电源组件和电力转换装置的制作方法

文档序号:12513987阅读:155来源:国知局
电源组件和电力转换装置的制作方法

本发明涉及电源组件和电力转换装置,特别是涉及用于电动动力转向装置的电源组件和电力转换装置。



背景技术:

目前,使用了在各领域中使用的开关元件的电源组件,以提高电子零件的可靠性或提高组件的制造性为目的,多采用利用树脂的密封构造。随着电源组件的多功能化、高输出化和高密度安装化,电源组件的发热量处于增加趋势。这种树脂密封构造的电源组件为了提高散热性,用树脂覆盖搭载有开关元件的导体部,露出背面的散热层。而且,通过使用油脂或绝缘片等与外部的组件安装部面接触,确保用于使内部的开关元件散发的热向外部扩散的散热路径。通过采用维持可靠性,并且还可以确保散热路径的构造,利用散热层使开关元件产生的发热热扩散,可以利用大的面积向组件安装部高效地散热。

另一方面,为了使背面的散热层不露出而利用树脂形成外模(Overmold),通过使用导热性优异的树脂,可以减少作为绝缘部件的油脂或绝缘片等的使用量。另外,例如,如专利文献1中所公开,不是只从电源组件的单面的散热,而是通过从两面向外部散热,由此,散热性能提高,能够实现小型化。

现有技术文献

专利文献

专利文献1:日本特开2003-31765号公报



技术实现要素:

发明所要解决的课题

现有的电源组件的密封构造是只将搭载有开关元件的面进行树脂密封,露出散热层的背面的构造。因此,公知的是因制造时的树脂固化引起的固化收缩或冷却时的树脂收缩、实际使用环境温度引起的膨胀收缩等,而在电源组件整体上产生不少翘曲。在电源组件上产生超过容许范围的翘曲时,电源组件与安装它的安装体(散热片)的间隔扩大,从而阻碍热接触,不能使在半导体元件产生的热有效地散热。

本发明的目的在于,提供维持可靠性和制造性,并且可确保散热路径的电源组件和电力转换装置。

用于解决课题的技术方案

本发明的电源组件的代表性之一提供一种电源组件,包括:具有第一半导体元件和第一导体部的第一电路体;具有第二半导体元件和第二导体部的第二电路体;密封所述第一电路体和所述第二电路体的树脂密封件;和翘曲抑制部,其沿着所述第一电路体和所述第二电路体的排列方向形成,并且所述翘曲抑制部的刚性比所述树脂密封件的密封部的刚性大。

发明效果

根据本发明,通过形成翘曲抑制部,可以抑制翘曲变形,因此可以提供相对于散热片的散热性良好且提高了可靠性的电源组件。

附图说明

图1是实施例1的电源组件的外观立体图。

图2是实施例1的电源组件的正面图。

图3(a)是实施例1的电源组件的截面图。

图3(b)是实施例1的电源组件的截面图。

图4是实施例1的电力转换装置所包括的电源组件内部的电路图。

图5(a)是将实施例1的电源组件安装在散热片的截面图。

图5(b)是将实施例1的电源组件安装在散热片的截面图。

图6是实施例1的电力转换装置的截面图。

图7(a)是将实施例2的电源组件安装于散热片的截面图。

图7(b)是将实施例2的电源组件安装于散热片的截面图。

图8(a)是将实施例2的电源组件安装于散热片的截面图。

图8(b)是将实施例2的电源组件安装于散热片的截面图。

图9是实施例3的电源组件的正面图。

图10(a)是实施例3的电源组件的截面图。

图10(b)是实施例3的电源组件的截面图。

图11是实施例4的电源组件的正面图。

图12是实施例4的电源组件的截面图。

图13是实施例5的电源组件的截面图。

图14是实施例1的电力转换装置所包括的电源组件内部的电路图。

图15是实施例6的电源组件的正面图。

图16是实施例6的电力转换装置的截面图。

图17是比较例1的电源组件的正面图。

图18(a)是比较例1的电源组件的截面图。

图18(b)是比较例1的电源组件的截面图。

图19(a)是将比较例1的电源组件安装于散热片的截面图。

图19(b)是将比较例1的电源组件安装于散热片的截面图。

符号说明

100…电力转换装置、200…电动机、201…电动机侧金属箱体、202…定子、204…转子、205…轴、206…定子绕组输出部、210…终端母线、212…位置检测用磁铁、213…电子零件、214…微机、300…控制装置、301…电源组件、302a~302c…半导体元件、303…翘曲抑制部、304…密封树脂、305…树脂厚度、307…连接器、308…电源基板、309…控制基板、310…电容器、312…盖、313…控制装置侧金属箱体、331…正极配线端子、332…负极配线端子、333…相输出端子、334、335、336…栅极端子、337…控制端子、341…基板、342…间隔件、401…散热片。

具体实施方式

以下,参照附图,对本发明的电源组件和电力转换装置的实施方式进行说明。此外,在各图中,对相同的要素标记相同的符号,省略重复的说明。

实施例1

图1是表示本实施方式的电源组件301的结构的概略的外观立体图。电源组件301包括:密封半导体元件302的密封树脂304;正极配线端子331;负极配线端子332;相输出端子333;栅极端子334和335。对于电源组件301的构造,以下,使用图2~图4进行说明。

图2是第一实施方式的电源组件301的正面图。图中的点划线表示半导体元件302的配置位置。

图3(a)表示图2的A-A截面的截面图。图3(b)是表示图2的B-B截面的截面图。本实施例的电源组件301是通过用密封树脂304密封驱动控制未图示的外部的电动机的两个半导体元件302a和302b、引线架(金属制的端子)331~335、基板341、间隔件342的结构。

作为半导体元件302例如使用MOSFET(Metal-Oxide Semiconductor Field-Effect Transistor:金属氧化膜半导体场效应晶体管)或IGBT(Insulated Gate Bipolar Transistor:绝缘栅双极晶体管)。半导体元件302是裸芯片,以露出Si芯片的状态安装。半导体元件302的上表面和下表面使用焊料与引线架连接。内置于电源组件301的各半导体元件302与引线架连接而构成电路体。

与半导体元件连接的引线架331~335和基板341的安装有半导体元件的面的相反侧的面作为散热面形成。在本实施例的电源组件331中,这些散热面由绝缘性的密封树脂304覆盖。覆盖散热面的密封树脂的厚度305(参照图3(a))从散热性的观点来看,优选为0.5[mm]以下,进一步优选为0.3[mm]以下。通过这样形成散热树脂304的厚度305,不会使散热性恶化,可以确保绝缘性。此外,通过用树脂覆盖半导体元件302,可以减少因半导体元件302和金属制的引线架的线膨胀系数之差而产生的对接合部件(焊料等)的应力。

作为用绝缘性的由树脂密封半导体元件的方法,可举出传递模塑成型、注塑成型、灌封成型等。传递模塑成型在量产性、可靠性这一方面优选。作为树脂的材料,可举出环氧类的树脂等。

树脂材料的导热率优选为1[W/(m·K)]以上,进一步优选为3[W/(m·K)]以上。树脂材料的导热率通过充填剂的种类、添加量可调整。作为充填剂,可以使用氧化铝、氮化硼、二氧化硅等公知的材料,但不限定于这些。特别是使用2[W/(m·K)]以上的导热率的树脂材料的情况下,即使减少散热脂(Heat dissipation grease)或绝缘片,也可以得到从电源组件向散热片的高的散热性。

作为密封树脂304的热膨胀系数,只要是接近于由铜形成的端子的热膨胀系数的值的、大约20[ppm/℃]以下的热膨胀系数,就是有效的,优选为6~20[ppm/℃]左右的热膨胀系数。

本实施例的电源半导体组件301具有翘曲抑制部303。翘曲抑制部303形成于密封半导体元件302等的密封树脂304的周缘部。图3(a)中表示形成于电源组件301的短边侧的翘曲抑制部303。图3(b)中表示形成于电源组件301的长边侧的翘曲抑制部303。在此,电源组件301的长边是指沿着与半导体元件302a和302b的排列方向平行的方向即长边方向的边。

本实施例的翘曲抑制部303由与密封半导体元件302的密封树脂304相同的材料一体地形成。另外,该翘曲抑制部303以在半导体元件302的主面的法线方向的该翘曲抑制部303的厚度比该方向的密封树脂304的厚度大的方式形成。换句话说,翘曲抑制部303相对于覆盖前述引线架的散热面的密封树脂304形成的主面以该翘曲抑制部303呈凸出状的方式形成。在此所说的密封树脂304的主面在本实施方式中形成于半导体元件302的一侧和另一侧的两面侧。

这样,通过以厚度比密封树脂304的厚度大的方式形成翘曲抑制部303,形成刚性比密封树脂304的刚性大的翘曲抑制部303。这样的刚性较大的翘曲抑制部303沿着半导体元件302a和302b的排列方向(即图2所示的电源组件的长边方向)形成。

另外,通过用与密封树脂304相同的材料一体地形成翘曲抑制部303,在密封半导体元件302的工序中,可以同时形成翘曲抑制部303。由此,与另外形成翘曲抑制部件303,然后进行组装的情况相比,减少零件数量和作业工序。

如比较图3(a)和图3(b)可知,电源组件301的密封树脂部在排列多个半导体元件304的方向上较长地形成。这时,电源组件301的翘曲在长边方向即半导体元件的排列方向上比在短边方向上容易产生。电源组件的翘曲由制造时的树脂固化的固化收缩、冷却时的树脂收缩、实际使用环境温度引起的膨胀收缩等引起而产生。

在此,作为比较例,对图17~图19所示的电源组件进行说明。图17和图18所示的电源组件与本实施例的电源组件不同,没有形成翘曲抑制部303。另外,图19是表示将比较例的电源组件301安装于散热片401的状态的图。散热片401在与和电源组件301的半导体元件连接的金属端子(引线架)相对的区域中形成与电源组件301热接触的散热路径。

在电源组件产生超过容许范围的翘曲时,电源组件与散热片的间隔扩大。由此,阻碍电源组件与散热片之间的热接触,不能有效地使半导体元件产生的热散热。另外,在利用螺钉等将电源组件安装在安装体的阶段,因紧固转矩,在电源组件内部的半导体元件上有时产生破坏。另外,电源组件的翘曲发生表现出应力作用于基板自身,因此在该状态下施加作为耐久试验的温度循环处理时,因应力的温度变化而导致电源组件破坏,会导致可靠性降低。在两面具有散热面的电源组件的构造中,也产生不少的翘曲,因此会产生这样的散热性的降低或可靠性降低。

根据本实施例的电源组件,因抑制电源组件的长边方向的翘曲,所以可以得到与散热片的良好的热接触,可以维持电源组件的可靠性。

形成于电源组件的密封部的周缘部的翘曲抑制部相对于与散热片热接触的组件主面形成为不同的高度。由此,电源组件的密封树脂周缘部的刚性提高。翘曲抑制部相对于组件的主面的高度在达成本发明的目的的范围没有限制,但优选为0.5[mm]以上,进一步优选为1[mm]以上。另外,在本实施例中,不仅沿着长边方向,还沿着短边方向形成有翘曲抑制部,因此翘曲变形的抑制效果更高。

另外,用于本实施例的电源组件的密封树脂304使用与构成引线架331~335的铜的热膨胀系数(17[ppm/℃])大致相同的值的热膨胀系数(18[ppm/℃])的树脂。由此,还能够抑制热膨胀系数之差引起的电源组件的翘曲,因此,可以更加抑制电源组件的翘曲。

图4(a)是本实施方式的电源组件301的电路构成图。

图5(a)和图5(b)是表示将本实施方式的电源组件301安装在散热片401的状态的截面图。图5(a)是与图3(a)对应的截面图。图5(b)是与图3(b)对应的截面图。

散热片401与形成电源组件301的散热面的主面的形状相配合,设置有凸部。在本实施方式中,电源组件301在该电源组件301与散热片401之间没有设置散热脂或绝缘片等,被安装在散热片401。散热片401优选由散热性良好的金属等形成。另外,从散热性的观点来看,进一步优选控制装置的箱体和电动机的箱体一体成型。在本实施例中,如后所述,与控制装置侧金属箱体相连接。

本实施例的电源组件与比较例(图17~19)的电源组件相比,因翘曲变形小,所以能够维持散热性,并且能够减少散热部件的使用量。其结果是能够期待电力转换装置的小型化和部件的成本降低等效果。

另外,电源组件301的翘曲抑制部303在该翘曲抑制部303和电源组件的散热面形成与散热片401的凸部相配合的凹部。因此,通过翘曲抑制部303的设计,还能够确定电源组件301相对于散热片401的设置位置。即电源组件301的翘曲抑制部303通过与散热片401的凸部的关系,还作为定位用的部件发挥功能。例如,在图5(a)中,通过翘曲抑制部303来规定在半导体元件302a和302b的排列方向的电源组件301的配置位置。由此,提高电源组件和散热片的组装性。

图6是表示组装了本实施例的电源组件301的电力转换装置100的安装状态的轴向截面图。

电力转换装置100包括与三相的输出对应的三个电源组件301(只图示一个)、电动机200、包含电动机驱动电路的控制装置300。

电动机200具有定子202和转子204。定子202的定子绕组由U、V、W相的三相绕组构成。该定子绕组的配线通过利用绝缘性的树脂模制而成的终端母线210被电连接。转子204由轴205和固定于其外周的永久磁铁构成。转子204通过在定子绕组流通电流而产生的旋转磁场和轴承进行旋转。此外,作为永久磁铁的材料,可举出钕或铁氧体等。构成电动机200的部件收纳在电动机侧金属箱体201。

电源组件301安装在与逆变器侧金属箱体313热连接的散热片401上。本实施例中,在电源组件301的两侧的主面固定有散热片401。另外,电源组件301的电力端子与电源基板308连接,控制端子与控制基板309连接。

电容器310安装在电源基板308。在控制基板309安装有位置检测用磁铁212、电子零件213、微机214等。控制基板309相对于电源组件301配置于配置有电动机200的一侧。电源基板308相对于电源组件301配置于配置有电动机200的一侧的相反侧。另外,在盖312设置有连接器307。连接器307包括与电源基板308连接的连接器和与控制基板308连接的连接器。

在本实施方式的电力转换装置100中,由电源组件301产生的热从逆变器侧金属箱体313向电动机侧金属箱体201散热。另外,同时,在电源组件301产生的热还通过散热片401散热。在从半导体元件的两面侧散热的电源组件中,要求向设置于两面侧的散热路径的有效的散热。

根据本实施方式的电力转换装置,通过使用翘曲变形小的电源组件301,能够进行向配置于该电源组件301的两面侧的散热片的有效的散热。其结果是,能够实现用于绝缘和散热的追加部件的减少,以及电力转换装置的轴向的小型化等。

如以上说明,根据本实施例的电源组件,通过形成翘曲抑制部,可以提供由于能够抑制翘曲变形而对于散热片的散热性良好的、高可靠性的电源组件。另外,因为可以减少散热脂或绝缘片的使用量,所以实现低成本化。另外,翘曲抑制部与电源组件的主面具有规定的高度地形成,由此,散热片和引线架的绝缘距离(沿面距离)增长,因此,绝缘可靠性提高。此外,具有在将本发明的电源组件组装在电力转换装置时,相对于散热片的凸部容易定位,位置精度也提高的优点。

另外,根据本实施例的电力转换装置,逆变器所包括的电源组件的一个面与控制装置或电动机的金属箱体相接,另一面与散热用的金属板相接,因此,可以从两面释放由电源组件产生的热,能够实现散热性高的电力转换装置。其结果是,能够实现电力转换装置的小型化。

实施例2

图7(a)和图7(b)表示第二实施方式的电源组件和散热片的组装构造。与第一实施方式不同点是散热片401的形状。在本实施方式中,散热片401的凸部前端的面积变小。由此,沿面距离增长,能够提供绝缘可靠性高的电源组件。另外,通过在电力转换装置中使用本实施例的电源组件,能够提供轴向小型化的电力转换装置。

实施例3

图8(a)和图8(b)表示第三实施方式的电源组件和散热片的组装构造。与第一实施方式不同点是散热片401的形状。本实施方式的电源组件不仅在该组件的散热主面,而且在翘曲抑制部303也与散热片401抵接。

实施例4

图9和图10表示第四实施方式的电源组件的结构。图10(a)是图9的C-C截面的截面图。图10(b)是图9的D-D截面的截面图。与第一实施方式的不同点是翘曲抑制部303的形状。本实施方式的电源组件中,翘曲抑制部是比第一实施方式的翘曲抑制部303更宽幅的形状。由此,能够进一步提高翘曲抑制部303的刚性。其结果是更有效地抑制电源组件301整体的翘曲,可以提供高可靠的电源组件。另外,通过在电力转换装置中使用本实施例的电源组件,能够提供轴向更小型化的电力转换装置。

实施例5

图11和图12表示第五实施方式的电源组件的结构。图12是图11的E-E截面的截面图。与第一实施方式不同点是不仅在外周侧的周缘部,而且在内部也设有翘曲抑制部303这一点。本实施方式的电源组件303具有通过两个半导体元件302a与302b的大致中央,设置于与半导体元件302a和302b的排列方向正交的方向的翘曲抑制部303。通过在两个半导体元件之间形成翘曲抑制部303,确保从半导体元件到散热片的散热路径,并且可以更有效地抑制电源组件整体的翘曲。

本实施方式中,需要与翘曲抑制部303的形状相配合地变更散热片401的形状,作为电力转换装置,在轴向能够实现更小型化。

实施例6

图13和图14表示第六实施方式的电源组件的结构。在本实施例中,一个电源组件301内内置有三个半导体元件302a、302b、302c。图14表示本实施方式的电源组件的电路构成。

如本实施方式的电源组件所示,即使是包括三个以上半导体元件的情况下,也与实施例1同样,通过设置翘曲抑制部303,能够提高电源组件的可靠性。特别是本实施方式的电源组件由于将三个半导体元件排成一列地配置,所以与电源组件的短边方向的长度相比,长边方向的长度比实施例1更大。在这种组件中,组件的翘曲产生的可靠性的课题更为显著。因此,与在电源组件的周缘部没有设置高刚性的翘曲抑制部的现有构造相比,能够确保高的可靠性。

实施例7

图15和图16表示第七实施方式的电源组件和电力转换装置的结构。图17所示的本实施方式的电源组件内置有9个半导体元件。对于本实施方式的一个电源组件,驱动一个三相定子绕组。图16是表示将本实施方式的电源组件组装于电力转换装置的状态的图。本实施方式的电力转换装置100包括两个三相定子绕组,并包括与各自对应的两个电源组件301。第一和第二电源组件分别驱动三相定子绕组。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1