步由存在的硒的量来表征。在一些实施例中,吸收层120中硒的平均原子浓度处于从吸收层120的大约0.001原子百分比到大约40原子百分比范围中。在一些实施例中,吸收层120中硒的平均原子浓度处于从吸收层120的大约0.01原子百分比到大约25原子百分比范围中。在一些实施例中,吸收层120中硒的平均原子浓度处于从吸收层120的大约0.1原子百分比到大约20原子百分比范围中。

如所提到的,吸收层120是光伏装置100的组件。在一些实施例中,光伏装置100包含层的“覆盖层”配置。现参考图3-5,在这类实施例中,层堆栈110还包含支承111,并且透明传导氧化物层112(有时在本领域中称为前接触层)设置在支承111上。如在图3-5中进一步图示,在这类实施例中,太阳辐射10从支承111进入,并且在通过透明传导氧化物层112、缓冲层113和可选介入层(例如中间层114)后进入吸收层120。入射光线(例如阳光)的电磁能量到电子-空穴对(即,到自由电荷)的转换主要发生在吸收层120中。

在一些实施例中,支承111在波长范围上是透明的,对于波长范围,通过载体111的传播是期望的。在一个实施例中,支承111对于具有从大约400nm到大约1000nm的范围中的波长的可见光线是透明的。在一些实施例中,支承111包含能够经受住大于大约600℃的热处理温度的材料,诸如,例如硅石或硼硅酸盐玻璃。在一些其他实施例中,支承111包含具有低于600℃的软化温度的材料,诸如,例如碱石灰玻璃或聚酰亚胺。在一些实施例中,某些其他层可设置在透明传导氧化物层112和支承111之间,诸如,例如抗反射层或缓冲层(未示出)。

如本文所使用的术语“透明传导氧化物层”指的是基本上透明的层,其能够作为前集流器运行。在一些实施例中,透明传导氧化物层112包含透明传导氧化物(TCO)。透明传导氧化物的非限制示例包含镉锡氧化物(Cd2SnO4或CTO)、铟锡氧化物(ITO)、氟掺杂的锡氧化物(SnO:F或FTO)、铟掺杂的镉氧化物、掺杂的锌氧化物(ZnO)(诸如铝掺杂的氧化锌(ZnO:Al或AZO)、铟锌氧化物(IZO)和锌锡氧化物(ZnSnOx))或其组合。取决于所采用的具体的TCO以及取决于其薄膜电阻,在一个实施例中,透明传导氧化物层112的厚度可处于从大约50nm到大约600nm的范围中。

如本文所使用的术语“缓冲层”指的是插入在透明传导氧化物层112和吸收层120之间的层,其中层113与透明传导氧化物层112的薄膜电阻相比具有更高的薄膜电阻。缓冲层113有时在本领域中称为“高电阻率透明传导氧化物层”或“HRT层”。

适合用于缓冲层113的材料的非限制示例包含二氧化锡(SnO2)、锌锡氧化物(锡酸锌(ZTO))、锌掺杂的氧化锡(SnO2:Zn)、氧化锌(ZnO)、氧化铟(In2O3)或其组合。在一些实施例中,缓冲层113的厚度处于从大约50nm到大约200nm的范围中。

在一些实施例中,如图3-5中所示,层堆栈110还可包含设置在缓冲层113和吸收层120之间的中间层114。中间层可包含金属种类。金属种类的非限制示例包含镁、钆、铝、铍、钙、钡、锶、钪、钇、铪、铈、镥、镧或其组合。如这个上下文中所使用的术语“金属种类”指的是元素金属(elementalmetal)、金属离子或其组合。在一些实施例中,中间层114可包含多个金属种类。在一些实施例中,金属种类的至少一部分以元素金属、金属合金、金属化合物或其组合的形式存在于中间层114中。在某些实施例中,中间层114包含镁、钆或其组合。

在一些实施例中,中间层114包含:(i)包含镁的化合物和金属种类,其中金属种类包含锡、铟、钛或其组合;或(ii)包含镁的金属合金;或(iii)氟化镁;或其组合。在某些实施例中,中间层包含其中包含镁、锡及氧的化合物。在某些实施例中,中间层包含其中包含镁、锌、锡和氧的化合物。

在一些实施例中,吸收层120在光伏装置100中可作为吸收层运行。如本文所使用的术语“吸收层”指的是其中由于电子-空穴对的合成生成而吸收太阳辐射的半传导层。在一个实施例中,吸收层120包含p型半导体材料。

在一个实施例中,光活材料用于形成吸收层120。适合的光活材料包含碲化镉(CdTe)、碲化镉锌(CdZnTe)、碲化镉镁(CdMgTe)、碲化镉锰(CdMnTe)、硫碲化镉(CdTeS)、碲化锌(ZnTe)、碲化铅(PbTe)、碲化镉汞(HgCdTe)、硫化铅(PbS)或其组合。上述光活半导体材料可单独使用或以组合使用。此外,这些材料可存在于多于一层,每层具有不同类型的光活材料,或在分开的层中具有材料的组合。

如本领域中普通技术人员中的一个将领会的,如本文所描述的吸收层120还包含硒。因此,吸收层120还可包含上述的光活材料的一种或多种与硒的组合,诸如,例如碲硒化镉、碲硒化镉锌、碲硒化锌等等。在某些实施例中,使用碲化镉用于形成吸收层120。在某些实施例中,吸收层120包含镉、碲和硒。

在一些实施例中,吸收层120还可包含硫、氧、铜、氯、铅、锌、汞或其组合。在某些实施例中,吸收层120可包含上述材料的一种或多种,使得材料的量跨吸收层120的厚度变化。在一些实施例中,上述材料的一种或多种可作为掺杂剂存在于吸收层中。在某些实施例中,吸收层120还包含铜掺杂剂。

在一些实施例中,吸收层120可包含氧。在一些实施例中,氧的数量少于大约20原子百分比。在一些情况下,氧的数量在大约1原子百分比到大约10原子百分比之间。在一些情况下,例如在吸收层120中,氧的数量小于大约1原子百分比。而且,吸收层120内的氧浓度跨相应层的厚度可以基本上不变或被在组分上分级。

在一些实施例中,光伏装置100还可包含设置在吸收层120上的p+型半导体层130,如图3-5中所示。如本文所使用的术语“p+型半导体层”指的是相比于吸收层120中的p型电荷载流子或空穴密度具有额外的可动的p型载流子或空穴密度的半导体层。在一些实施例中,p+型半导体层具有大于每立方厘米大约1x1016范围中的p型载流子密度。在一些实施例中,p+型半导体层130可用作吸收层120和后接触层140之间的界面。

在一个实施例中,p+型半导体层130包含重掺杂的p型材料,p型材料包含非晶Si:H、非晶SiC:H、晶体Si、微晶体Si:H、微晶体SiGe:H、非晶SiGe:H、非晶Ge、微晶体Ge、GaAs、BaCuSF、BaCuSeF、BaCuTeF、LaCuOS、LaCuOSe、LaCuOTe、LaSrCuOS、LaCuOSe0.6Te0.4、BiCuOSe、BiCaCuOSe、PrCuOSe、NdCuOS、Sr2Cu2ZnO2S2、Sr2CuGaO3S、(Zn,Co,Ni)Ox或其组合。在另一个实施例中,p+型半导体层130包含p+掺杂材料,p+掺杂材料包含碲化锌、碲化镁、碲化锰、碲化铍、碲化汞、碲化砷、碲化锑、碲化铜、元素碲或其组合。在一些实施例中,p+掺杂材料还包含掺杂剂,掺杂剂包含铜、金、氮、磷、锑、砷、银、铋、硫、钠或其组合。

在一些实施例中,光伏装置100还包含后接触层140,如图3-5中所示。在一些实施例中,后接触层140直接设置在吸收层120上(实施例未示出)。在一些其他实施例中,后接触层140设置在吸收层120上所设置的p+型半导体层130上,如图3-5中所示。

在一些实施例中,后接触层140包含金、铂、钼、钨、钽、钛、钯、铝、铬、镍、银、石墨或其组合。后接触层140可包含多个层,其作为后接触一起运行。

在一些实施例中,另一个金属层(未示出),例如铝,可设置在后接触层140上以向外部电路提供横向传导。在某些实施例中,多个金属层(未示出),例如铝和铬,可设置在后接触层140上以向外部电路提供横向传导。在某些实施例中,后接触层140可包含沉积在吸收层120上的诸如石墨的碳层,后面是诸如上述金属的一个或多个金属层。

如图1-5中所示,在某些实施例中,吸收层120直接设置为与层堆栈110接触。然而,如早先进一步所提到的,在一些实施例中,光伏装置100可包含插入在层堆栈110和吸收层120之间的不连续的硫化镉层(实施例未示出)。在这类情况下,在下面的层(例如,中间层114和缓冲层113)上的CdS层的覆盖小于大约百分之20。此外,吸收层120的至少一部分可通过硫化镉层的不连续部分接触层堆栈110。

再次参考图5,如所示,吸收层120还包含第一区域122和第二区域124。如图5中进一步所图示的,第一区域122相对于第二区域124设置为接近层堆栈110。在一些实施例中,第一区域122直接设置为与中间层114接触。在一些实施例中,第一区域122直接设置为与缓冲层113(实施例未示出)接触。此外,如早先所讨论的,第一区域122中硒的平均原子浓度大于第二区域124中硒的平均原子浓度。在其他实施例中,第一区域122中硒的平均原子浓度低于第二区域124中硒的平均原子浓度。

在备选实施例中,如图6中所图示的,提出包含“衬底”配置的光伏装置200。光伏装置200包含层堆栈210和设置在层堆栈上的吸收层220。层堆栈210包括设置在吸收层上的透明传导氧化物层212,如图6中所示的。吸收层220还设置在后接触层230上,后接触层230设置在衬底240上。如图6中所图示的,在这类实施例中,太阳辐射10从透明传导氧化物层212进入,并且进入吸收层220,其中发生将入射光线(如阳光)的电磁能量到电子-空穴对(即,到自由电荷)的转换。

在一些实施例中,图6中所图示的层例如衬底240、透明传导氧化物层212、吸收层220以及后接触层230的组分可具有与上文图5中所描述的相同组分用于覆盖层配置。

还提出制作光伏装置的方法。在一些实施例中,方法通常包含在层堆栈上提供吸收层,其中吸收层包含硒,并且其中硒的原子浓度跨吸收层的厚度变化。继续参考图1-5,在一些实施例中,方法包含在层堆栈110上提供吸收层120。

在一些实施例中,如图2中所示,提供吸收层120的步骤包含在吸收层120中形成第一区域122和第二区域124,第一区域122相对第二区域124设置为接近层堆栈110。如早先所提到的,在一些实施例中,第一区域122中硒的平均原子浓度大于第二区域124中硒的平均原子浓度。

可使用任何合适的技术在层堆栈110上提供吸收层120。在一些实施例中,提供吸收层120的步骤包含将半导体材料与硒源接触。如本文所使用的术语“接触”或“所接触”意味着半导体材料的至少一部分被暴露于,例如,与气态、液态或固态的合适硒源直接物理接触。在一些实施例中,吸收层的表面可例如使用表面处理技术与合适的硒源接触。在一些其他实施例中,半导体材料可例如使用浸渍处理与合适的硒源接触。

在一些实施例中,半导体材料包含镉。合适的半导体材料的非限制示例包含碲化镉(CdTe)、碲化镉锌(CdZnTe)、碲化镉镁(CdMgTe)、碲化镉锰(CdMnTe)、碲硫化镉(CdSTe)、碲化锌(ZnTe)、碲化铅(PbTe)、硫化铅(PbS)、碲化镉汞(HgCdTe)或其组合。在某些实施例中,半导体材料包含镉和碲。

如本文所使用的术语“硒源”指的是包含硒的任何材料。合适的硒源的非限制示例包含元素硒、硒化镉、硒化镉的氧化物(诸如例如亚硒酸镉(CdSeO3))、硒化氢、有机金属硒或其组合。

在接触步骤期间,与硒源所接触半导体材料的一部分可部分取决于硒源的物质形式。在一些实施例中,硒源是以固体(例如层)、溶液、悬浮液、糊剂、蒸汽或其组合的形式。因此,作为示例,在一些实施例中,例如硒源可以以溶液形式,并且方法可包含在溶液中浸透半导体材料的至少一部分。

在一些实施例中,硒源可以采用蒸汽形式,并且方法可包含使用合适的蒸汽沉积技术沉积硒源。在一些实施例中,例如,可在硒源(例如硒蒸汽)存在下热处理吸收层120以将硒引入到吸收层120的至少一部分中。

在一些实施例中,例如硒源可以以层的形式,并且方法可包含在半导体材料上沉积硒源层,或备选地,在硒源的层上沉积半导体材料。在一些这类实施例中,方法还可包含使半导体材料经受一个或多个后处理步骤以将硒引入到半导体材料中。

现在参考图7,在一些实施例中,提供吸收层的步骤包括:(a)在层堆栈110上设置硒源层125;(b)在硒源层125上设置吸收层120;以及(c)将硒引入吸收层120的至少一部分中。应注意,步骤(b)和(c)可顺序或同时执行。

在一些实施例中,硒源层125可使用诸如例如溅射、升华、蒸发或其组合的任何合适的沉积技术沉积在层堆栈110上。沉积技术可部分取决于硒源材料、硒源层125厚度和层堆栈110组分中的一个或多个。在某些实施例中,硒源层125可包含元素硒,并且硒源层125可通过蒸发形成。在某些实施例中,硒源层125可包含硒化镉,并且硒源层125可通过溅射、蒸发或升华形成。

硒源层可包含单个硒源层或多个硒源层。在多个硒源层中硒源可以是相同的或不同的。在一些实施例中,硒源层包含多个硒源层,诸如例如元素硒层的堆栈和硒化镉层,或者反之亦然。

硒源层125可具有从大约1纳米到大约1000纳米范围中的厚度。在一些实施例中,硒源层125具有从大约10纳米到大约500纳米范围中的厚度。在一些实施例中,硒源层125具有从大约15纳米到大约250纳米范围中的厚度。

如所提到的,方法还包含在硒源层125上设置吸收层120。在一些实施例中,吸收层120可使用合适的方法例如近空间升华(CSS)、气相输运沉积(VTD)、离子辅助物理气相沉积(IAPVD)、射频或脉冲磁控溅射(RFS或PMS)、化学气相沉积(CVD)、等离子体增强化学气相沉积(PECVD)或电化学沉积(ECD)来沉积。

方法还包含将硒引入到吸收层120的至少一部分中。在一些实施例中,方法包含将硒引入到吸收层120的至少一部分中,使得硒的浓度跨吸收层120的厚度变化。

在一些实施例中,硒的至少一部分与设置吸收层120的步骤同步引入到吸收层120中。在一些实施例中,硒的至少一部分在设置吸收层120的步骤例如在氯化镉处理步骤期间、在p+型层形成步骤期间、在后接触形成步骤期间或其组合后来引入。

在一些实施例中,提供吸收层120的步骤包含共沉积硒源材料和半导体材料。合适的共沉积的非限制示例包含共溅射、共升华或其组合。在这种情况下,合适的硒源材料的非限制示例包含元素硒、硒化镉、硒化氢、硒碲化镉或其组合。因此,作为示例,在一些实施例中,吸收层120可在硒源(例如包含蒸汽的硒或硒化氢蒸汽)存在下通过沉积半导体材料来提供。

在一些实施例中,吸收层120可通过从单个目标(例如,碲硒化镉目标)或多个目标(例如,碲化镉和硒化镉目标)溅射来提供。如本领域普通技术人员中的一个将领会,通过控制一个或多个目标组分和溅射条件中的一个或两个,吸收层120中的硒的浓度可被变化。

如早先所提到的,光伏装置100和层堆栈110还可包含一个或多个附加层,例如支承111、透明传导氧化物层112、缓冲层113、中间层114、p+型半导体层130和后接触层140,如图3-5中所描绘的。

如本领域技术人员所理解的,设置三层或整个装置的顺序可取决于所希望配置,例如,装置的“衬底”或“覆盖层”配置。

在某些实施例中,描述了制作覆盖层配置中的光伏装置100的方法。现参考图3-5,在一些实施例中,方法还包含在支承111上设置透明传导氧化物层112。透明传导氧化物层112通过诸如溅射、化学气相沉积、旋转涂覆、喷涂或浸渍涂覆的任何合适技术来设置在支承111上。再次参考图3-5,在一些实施例中,使用溅射可将缓冲层113沉积在透明传导氧化物层112上。方法还可包含在缓冲层113上设置中间层114以形成层堆栈110,如图4中所示。

方法还包含在层堆栈110上提供吸收层120,如早先所详细描述的。在一些实施例中,还可施加一系列后形成处理到吸收层120的所暴露表面。这些处理可调整吸收层120的功能,并且准备其表面用于随后粘附到一个或多个后接触层140。例如,吸收层120可以以升高的温度来退火用于充足的时间以创建优质的p型层。此外,可采用钝化剂(如氯化镉)和富碲剂(例如,碘或碘化物)处理吸收层120以在吸收层120中形成富碲区域。另外,可将铜添加到吸收层120以获得吸收层120和一个或多个后接触层140之间的低电阻电接触。

再次参考图3-5,p+型半导体层130还可通过使用任何合适的技术,例如PECVD或溅射沉积p+型材料来设置在吸收层120上。在备选实施例中,如早先所提及的,p+型半导体区域可通过化学处理吸收层120形成在吸收层120中以增加吸收层120的后侧(与金属层接触并且相反于窗口层的侧)的载流子密度(例如使用碘和铜)。在一些实施例中,后接触层140,例如石墨层,可沉积在p+型半导体层130上,或直接沉积在吸收层120上(实施例未示出)。多个金属层还可沉积在后接触层140上。

在沉积后,还可加热或顺序处理(例如退火)吸收层120、后接触层140或p+型层130(可选的)中的一个或多个以制造光伏装置100。

在一些实施例中,在示范的光伏装置100中可包含其他组件(未示出),例如汇流条、外部布线、激光刻蚀等等。例如,在装置100形成光伏模块的光伏电池时,多个光伏电池可例如通过电气布线连接串联连接以实现所希望的电压。串联连接的电池的每个端部可附连到与合适的导体,例如导线或汇流条,以将所生成的电流引导到方便位置用于连接到使用所生成电流的装置或其他系统。在一些实施例中,可使用激光来缮写(scribe)光伏装置100的沉积层以将装置分开为成多个串联连接电池。

示例

比较示例1制造包含CdS/CdTe层堆栈的碲化镉光伏装置的方法

通过在镉锡氧化物(CTO)透明传导氧化物(TCO)涂覆的衬底上沉积若干层来形成碲化镉光伏装置。衬底是1.4毫米厚PVN++玻璃,其涂覆有CTO透明传导氧化物层和薄的高电阻透明锌锡氧化物(ZTO)缓冲层。然后在ZTO缓冲层上沉积包含镁的压盖层以形成中间层。然后通过DC溅射在中间层上沉积窗口层(30纳米厚),窗口层包含硫化镉(CdS:O,在CdS层含5摩尔%的氧),后面是以550℃沉积碲化镉(CdTe)层以及后接触形成。

比较示例2制造包含CdTe层并且没有CdS层的碲化镉光伏装置的方法

通过在镉锡氧化物(CTO)透明传导氧化物(TCO)涂覆的衬底上沉积若干层形成碲化镉光伏装置。衬底是1.4毫米厚PVN++玻璃,其涂覆有CTO透明传导氧化物层和薄的高电阻透明锌锡氧化物(ZTO)缓冲层。然后在ZTO缓冲层上沉积包含镁的压盖层以形成中间层。紧跟着是以550℃沉积碲化镉(CdTe)层以及后接触形成。

示例1制造包含分级CdTeSe层并且没有CdS层的碲化镉光伏装置的方法

制作光伏装置的方法与比较示例2类似,除了在中间层形成步骤之后,在中间层上溅射120到140纳米厚的CdSe层,后面是在CdSe层(带隙=1.74eV)上沉积CdTe层(带隙=1.5eV),以及后接触形成。

在装置处理期间,复合CdSe/CdTe吸收器的吸收边沿看来向低于纯CdTe或纯CdSe的能量转移,如通过使用太阳能电池的量子效率(QE)的波长相关性所测量的红移吸收边所证明的(图12)。这符合吸收层120内Te和Se的大量混合,由此创建更低的带隙合金。此外,在光致发光(PL)发射光谱学中看到碲硒化镉合金形成的证据(图13),从而示出了低于比较示例1和2基本上减小的带隙。所观测的QE和PL转移到更低能量不符合CdSe作为单独整体保持。

SIMS分布图(图10和11)指示Se的浓度在整个吸收层120中不是均匀的,从而指示由QE和PL光谱学方法所检测的合金是分级的,其中Se合金的更高浓度位于吸收层120的前侧附近。如图10中所图示的,在装置形成后硒的大部分结合在CdTe层中。此外,硒的浓度跨CdTe层的厚度变化,其中更高数量的硒存在于前界面附近。

图8图示比较示例2和示例1中用于所准备的装置的装置性能参数(针对比较示例1归一化)。如图8中所图示的,在与没有CdTeSe层的装置(比较示例1)相比时,装置性能参数示出具有分级的CdTeSe层的装置(例子1)的可比较的或更好的性能。因此,在与仅包含CdTe层的的装置(比较示例2)相比时,具有分级CdTeSe层并且基本上没有CdS层的装置(例子1)示出与具有CdS/CdTe层堆栈的装置(比较例1)的可比较的性能,以及显著改善的性能。

图9示出示例1和比较示例1和2的时间分辨光致发光(TRPL)寿命曲线。使用在640nm附近工作的微微量子(Picoquant)亚纳秒脉冲激光来执行时间分辨光致发光(TRPL)光谱学。激光的脉冲重复频率设定为2.5MHz,并且典型的激光功率密度估计为约1013光子/cm2,如通过典型的激光输出功率和聚焦特性所估计。与样品相关联(incidenton)的实际光子通量可从这个值变化。发光光线被具有大约700nm的切断(cutoff)波长的长传玻璃滤波器过滤以消除杂散激光激励光线,并且然后耦合到配备有光栅和狭缝集的单色仪,使得检测以大约+/-1nm的窗口的大约840nm的光线。来自单色仪所过滤的光线然后耦合到冷却的多通道光电倍增器管(HamamatsuS3809U系列)。使用由爱丁堡公司仪器(Edinburghinstruments)供应的时间相关光子计数电子设备,对个别光子事件进行计时并且计数。

所附权利要求书旨在与已设想的一样广泛地要求保护本发明,并且本文所提出的示例说明从多种多样的所有可能的实施例中选择的实施例。因此,这正是申请者的意图:所附权利要求书不被用来图示本发明的特征的示例的挑选来限制。如在权利要求书中所使用的,词“包括”及其逻辑上语法上的变化也对向并且包含变化的和不同的程度的短语,诸如例如但不限于此,“基本上由...组成”和“由...组成”。在必要情况下,已供应范围,那些范围包含在其之间的所有子范围。要期望,在这些范围中的变化将对具有本领域常规技术的从业者建议他们自己,并且只要没有贡献给公众,那些变化应当在可能的情况下被解释为由所附权利要求书涵盖。还预期,科学和技术中的发展将使得等同物和替代变为可能,其由于语言不精确的原因,现在不可预期,并且这些变化也应当在可能的情况下被解释为由所附权利要求书涵盖。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1