线路装置、带有线路装置的电流转换器的制作方法

文档序号:19043020发布日期:2019-11-05 23:20阅读:161来源:国知局
线路装置、带有线路装置的电流转换器的制作方法

带有用于为电动马达提供相电流的功率结构元件、尤其功率电子装置的线路装置具有高的损耗功率,该损耗功率在线路装置运行时产生。以废热为形式,损耗功率导致在功率结构元件或线路装置中的温度升高和功率下降,在极端的情况中甚至导致功率结构元件或线路装置的失效。

因此,废热必须相对于该废热的产生尽快地从功率结构元件或线路装置导出。

因此本发明的任务在于,提供在花费上有利的可行方案,将废热从功率结构元件或线路装置高效地导出。

该任务通过独立权利要求的内容来解决。有利的设计方案是从属权利要求的内容。

按照本发明的第一方面,提供一种线路装置。线路装置包括承载件、(至少一个)功率结构元件以及用于通导冷却剂的冷却通道。线路装置还包括(至少一个)用于将电流向着功率结构元件传导的电流轨道。在此,所述电流轨道布置在承载件上并且构造导体线路的一部分。所述电流轨道具有这样的区域,该区域利用第一表面和对置于第一表面的第二表面从承载件离开地伸入冷却通道中。功率结构元件能够由流过所述冷却通道的冷却剂通流地布置在该区域的第一表面上并且与所述区域导电地和机械地相连。

优选地,所述承载件构造作为线路装置的壳的一部分、尤其作为壳的壳盖。在该情况中,省去了线路载体,否则需要该线路载体作为电流轨道的和功率结构元件的载体。

作为备选方案,所述承载件当然也能够构造作为线路载体、尤其是陶瓷基体。

本发明所基于的想法是,从热源、即功率结构元件至散热器、例如冷却剂的热量传递路径越短,则线路装置的冷却越高效。

在追求将这种热量传递路径减小到技术上能够实现的最小值的情况中,在本发明的框架中可见的是,为此的最好的解决方案是,将功率结构元件直接埋入冷却剂中。

在此追求的是,在功率结构元件和承载件之间的机械连接和从承载件至功率结构元件的电连接继续得到维持。

从而开发了一种电流轨道,该电流轨道利用一区域与承载件机械地和导电地相连并且利用另外的区域从承载件离开地伸进冷却通道中。在此,该区域利用第一表面和对置于第一表面的第二表面伸入冷却通道中,从而两个彼此背离(angewandten)的表面能够由流过所述冷却通道的冷却剂通流。功率结构元件布置在所述第一表面上并且与所述区域机械地和导电地相连。因为第一表面伸进冷却通道中,所述功率结构元件也能够直接由流过所述冷却通道的冷却剂通流。由此,在功率结构元件中所产生的废热由功率结构元件在不带有旁路的情况下直接输给冷却剂。利用这种解决方案几乎实现了相同的效果,利用将功率结构元件直接埋入冷却剂中能够获得该效果。

因为电流轨道本来就被用作用于功率结构元件的导体线路的一部分,则在不带有额外的组件的情况下在花费上有利地获得上文所提到的解决方案。

由此提供了在花费上有利的可行方案,利用该可行方案能够将废热从功率结构元件或线路装置高效地导出。

按照一个优选的设计方案,电流轨道的区域从承载件以相对于承载件的表面的斜度离开地延伸。尤其,所述区域垂直于承载件的表面从承载件离开地延伸。

在此,所述区域相对于承载件的表面的倾角能够分别按照线路装置或承载件的实施方案任意地来设定。重要的仅在于,功率结构元件在此区域处至少最大部分地、优选完全地能够由冷却剂通流。

按照又一个另外的优选的设计方案,电流轨道、功率结构元件和/或承载件的表面(该表面朝向所述冷却通道地设立并且在该表面上布置有电流轨道)利用电绝缘的和导热的绝缘层与冷却通道电绝缘。

由此,这种绝缘层阻碍了通过冷却剂进行的在功率结构元件中的和在在承载件上的线路中的电的短路。

优选地,此绝缘层具有超过50微米、尤其超过100微米、特别地直至300微米的层厚。在此,绝缘层优选地包含热固性塑料、热塑性塑料、尤其经包封的塑料和/或漆。

在不同的实施方案中作为大宗物品在花费上有利地能够获得热固性塑料、热塑性塑料和漆。

按照本发明的另一个方面,提供了电流转换器、尤其变流器或逆变器,该电流转换器包括之前所描述的线路装置。

只要在其余情况中能够传递至先前所提到的电流转换器,则先前所说明的线路装置的有利的设计方案也视为电流转换器的有利的设计方案。

在下文参照附图更加详细地阐释本发明的示例的实施方式。在此,唯一的附图在示意的横截面示意图中示出了电流转换器的线路装置SA。

线路装置包括壳件GT,该壳件盆状地构造并且包括中空室。所述中空室构造了用于通导冷却剂的冷却通道KK。

线路装置SA还包括壳盖GD,该壳盖布置在壳件GT上并且单侧地封闭所述中空室。壳件GT以及壳盖GD大多数由铝合金或铜合金形成。在所述壳件GT和壳盖GD之间布置有以例如形状匹配的密封圈为形式的密封连接部DT,该密封连接部将所述中空室和由此所述冷却通道KK流体密封地进行密封。

在朝向所述冷却通道KK的表面OF上,壳盖GD具有第一和第二电流轨道SS1、SS2。在此,电流轨道SS1、SS2借助电绝缘的绝缘粘膜IF紧固在壳盖GD处并且同时与壳盖GD电绝缘。这些电流轨道SS1、SS2直接地或借助在所述图中未示出的电连接部间接地与同样在所述图中未示出的线路组件电连接,该线路组件位于所述中空室的外部。所述两个电流轨道SS1、SS2用于传输电流。

所述第一电流轨道SS1包括第一区域B11和第二区域B12,其中,两个区域B11、B12彼此L形地弯曲。

利用第一区域B11,使得第一电流轨道SS1与绝缘粘膜IF或与壳盖GD机械地相连。

第二区域B12垂直于壳盖GD的表面OF从壳盖GD背离地延伸并且由此伸入冷却通道KK中。第二区域B12具有第一表面OF11和对置于所述第一表面OF11的第二表面OF12。在第一表面OF11上布置有功率结构元件LB1,该功率结构元件经过在所述图中未示出的钎焊连接部与第一电流轨道SS1机械地和导电地相连。

在运行线路装置SA时,电流轨道SS1将电流向着功率结构元件LB1传导,该电流从另外的在所述图中未示出的电流轨道再次从所述功率结构元件LB1导出。在此,功率结构元件LB1例如构造为功率电容器。

所述第二电流轨道SS2类似地包括第一区域B21和第二区域B22,其中,两个区域B21、B22同样彼此L形地弯曲。

经过第一区域B21,使得第二电流轨道SS2与绝缘粘膜IF或与壳盖GD机械地相连。

第二区域B22垂直于壳盖GD的表面OF从壳盖GD离开地延伸并且由此同样伸入冷却通道KK中。第二区域B22具有第一表面OF21和对置于所述第一表面OF21的第二表面OF22。在第二区域B12的第一表面OF21上布置有另外的功率结构元件LB2,该功率结构元件经过在所述图中未示出的钎焊连接部与第二电流轨道SS2机械地和导电地相连。在第二区域B12的第二表面OF22上还布置有另外的功率结构元件LB3,该功率结构元件也经过在所述图中未示出的钎焊连接部与第二电流轨道SS2机械地和导电地相连。

在线路装置SA运行时,电流轨道SS1将电流向着两个功率结构元件LB2、LB3传导,该电流又由另外的在所述图中未示出的电流轨道从两个功率结构元件LB2、LB3导出。在此,两个功率结构元件LB2、LB3分别构造为功率晶体管和功率二极管。

线路装置SA还包括绝缘层IS,该绝缘层将两个电流轨道SS1、SS2的相应的第二区域B12、B22的表面OF11、OF12、OF21、OF22、两个电流轨道SS1、SS2的相应的第一区域B11、B21的表面O13、OF23、邻接至冷却通道KK的功率结构元件LB1、LB2、LB3的背离于所述壳盖GD的敞露的表面以及壳盖GD的表面OF进行覆盖并且在此将两个电流轨道SS1、SS2、三个功率结构元件LB1、LB2、LB3以及所述壳盖GD与所述冷却通道KK进行电绝缘。在此,绝缘层IS由热固性塑料形成并且具有50至150微米的层厚。

在运行线路装置SA时,由于在功率结构元件LB1、LB2、LB3中的损耗功率,则在三个功率结构元件LB1、LB2、LB3中产生废热。这些废热由绝缘层IS接收并且给出至流过所述冷却通道KK的冷却剂。通过从功率结构元件LB1、LB2、LB3至冷却剂的短的热量传递路径,能够高效地将废热进行导出。

为了在接下来的安装阶段中在壳盖GD处进行简单的操作,将两个电流轨道SS1、SS2事前地经过塑料载体彼此机械地相连。对此,两个电流轨道SS1、SS2在相应的区域处(该区域的表面不被设置用于与功率结构元件LB1、LB2、LB3电连接或用于机械地紧固在壳盖GD处)利用模塑料(Kunststoffmaße)进行包封,该模塑料在硬化后构造了塑料载体,该塑料载体将两个电流轨道SS1、SS2彼此机械地相连并且同时彼此电绝缘。

分别按照实施方案,也能够设置另外的电流轨道,该电流轨道彼此朝向地布置并且彼此经过绝缘膜机械地相连,该绝缘膜将电流轨道彼此电绝缘。

在功率结构元件LB1、LB2、LB3之间,也还能够设置另外的电流轨道,该电流轨道将功率结构元件LB1、LB2、LB3彼此电连接。这样的电流轨道然后正如功率结构元件LB1、LB2、LB3那样完全地埋入冷却通道KK中并且由冷却剂环绕流动。在此,这些电流轨道正如两个先前所说明的电流轨道SS1、SS2的伸进冷却通道KK中的相应的第二区域B12、B22那样由绝缘层IS包覆并且由此与冷却剂电绝缘。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1