双玻组件的制作方法与工艺

文档序号:12951319阅读:233来源:国知局
双玻组件的制作方法与工艺
本发明涉及光伏组件领域,具体而言,涉及一种双玻组件。

背景技术:
双玻光伏组件由于具备耐候性好、寿命长、抗PID性能优异等特点,特别适合于气候湿润盐雾的海岛及与建筑结合部分。现有的双玻组件一般包括依次叠置的前板玻璃、EVA胶膜、太阳能电池片组、EVA胶膜、后板玻璃,后板玻璃的下方还设有接线盒。其中,EVA胶膜的主要成分是乙烯-醋酸乙烯酯,在组件中起胶联、密封、绝缘以及保护电池片的作用。此外,为了提高双玻组件正面的透光率,靠近前板玻璃的EVA胶膜一般为高透光EVA胶膜,同时,为了提高双玻组件对光的转换效率,靠近后板玻璃的EVA胶膜一般为高截止EVA胶膜或者瓷白EVA胶膜。但由于双玻组件的背板为玻璃,相对于单玻组件缺少背板反光作用,造成功率相对同规格单玻组件低5~8W。

技术实现要素:
本发明的主要目的在于提供一种双玻组件,以解决现有技术中的双玻组件功率低的问题。为了实现上述目的,根据本发明的一个方面,提供了一种双玻组件,该双玻组件包括依次叠置的前板玻璃、第一胶膜、太阳能电池片组、第二胶膜、铝箔、第三胶膜和后板玻璃。进一步地,上述第二胶膜的边缘围绕铝箔的边缘设置。进一步地,上述第二胶膜的边缘与对应铝箔的边缘的距离为5~15mm。进一步地,上述第三胶膜的边缘围绕铝箔的边缘设置。进一步地,上述第三胶膜的边缘与对应铝箔的边缘的距离为5~15mm。进一步地,上述第一胶膜为高透光EVA胶膜。进一步地,上述第二胶膜和第三胶膜各自独立地选自高截止EVA胶膜和瓷白EVA胶膜中的任意一种。进一步地,上述双玻组件还包括设置在后板玻璃的远离第三胶膜表面上的接线盒,接线盒与太阳能电池片组电连接且靠近后板玻璃的短边设置。进一步地,上述第一胶膜的边缘围绕太阳能电池片组的边缘设置,第一胶膜、第二胶膜与太阳能电池片组之间形成环形区域,双玻组件还包括EVA阻挡结构,EVA阻挡结构嵌设在第一胶膜与第二胶膜之间的环形区域中。进一步地,上述EVA阻挡结构包括:EVA胶块,设置在环形区域的顶角处,EVA胶块的长宽尺寸为40~50*20~30mm;第一EVA胶条,设置在环形区域的长边区域,第一EVA胶条的宽度尺寸为30~40mm,第一EVA胶条长度与后板玻璃的长边长度相等;第二EVA胶条,设置在环形区域的短边区域,其中,第二EVA胶条的长度与后板玻璃的短边长度相等,位于靠近接线盒的短边区域所设置的第二EVA胶条的宽度尺寸为47~52mm,位于远离接线盒的短边区域所设置的第二EVA胶条的宽度尺寸为20~30mm。应用本发明的技术方案,在双玻组件的后板玻璃之前增加了铝箔,由于铝箔具有高反光性,因此增加了对透射光能的反射作用,使双玻组件功率显著提升。同时,由于铝箔具备较好的导热性能,可及时将太阳能电池片组产生的热量传导散失,使双玻组件温度得到及时降低,从而降低了温度系数影响因子,延长双玻组件的日平均高效功率输出时间。另外,铝箔的成本较低,相对于现有技术中采用瓷白EVA和高截止EVA增加反射作用的方案其成本优势尤为明显。附图说明构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:图1示出了根据本申请一种典型实施方式提供的双玻组件的结构示意图;以及图2示出了本申请一种优选实施例提供的双玻组件的设置在第一胶膜上的EVA阻挡结构和太阳能电池片组的结构示意图。其中,上述附图包括以下附图标记:10、前板玻璃;20、第一胶膜;30、太阳能电池片组;40、第二胶膜;50、铝箔;60、第三胶膜;70、后板玻璃;80、接线盒;90、EVA阻挡结构;91、EVA胶块;92、第一EVA胶条;93、第二EVA胶条。具体实施方式需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。如背景技术中所记载的,现有技术的双玻组件的背板为玻璃,相对于单玻组件缺少背板反光作用,造成功率相对同规格单玻组件低5~8W,为了解决该问题,本申请提供了一种双玻组件,如图1所示,该双玻组件包括依次叠置的前板玻璃10、第一胶膜20、太阳能电池片组30、第二胶膜40、铝箔50、第三胶膜60和后板玻璃70。在双玻组件的后板玻璃之前增加了铝箔50,由于铝箔50具有高反光性,因此增加了对透射光能的反射作用,使双玻组件功率显著提升。同时,由于铝箔50具备较好的导热性能,可及时将太阳能电池片组30产生的热量传导散失,使双玻组件温度得到及时降低,从而降低了温度系数影响因子,延长双玻组件的日平均高效功率输出时间。另外,铝箔50的成本较低,相对于现有技术中采用瓷白EVA和高截止EVA增加反射作用的方案其成本优势尤为明显。发明人经过试验验证,采用该技术可将含有60片太阳能电池片的双玻组件的功率提升5W左右,效果较为显著。为了避免铝箔50与太阳能电池片组30接触引起意外的短路问题,如图1所示,优选第二胶膜40的边缘围绕铝箔50的边缘设置。同时为了层压操作的安全性和方便性,如图1所示,优选上述第二胶膜40的边缘与对应所述铝箔50的边缘的距离为5~15mm。进一步地,为了保证铝箔50在胶膜之间的稳固性,如图1所示,优选上述第三胶膜60的边缘围绕铝箔50的边缘设置,以利用第二胶膜40和第三胶膜60包裹住铝箔50。此外,同样是为了层压操作的安全性和方便性,如图1所示,优选上述第三胶膜60的边缘与对应铝箔50的边缘的距离为5~15mm。上述铝箔50的大小与电池片组30的大小相等。为了进一步提高双玻组件的功率,优选上述第一胶膜20为高透光EVA胶膜。利用高透光EVA胶膜增加光线进入太阳能电池片组30的几率,进而增加双玻组件的功率。在成本可接受的前提下,为了更加优化双玻组件的功率,优选第二胶膜40和所述第三胶膜60各自独立地选自高截止EVA胶膜和瓷白EVA胶膜中的任意一种。在本申请一种优选的实施例中,如图1所示,上述双玻组件还包括设置在后板玻璃70的远离第三胶膜60表面上的接线盒80,接线盒80与太阳能电池片组30电连接且靠近后板玻璃70的短边设置。利用该接线盒80便于本申请的双玻组件产生的电能向外输送。在层压过程中,由于铝箔50的硬度相对于胶膜较大,因此容易出现气泡问题,如图2所示,优选第一胶膜20的边缘围绕太阳能电池片组30的边缘设置,第一胶膜20、第二胶膜40与太阳能电池片组30之间形成环形区域,双玻组件还包括EVA阻挡结构90,该EVA阻挡结构90嵌设在第一胶膜20与第二胶膜40之间的环形区域中。通过在第一胶膜20和第二胶膜40之间的环形区域中嵌设EVA阻挡结构90,在层压过程中利用该EVA阻挡结构90填补铝箔50和玻璃形变后空出的空间,进而减少了气泡的出现。在另一种优选的实施例中,如图2所示,上述EVA阻挡结构90包括EVA胶块91、第一EVA胶条92和第二EVA胶条93,EVA胶块91设置在环形区域的顶角处,EVA胶块91的长宽尺寸为40~50*20~30mm,优选为45*25mm;第一EVA胶条92设置在环形区域的长边区域,第一EVA胶条92的宽度尺寸为30~40,优选为35mm,第一EVA胶条92长度与后板玻璃70的长边长度相等;第二EVA胶条93设置在环形区域的短边区域,其中,第二EVA胶条93的长度与后板玻璃的短边长度相等,位于靠近接线盒80的短边区域所设置的第二EVA胶条93的宽度尺寸为47~52mm,优选为49mm,位于远离接线盒80的短边区域所设置的第二EVA胶条93的宽度尺寸为20~30mm,优选为25mm。针对不同位置在层压过程中的受力以及形变不同,设置不同形状和大小的EVA,进而更明显地减少了气泡的出现。由于组件四个边角处层压过程变形教严重,层压结束后该处应力最大,导致挤出的熔化EVA胶膜较多,所以顶角处的EVA胶块的尺寸稍大可以填充被挤出的熔化EVA,此外EVA边缘在熔化后伸入太阳能电池片组下起梯度缓解应力的作用,且防止气泡倒流灌入组件。为了本领域技术人员更好地实施本申请,以下将对本申请双玻组件的设置和层压方法进行描述:钢化玻璃抬至叠层工作台上,玻璃绒面朝上,检查钢化玻璃有无缺陷,作为前板玻璃;在前板玻璃上铺设第一胶膜保证绒面向上,注意保证第一胶膜的平整性及与边缘平齐。将太阳能电池片铺排在第一胶膜上,注意正负极位同时检查有无隐裂、虚焊等现象,各电池串间距为4.2±0.5mm,且串间距间无明显偏差,外端两串距前板玻璃短边边距14±1mm,边距间无明显偏差;用胶带粘敷设模板保证与前板玻璃边缘平齐,按照模板焊接汇流条后轻剪余料,引出孔处铺尺寸为90mm*295mm绝缘背板,并上下铺尺寸为100mm*305mmEVA膜,形成太阳能电池片组;在太阳能电池片组上铺设第二胶膜,在汇流条引出端处切孔,在第一胶膜的顶角处垫三层EVA长宽尺寸分别为45mm*25mm的EVA胶块,在第一胶膜的长边区域设置宽度尺寸为35mm的第一EVA胶条,在第一胶膜的短边区域,靠近接线盒的短边的第二EVA胶条的宽度尺寸为49mm,远离接线盒的短边的第二EVA胶条的宽度尺寸为25mm,控制尺寸偏差≤±2mm,上述胶条的长度与对应的太阳能电池片的边缘长度相等。将准备好的铝箔纸裁切好后铺设于该第二胶膜之上,注意保证铝箔平整、无明显褶皱,防止铝箔纸与汇流条之间直接接触引发短路问题;在铺设平整的铝箔纸之上铺设第三胶膜将铝箔纸包裹于第二胶膜和第三胶膜之间,最好保证胶膜平正同时尺寸超过铝箔纸边缘10mm;将背板玻璃覆盖于第三胶膜上防止压裂电池片,保证汇流条与接线口位置对齐,用双手虎口将上下玻璃卡齐,过程注意防止电池片偏移。层压前对组件进行E-L测试,查看有无隐裂、碎片、虚焊等,确保无品质缺陷后进行组件层压,设定层压参数将组件放入层压机层压,保证层压完后的组件无气泡、裂片以及汇流条位移等现象。层压完成后进行E-L测试保证组件无明显缺陷,后用削边到削掉边角EVA余量保证组件边缘平齐美观性。将层压后的铝箔反光组件防置于L-V测试仪上,进行组件功率测试。以下将结合实施例和对比例,进一步说明本申请的有益效果。以太阳能电池片组中具有6片太阳能电池片为例,第一EVA胶膜为斯维克的高透EVA,第二EVA胶膜和第三EVA胶膜均为斯维克的高截止EVA。对比例1双玻组件包括依次叠置的前板玻璃、第一EVA胶膜、太阳能电池片组、第二EVA胶膜、后板玻璃。实施例1双玻组件在对比例1的第二EVA胶膜和后板玻璃之间增加铝箔和第三EVA胶膜。且,EVA胶块的长宽尺寸为45*25mm;第一EVA胶条的长宽尺寸为35*25mm;第二EVA胶条的长宽尺寸为49*25mm。采用太阳能标准测试条件:光谱AM1.5,辐照度1000W/m2,组件温度25℃,测试设备为博硕太阳能组件I-V测试仪检测Voc、Isc、Vm、Im和Pm,检测结果见表1。表1对比例1实施例1Voc(V)3.303.33Isc(A)8.608.72Vm(V)2.632.65Im(A)7.978.09Pm(W)20.9521.40由上述数据对比可以看出,增加了反光铝箔的实施例1的组件功率比对比例1的组件功率提高了2.4%,换算成250W的组件计算,相当于使组件功率提高6W。假设光伏组件的售价是4元/W,增加反光铝箔可以使光伏组件利润提高24元。实施例2双玻组件的结构层叠结构与实施例1相同,增设了EVA阻挡结构,EVA胶块的长宽尺寸为45*25mm;第一EVA胶条的宽度尺寸为35mm;位于靠近接线盒的短边区域所设置的第二EVA胶条的宽度尺寸为49mm,位于远离接线盒的短边区域所设置的第二EVA胶条的宽度尺寸为25mm,上述胶条的长度与对应的太阳能电池片的边缘长度相等。实施例3双玻组件的结构层叠结构与实施例1相同,增设了EVA阻挡结构,EVA胶块的长宽尺寸为40*30mm;第一EVA胶条的长宽尺寸为30mm;位于靠近接线盒的短边区域所设置的第二EVA胶条的宽度尺寸为52mm,位于远离接线盒的短边区域所设置的第二EVA胶条的宽度尺寸为20mm,上述胶条的长度与对应的太阳能电池片的边缘长度相等。实施例4双玻组件的结构层叠结构与实施例1相同,增设了EVA阻挡结构,EVA胶块的长宽尺寸为30*20mm;第一EVA胶条的长宽尺寸为40*20mm;位于靠近接线盒的短边区域所设置的第二EVA胶条的宽度尺寸为47mm,位于远离接线盒的短边区域所设置的第二EVA胶条的宽度尺寸为30mm,上述胶条的长度与对应的太阳能电池片的边缘长度相等。经观察,实施例2至4的气泡明显少于实施例1,且实施例2几乎没有气泡。从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:在双玻组件的后板玻璃之前增加了铝箔,由于铝箔具有高反光性,因此增加了对透射光能的反射作用,使双玻组件功率显著提升。同时,由于铝箔具备较好的导热性能,可及时将太阳能电池片组产生的热量传导散失,使双玻组件温度得到及时降低,从而降低了温度系数影响因子,延长双玻组件的日平均高效功率输出时间。另外,铝箔的成本较低,相对于现有技术中采用瓷白EVA和高截止EVA增加反射作用的方案其成本优势尤为明显。以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1