电磁致动器的制作方法

文档序号:13342393阅读:144来源:国知局

本发明涉及一种能够对柱塞的位置进行检测的电磁致动器。



背景技术:

在内燃机中,在使进气用及排气用的阀动作的凸轮轴上设置有高升程凸轮(日文:ハイカム)和低升程凸轮(日文:ローカム)这两种凸轮,有时会根据内燃机的转速对高升程凸轮和低升程凸轮进行切换,从而对阀的升程量进行调节。通过在形成于凸轮的螺旋槽上卡合限制销,而使凸轮沿凸轮轴的轴向滑动,来进行上述凸轮的切换。在限制销的动作中,使用了电磁致动器(例如,参照专利文献1)。

专利文献1所记载的电磁致动器包括:两个柱塞,两个上述柱塞与两个限制销连接;两个永磁体,两个上述永磁体朝使两个柱塞从凸轮退开的方向吸引两个上述柱塞;一个线圈,一个上述线圈使永磁体的吸附力降低,从而使柱塞能够向凸轮一侧前进;以及两个弹簧,两个上述弹簧使两个柱塞前进。在初始状态下,不向线圈通电,两个柱塞因被两个永磁体吸附而被保持。由于两个永磁体的磁极以彼此相反的方式配置,因此,通过向线圈通电而使一方的永磁体的吸附力降低,被上述永磁体吸引的柱塞通过弹簧的作用力而前进,以使限制销与凸轮的螺旋槽卡合。在切断向线圈的通电之后,若通过凸轮将限制销压回,则柱塞会被永磁体吸引而保持于初始位置。这样,通过切换线圈的通电方向,从而降低相对于两个永磁体中的一方的吸附力,并使永磁体的吸附力降低的一侧的限制销动作。

此外,专利文献1所记载的电磁致动器包括对柱塞位置进行检测的检测功能。在限制销被压回时,随着柱塞靠近永磁体,在线圈中交链的磁路内流动的永磁体的磁通增加,由此,在线圈的两端产生反向电压。通过对该反向电压进行检测,来检测柱塞的位置。

现有技术文献

专利文献

专利文献1:

日本专利特开2013-239538号公报



技术实现要素:

发明所要解决的技术问题

上述专利文献1所记载的电磁致动器存在如下技术问题:由于随着柱塞靠近永磁体,在线圈中交链的磁通逐渐增加,因此,反向电压小,很难检测。

此外,由于两个永磁体以使磁极相反的方式相邻地配置,因此,与相邻的磁极发生短路,从而在线圈中交链的磁通减少,进而无法高效地产生反向电压。另外,为了选择向凸轮一侧前进的柱塞,需要对线圈的通电方向进行切换的装置。

本发明为了解决上述技术问题而作,其目的在于提供一种能够产生较大的反向电压的电磁致动器。

解决技术问题所采用的技术方案

本发明的电磁致动器包括:壳体,该壳体由磁性体构成;铁芯,该铁芯设置于壳体内;线圈,该线圈使铁芯产生磁通;永磁体,该永磁体产生朝向铁芯的吸附力和排斥力;以及柱塞,该柱塞与永磁体一体设置,在线圈未通电时,上述柱塞通过永磁体吸附于铁芯而保持于初始位置,在线圈通电时,上述柱塞通过永磁体与铁芯相斥而从初始位置移动,铁芯是被磁分割成多个的分割铁芯在柱塞的移动方向上排列的结构,在多个分割铁芯中至少最靠永磁体一侧的分割铁芯形成有供柱塞穿过的孔,柱塞呈在初始位置处将多个分割铁芯中至少两个分割铁芯磁连接的位置之前,从形成于分割铁芯的孔进入铁芯内部的形状。

发明效果

根据本发明,通过对铁芯进行磁分割来增大与线圈交链的磁路的磁阻,当柱塞将分割铁芯之间进行磁连接时,永磁体的磁通在上述磁路内流动,因此,通过分割铁芯与柱塞的位置关系,使与线圈交链的磁路的磁阻急剧地变化而使在上述磁路内流动的磁通急剧地变化,从而产生较大的反向电压。

附图说明

图1是表示本发明实施方式1的电磁致动器的结构例的局部剖视立体图。

图2是表示实施方式1的电磁致动器的结构例的剖视图,上述电磁致动器处于通电状态。

图3是对实施方式1的电磁致动器中检测可动件的位置的功能进行说明的图。

图4是表示实施方式1的电磁致动器中可动件的位置与和线圈交链的磁通之间的关系的图表。

图5是用于帮助理解实施方式1的电磁致动器的参考例,其是定子铁芯未被分割的结构。

图6表示将分割铁芯的分割部与柱塞的突部之间的位置关系变形后作为实施方式一的电磁致动器的变形例的剖视图。

图7表示将柱塞变形后作为实施方式1的电磁致动器的变形例的立体图。

图8表示将可动件变形后作为实施方式1的电磁致动器的变形例的分解立体图。

图9表示将定子铁芯变形后作为实施方式1的电磁致动器的变形例的剖视图。

图10表示追加了柱塞引导件的结构作为实施方式1的电磁致动器的变形例的剖视图。

图11表示将定子铁芯和可动件变形后作为实施方式1的电磁致动器的变形例的剖视图。

图12表示应用了实施方式1的电磁致动器的凸轮切换机构的示例,其中,图12的(a)是使用高升程凸轮时的主要部分的结构图,图12的(b)是沿g-g线剖开的剖视图。

图13表示应用了实施方式1的电磁致动器的凸轮切换机构的示例,其中,图13的(a)是使用低升程凸轮时的主要部分的结构图,图13的(b)是沿h-h线剖开的剖视图。

图14是表示在应用了实施方式1的电磁致动器的凸轮切换机构中,从高升程凸轮切换至低升程凸轮的动作的说明图。

图15是表示在应用了实施方式1的电磁致动器的凸轮切换机构中,从低升程凸轮切换至高升程凸轮的动作的说明图。

具体实施方式

以下,为了更详细地对本发明进行说明,根据附图对本发明的实施方式进行说明。

实施方式1

图1和图2是表示本发明实施方式1的电磁致动器1的结构例的图。如图所示,电磁致动器1包括:2、3,2、3由磁性体构成;多个分割铁芯4、5,多个上述分割铁芯4、5设置于壳体2、3内;线圈6,该线圈6使分割铁芯4、5产生磁通;永磁体7,该永磁体7产生朝向分割铁芯4、5的吸附力和排斥力;以及柱塞8、9,该柱塞8、9与永磁体7一体化。此外,在柱塞9安装有限制销11。

定子由壳体2、3、分割铁芯4、5以及线圈6构成。定子铁芯分割为两个分割铁芯4、5。可动件10由永磁体7以及柱塞8、9构成。图1所示的箭头a表示可动件10的移动方向,可动件10和限制销11一体地往复移动。此外,在图1及图2中,可动件10位于初始位置。

壳体2、3、分割铁芯4、5以及柱塞8、9是磁性体。在壳体2的内部固定有线圈6,在线圈6的内侧固定有分割铁芯4、5。分割铁芯4、5沿可动件10的移动方向a排列。此外,分割铁芯4和分割铁芯5隔着间隙配置。分割铁芯4、5之间的间隙是“分割部”。配置于远离永磁体7一侧的分割铁芯4呈有底筒状。配置于靠近永磁体7一侧的分割铁芯5具有板部51以及突部52。在上述板部51和突部52开设有供柱塞8的突部82穿过的孔。

另外,在图示例中,分割铁芯4构成为有底筒状,但不一定需要有底,也可以是筒状。

此外,分割铁芯4也可以将在径向上分割成多个的铁芯压入而形成为一个筒状的铁芯。在这种结构的情况下,由于多个铁芯在径向上无间隙地配置,因此,上述多个铁芯被磁连接。分割铁芯5也可以同样地将在径向上分割成多个的铁芯压入而形成为一个筒状的铁芯。

永磁体7的靠近分割铁芯4、5的一侧磁化为n极,远离分割铁芯4、5的一侧磁化为s极。此外,永磁体7夹在两个柱塞8、9之间,柱塞8固定于永磁体7的靠近分割铁芯4、5一侧的面,柱塞9固定于永磁体7的远离分割铁芯4、5一侧的面。柱塞8具有板部81以及突部82。突部82与分割铁芯4、5同轴地配置,上述突部82能够从开设于分割铁芯5的孔进入分割铁芯4、5的内部。柱塞9呈板状。

在处于未向线圈6通电的无通电状态下,如图1所示,因永磁体7吸附于分割铁芯4、5,而使可动件10保持于初始位置。

若向线圈6通电,则如图2所示,分割铁芯4、5上产生磁通b,而向分割铁芯5、分割铁芯4以及壳体2流动。另一方面,永磁体7的磁通c向柱塞9、永磁体7以及柱塞8流动。因而,刚开始通电后,就在分割铁芯5的板部51与柱塞8的板部81之间产生最大的排斥力,从而使可动件10向壳体3一侧移动。然后,因永磁体7吸附于壳体3,而使可动件10保持于动作位置。

若切断向线圈6的通电,并从外部施加将限制销11推回的力,则可动件10与限制销11一体地被推回至初始位置,并因永磁体7吸附于分割铁芯4、5而使可动件10保持于初始位置。将限制销11推回的力例如从后述的凸轮切换机构施加。

接着,使用图3对检测可动件10的位置的功能进行说明。图3的(a)表示可动件10位于动作位置时的磁通,图3的(b)表示可动件10从动作位置向初始位置返回时的磁通。

由于分割铁芯4、5隔着间隙配置,因此,分割铁芯4、5被磁分割,供与线圈6交链的磁通d流动的磁路的磁阻较大。因而,如图3的(a)所示,若可动件10位于远离分割铁芯4、5的位置,则永磁体7的磁通c很难穿过分割铁芯4、5的磁路,即与线圈6交链的磁通d较小。

分割铁芯4、5的间隙是对分割铁芯4、5进行磁分割的分割部。

分割部的磁阻较大,并且,当将穿过分割部(截面积设为s)并与线圈6交链的磁路的磁阻设为r、将线圈6的起磁力设为ni时,分割部具有使通过ni/(r·s)求得的磁通密度比定子铁芯的饱和磁通密度小的截面积。

若可动件10从动作位置向初始位置移动,则如图3的(b)所示,分割铁芯4与柱塞8的气隙变小,分割铁芯4、5经由柱塞8磁连接。藉此,供与线圈6交链的磁通d流动的磁路的磁阻变小,永磁体7的磁通c容易穿过分割铁芯4的磁路,即与线圈6交链的磁通d变大。在上述初始位置处,柱塞8的板部81与分割铁芯5的板部51抵接,柱塞8的突部82的端部的位置与分割铁芯4、5的分割部的位置对齐。

这样,根据分割铁芯4、5的分割部与可动件10的突部82的位置关系,与线圈6交链的磁路的磁阻急剧地变化,从而使在上述磁路内流动的磁通d急剧地变化。此外,通过与线圈6交链的磁通d急剧地变化,从而在线圈6的两端部产生较大的反向电压。通过利用电压计对上述反向电压进行检测,从而能够检测出可动件10的位置。

图4是表示可动件10的位置和与线圈6交链的磁通d的关系的图表。图表的纵轴表示与线圈6交链的磁通d,在上述图表中,纵轴的值越小,磁通d越大。横轴表示可动件10的位置,0[mm]相当于可动件10位于初始位置时,36[mm]相当于可动件10位于动作位置时。可动件10从动作位置向初始位置移动时,突部82到达至分割铁芯4、5的分割部,通过分割铁芯4与柱塞8的气隙变窄而使磁阻变小,从而使磁通d急剧地变化(图4的e),进而产生较大的反向电压。通过对该反向电压进行检测,能够检测到可动件10返回至初始位置。

另一方面,在像参考例的电磁致动器1a那样使磁通d线性变化的情况下,由于反向电压没有变化,因此,很难检测出可动件10的位置。

在此,在图5中,示出了包括未分割成分割铁芯4、5分割的铁芯4a的电磁致动器1a,以作为用于帮助理解实施方式1的电磁致动器1的参考例。除了铁芯4a没有被分割这一点以外,参考例的电磁致动器1a是与电磁致动器1相同的结构。在参考例的电磁致动器1a中,随着可动件10从动作位置向初始位置移动,穿过铁芯4a的磁路的永磁体7的磁通逐渐增加,与线圈6交链的磁通d逐渐变大。

另外,在实施方式1中,永磁体7的磁化方向也可以与图2所示的方向相反。在这种情况下,线圈6的通电方向也变得相反。

此外,在实施方式1中,通过调节柱塞8的突部82的长度,能够容易地对与线圈6交链的磁通d急剧变化的位置进行改变。

在此,图6中,示出了将突部82增长的电磁致动器1b作为电磁致动器1的变形例。除了将突部82b增长以使突部82b的端部在初始位置处比分割铁芯4、5的分割部进入铁芯内部这一点以外,电磁致动器1b是与电磁致动器1相同的结构。在电磁致动器1b中,在可动件10从动作位置向初始位置移动时,可动件10的突部82b比电磁致动器1的情况提前到达至分割铁芯4、5的分割部,因此,在24[mm]的位置处,与线圈6交链的磁通d急剧地变化(图4的f),从而产生较大的反向电压。藉此,能够比初始位置提前检测到可动件10。

接着,对实施方式1的电磁致动器1的变形例进行说明。

图7是表示将柱塞8变形后的柱塞8c~8e的结构例的立体图。在电磁致动器1中使用的柱塞8可以是如图7的(a)所示的柱塞8c那样具有圆筒状的突部82c的结构,也可以是如图7的(b)所示的柱塞8d那样具有方筒状的突部82d的结构,还可以是如图7的(c)所示的柱塞8e那样具有棱柱状的突部82e的结构。另外,突部82也可以是圆柱或棱柱以外的形状,还可以是实心或中空。

图8是表示将可动件10变形后的可动件10f的结构例的分解立体图。在电磁致动器1中使用的可动件10可以是如图8的(a)所示那样在靠近分割铁芯4、5一侧的柱塞8的板部81形成有突部82的结构,也可以是如图8的(b)所示的可动件10f那样在远离分割铁芯4、5一侧的柱塞9f的板部91f形成有突部92f的结构。

在图8的(a)的情况下,由于板部81和突部82形成为一体,因此,具有下述优点:永磁体7的磁通容易穿过板部81和突部82向分割铁芯4、5流动,能够高效地产生反向电压。

在图8的(b)的情况下,由于使柱塞9f的突部92f穿过永磁体7的孔和板状的柱塞8f的孔来构成可动件10f,因此,与图8的(a)的可动件10相比具有易于组装这样的优点。此外,由于永磁体7通过突部92f进行定位,因此,还具有不易偏心这样的优点。

另外,在图示例中,将柱塞8、9的板部和永磁体7设为相同的圆盘形,但也可以是不同的形状。此时,较为理想的是,将柱塞8、9设为比永磁体7大,并通过柱塞8、9覆盖永磁体7的结构。藉此,能够有效地使用漏磁通。此外,能够对耐冲击差的永磁体7进行保护。另外,通过将柱塞8、9的板部沿径向扩展而使上述板部靠近壳体2的内壁面,从而能够将壳体2作为供永磁体7的磁通穿过的磁路使用。

图9是表示将分割铁芯4、5变形后的电磁致动器1g、1h的结构例的剖视图。在图9的(a)所示的电磁致动器1g中,分割铁芯4和分割铁芯5通过连接部4g连接。但是,由于上述连接部4g的厚度比分割铁芯4、5的厚度薄,因此,分割铁芯4、5被磁分割,与如图1所示隔着间隙配置的分割铁芯4、5同样地,与线圈6交链的磁路的磁阻较大。上述连接部4g是分割铁芯4、5的分割部。

这样,分割部可以是如图1等所示那样对定子铁芯进行物理分割和磁分割的间隙,也可以是如图9所示那样即使进行了物理连接也被磁分割的薄板状的构件。另外,虽未图示,但也可以在定子铁芯开设多个孔,从而形成一部分物理连接、一部分被孔物理分割并且被磁分割的分割部。

此外,也可以像图9的(b)所示的电磁致动器1h那样,将定子铁芯分割为两个以上的分割铁芯4h-1、4h-2、4h-3、5。分割数越多,磁阻变得越大。另外,在图9的(b)中,是在初始位置处将四个分割铁芯中的两个分割铁芯4h-3、5通过柱塞8进行磁连接的结构,但也可以设为将任意的分割铁芯磁连接的结构。

图10是表示追加了柱塞引导件12的电磁致动器1i的结构例的剖视图。在图10的(a)和图10的(b)所示的结构例中,柱塞引导件12从壳体3向分割铁芯4、5的内部突出。使上述柱塞引导件12贯穿可动件10,从而对可动件10的往复移动进行引导。藉此,能够抑制可动件10在径向上的偏心。在图10的(a)中,示出了通过将柱塞引导件12压入壳体3来进行固定的结构例,在图10的(b)中,示出了通过将柱塞引导件12压入分割铁芯4来进行固定的结构例。

另外,在图10中,示出了在可动件10的内侧对该可动件10的移动进行引导的柱塞引导件12的结构例,但不限定于上述结构,也可以将柱塞引导件12构成为在可动件10的外侧对该可动件10的移动进行引导。

图11是表示将分割铁芯4和可动件10变形后的电磁致动器1j的结构例的剖视图。在图11所示的电磁致动器1j中,采用实心的分割铁芯4j。与图1所示的中空的分割铁芯4相比,由于图11所示的实心的分割铁芯4j内流动有较多的永磁体7的磁通,因此,具有高效地产生反向电压这样的优点。另外,也能够将柱塞8j的板部81j和突部82j、永磁体7j以及柱塞9j设为实心。

接着,对使用了实施方式1的电磁致动器1的内燃机的凸轮切换机构的一例进行说明。

图12和图13表示内燃机中的进气阀或排气阀用的凸轮切换机构。图12的(a)表示使用高升程凸轮时的凸轮切换机构的主要部分。图12的(b)是沿图12的(a)的g-g线剖开的剖视图。图13的(a)表示使用低升程凸轮时的凸轮切换机构的主要部分。图13的(b)是沿图13的(a)的h-h线剖开的剖视图。在图12和图13中,y轴的方向与图1所示的可动件10的移动方向a相同。

参照图12和图13,对使用了两个实施方式1的电磁致动器1的凸轮切换机构100进行说明。

两个电磁致动器1分别通过从连接器13向收容于壳体2的线圈6供电而使可动件10动作,从而将与上述可动件10形成一体的限制销11的前端部从壳体3压出。此外,在停止向连接器13供电并将限制销11压回壳体3时,通过电压计等对连接器13的两端电压进行测量,能够检测到在线圈6的两端产生的反向电压,以检测出限制销11回到初始位置。

以下,在电磁致动器1中,将可动件10移动至动作位置,并且限制销11从壳体3突出的突出长度l为最长时的限制销11的轴向位置称为“打开位置”。此外,将可动件10移动至初始位置,并且突出长度l为最短时的限制销11的轴向位置称为“关闭位置”。图12的(a)和图13的(a)表示两个电磁致动器1的限制销11均处于关闭位置的状态。

与两个电磁致动器1的限制销11的前端部相对地配置有两个圆柱状的凸轮件102a、102b。在凸轮件102a、102b的侧周部设置有螺旋槽103a、103b。一方的凸轮件102a的螺旋槽103a与另一方的凸轮件102b的螺旋槽103b的螺旋的方向彼此反向。

此外,在两个螺旋槽103a、103b的内侧的末端部分别形成有逐渐隆起的锥面。通过螺旋槽103a、103b的锥面来构成凸轮切换机构100的返回机构。

两个电磁致动器1与凸轮件102a、102b间的间隔设定成当限制销11位于打开位置时,该限制销11的前端部进入螺旋槽103a、103b,并且当限制销11位于关闭位置时,该限制销11的前端部从螺旋槽103a、103b露出。沿凸轮件102a、102b的轴心插通有凸轮轴104。

凸轮件102a、102b间设置有高升程凸轮105a、105b和低升程凸轮106a、106b。高升程凸轮105a、105b与低升程凸轮106a、106b接近地配置。如图12的(b)所示,在高升程凸轮105b的外周部形成有凸部105c。如图13的(b)所示,在低升程凸轮106b的外周部形成有凸部106c。同样地,在高升程凸轮105a的外周部形成有凸部105c,在低升程凸轮106a的外周部形成有凸部106c。高升程凸轮105a、105b的凸部105c的高度比低升程凸轮106a、106b的凸部106c的高度高。

通过凸轮件102a、102b、高升程凸轮105a、105b以及低升程凸轮106a、106b来构成凸轮部107。凸轮部107与凸轮轴104例如花键结合,并且以凸轮轴104为中心与凸轮轴104一体地旋转。此外,凸轮部107被支承为相对于凸轮轴104沿凸轮轴104的轴向直线自由移动。

在凸轮部107的周围配置有阀108a、108b。在对阀108a、108b进行支承的摇臂109a、109b上设置有摇辊110a、110b。阀108a、108b通过未图示的螺旋弹簧等被朝凸轮轴104一侧按压,摇辊110a、110b根据凸轮部107的直线移动位置而与高升程凸轮105a、105b和低升程凸轮106a、106b中的任意一方抵接。

接着,参照图12和图13,对由如上所述构成的凸轮切换机构100引起的阀108a、108b的开闭动作进行说明。

如图12所示,在高升程凸轮105a、105b与摇辊110a、110b抵接的状态下,凸轮部107旋转。此时,在高升程凸轮105a、105b的外周部形成有凸部105c,通过根据凸部105c的旋转位置对摇辊110a、110b进行按压,从而使摇臂109a、109b以一端部j为中心转动。根据摇臂109a、109b的转动,阀108a、108b大致沿高升程凸轮105a、105b的径向、即大致沿图中y轴的方向直线移动。

或者,如图13所示,在低升程凸轮106a、106b与摇辊110a、110b抵接的状态下,凸轮部107旋转。此时,在低升程凸轮106a、106b的外周部形成有凸部106c,通过根据凸部106c的旋转位置对摇辊110a、110b进行按压,从而使摇臂109a、109b以一端部j为中心转动。根据摇臂109a、109b的转动,阀108a、108b大致沿低升程凸轮106a、106b的径向,即沿图中y轴的方向直线移动。

此时,由于高升程凸轮105a、105b的凸部105c的高度比低升程凸轮106a、106b的凸部106c的高度高,因此,图12的(a)所示的使用高升程凸轮105a、105b时的阀108a、108b的直线移动幅度lh比图13的(a)所示的使用低升程凸轮106a、106b时的阀108a、108b的直线移动幅度l1大。

接着,参照图12~图15,对由凸轮切换机构100引起的高升程凸轮105a、105b和低升程凸轮106a、106b的切换动作进行说明。

如图14所示,在高升程凸轮105a、105b与摇辊110a、110b抵接的状态下,在凸轮件102b的螺旋槽103b来到正下方的时刻,图中右侧的电磁致动器1将限制销11从关闭位置切换至打开位置,藉此,对限制销11的前端部进行按压而使该前端部进入螺旋槽103b。

通过在限制销11的前端部进入螺旋槽103b的状态下使凸轮部107旋转,从而使凸轮部107朝沿凸轮轴104的轴的恒定方向、即朝图中x轴的正方向移动。在此,螺旋槽103b设置成凸轮部107的移动幅度大致等于高升程凸轮105a、105b与低升程凸轮106a、106b的中心部间的间隔lc。藉此,阀108a、108b的动作用的凸轮从高升程凸轮105a、105b切换至低升程凸轮106a、106b。

此外,螺旋槽103b的末端部形成有逐渐隆起的锥面,通过凸轮部107的旋转将限制销11的前端部朝电磁致动器1一侧压回。通过上述返回机构,电磁致动器1的限制销11返回至关闭位置,凸轮切换机构100成为图13的(a)所示的状态。

同样地,如图15所示,在低升程凸轮106a、106b与摇辊110a、110b抵接的状态下,在凸轮件102a的螺旋槽103a来到正下方的时刻,图中左侧的电磁致动器1将限制销11从关闭位置切换至打开位置,藉此,对限制销11的前端部进行按压而使上述前端部进入螺旋槽103a。

通过在限制销11的前端部进入螺旋槽103a的状态下使凸轮部107旋转,从而使凸轮部107朝沿凸轮轴104轴的恒定方向、即朝图中x轴的负方向移动。在此,由于螺旋槽103a的螺旋方向与螺旋槽103b的螺旋方向相反,因此,凸轮部107向与图1104所示的状态相反的方向移动。藉此,在阀108a、108b的动作中使用的凸轮从低升程凸轮106a、106b切换至高升程凸轮105a、105b。

此外,在螺旋槽103a的末端部与螺旋槽103b同样地形成有逐渐隆起的锥面,通过凸轮部107的旋转将限制销11的前端部朝电磁致动器1一侧压回。通过上述返回机构,电磁致动器1的限制销11返回至关闭位置,凸轮切换机构100成为图12的(a)所示的状态。

如上所述,根据实施方式1,电磁致动器1构成为包括:壳体2、3,该壳体2、3由磁性体构成;定子铁芯,该定子铁芯设置于壳体2、3内;线圈6,该线圈6使定子铁芯产生磁通;永磁体7,该永磁体7产生向定子铁芯的吸附力和排斥力;以及柱塞8,该柱塞8与永磁体7一体设置,在线圈6没有通电时,上述柱塞8因永磁体7吸附于定子铁芯而保持于初始位置,而在线圈6通电时,因永磁体7与定子铁芯相斥而从初始位置移动。此外,定子铁芯是分割成多个的分割铁芯4、5在柱塞8的移动方向a上排列的结构,多个分割铁芯4、5中至少位于最靠永磁体7一侧的分割铁芯5形成有供柱塞8穿过的孔,由于柱塞8设为在初始位置处将分割铁芯4、5磁连接的位置之前从形成于分割铁芯5的孔进入定子铁芯内部的形状,因此,根据分割铁芯4、5的分割部与柱塞8的位置关系,使与线圈6交链的磁路的磁阻急剧地变化,从而使在该磁路内流动的磁通d急剧地变化,进而产生较大的反向电压。

通过对上述反向电压进行检测,能够检测出柱塞8的位置,从而能够用于对电磁致动器1的动作状态的监视以及异常检测等。

此外,由于增大了由柱塞8的位置变化引起的线圈交链磁通的变化,因此,即使在产生热退磁而使永磁体7的磁通降低或波动的情况下,也会产生反向电压,从而能够检测出柱塞8的位置。

另外,即使在柱塞8的移动速度较慢的情况下,也能够根据位置的变化来确保线圈交链磁通量,因此,能够采用空气阻尼功能等使可动件10的移动速度降低。藉此,能够降低可动件10与分割铁芯5或壳体3抵接时的噪音。

此外,根据实施方式1,由于柱塞8构成为具有:板部81,该板部81与多个分割铁芯4、5中最靠永磁体7一侧的分割铁芯5抵接;以及突部82,该突部82从上述板部81突出并进入形成于分割铁芯5的孔,因此,通过柱塞8的板部81与分割铁芯5抵接,从而能够获得较大的吸附力和排斥力。此外,通过将板部81沿径向扩展而形成使磁通向壳体2流动的磁路。

此外,根据实施方式1,多个分割铁芯4、5中最靠永磁体7一侧的分割铁芯5构成为具有:板部51,该板部51形成有供柱塞8穿过的孔;以及筒状的突部52,该突部52从孔的边缘向另一分割铁芯4一侧突出,因此,通过分割铁芯5的板部51与柱塞8的板部81抵接,从而能够获得较大的吸附力和排斥力。此外,通过将分割铁芯5的板部51扩展,来形成使磁通向壳体2流动的磁路。

此外,根据实施方式1,由于通过将永磁体7夹在中间的两个磁性体来构成柱塞8、9,因此,能够有效地使用永磁体7的漏磁通。此外,能够保护永磁体7免受冲击。

此外,根据实施方式1,由于将柱塞8、9中远离定子铁芯一侧的柱塞9构成为板状,因此,能够有效地使用永磁体7的漏磁通。此外,通过将板状的柱塞9沿径向扩展,从而形成使磁通向壳体2流动的磁路。

此外,根据实施方式1,如图8的(a)所示,在通过覆盖永磁体7的一侧的面并且与分割铁芯5抵接的板部81以及从该板部81突出并进入形成于分割铁芯5的孔的突部82来构成柱塞8、9中靠近定子铁芯一侧的柱塞8,并将柱塞8、9中远离定子铁芯一侧的柱塞9构成为覆盖永磁体7的另一侧的面的板状的情况下,能够高效地产生反向电压。

另一方面,如图8的(b)所示,在将柱塞8、9中靠近定子铁芯一侧的柱塞8f构成为覆盖永磁体7的一侧的面并且与分割铁芯5抵接的板状,并通过覆盖永磁体7的另一侧的面的板部91f以及从该板部91f突出并贯穿永磁体7且进入形成于分割铁芯5的孔的突部92f来构成柱塞8、9中远离定子铁芯一侧的柱塞9f的情况下,变得易于组装,并且使永磁体7变得不易偏心。

此外,根据实施方式1,如图2所示,当构成为在初始位置处使柱塞8的突部82的端部的位置与分割铁芯4、5的分割部的位置对齐的情况下,能够检测出初始位置的可动件10。

另一方面,如图6所示,当构成为在初始位置处使柱塞8的突部82的端部的位置与分割铁芯4、5的分割部的位置错开的情况下,能够检测出初始位置以外的可动件10。

另外,在上述说明中,将实施方式1的结构应用于限制销为一个的类型的电磁致动器,但也能将实施方式1的结构应用于限制销为两个以上的类型的电磁致动器。

除此之外,本发明能够在本发明的范围内对实施方式的任意构成要素进行变形,或是省略实施方式的任意的构成要素。

工业上的可利用性

本发明的电磁致动器将通过向线圈通电而在定子铁芯中产生的磁极与永磁体磁极之间的排斥力作为驱动源而从初始位置移动,并通过来自外部的力返回至初始位置,因此,适合在对内燃机的阀升程量进行调节的凸轮切换机构等中使用。

符号说明

1、1a、1b、1g、1h、1i、1j电磁致动器;2、3壳体;4、5分割铁芯;4a铁芯;4g连接部;4h-1~4h-3分割铁芯;4j分割铁芯;51板部;52突部;6线圈;7、7j永磁体;8、8c~8f、8j、9、9f、9j柱塞;81板部;82、82b~82e、82j突部;91f板部;92f突部;10、10f可动件;11限制销;12柱塞引导件;13连接器;100凸轮切换机构;102a、102b凸轮件;103a、103b螺旋槽;104凸轮轴;105a、105b高升程凸轮;105c、106c凸部;106a、106b低升程凸轮;107凸轮部;108a、108b阀;109a、109b摇臂;110a、110b摇辊。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1