球焊用钯被覆铜线的制作方法

文档序号:12180311阅读:525来源:国知局
球焊用钯被覆铜线的制作方法与工艺

本发明是关于一种球焊用钯(Pd)被覆铜线,其适合半导体装置用IC晶片电极与外部引线等的基板的连接;特别关于一种即使线径在10~25μm范围的极细线,亦可得到稳定熔融焊球的钯(Pd)被覆铜线。



背景技术:

一般而言,针对被覆铜接合线与电极的第一接合,是使用称为焊球接合的方法;针对被覆铜接合线与半导体用电路配线基板上的配线的第二接合,是使用称为楔型接合的方法。该第一接合之中,通过放电结球(electronic frame off,EFO)方式的放电电流,对被覆铜接合线的前端施予电弧加热。EFO法,一般而言接合线的前端与电弧炬的前端所形成的角度,是从线材长边方向起算60度以内。其是在该电弧炬与线材前端之间形成电弧放电,并于接合线的前端形成熔融焊球部,而将该焊球部连接于电极上的铝垫的方法。

使接合线的前端部熔融而形成焊球之后,利用表面张力使该熔融物凝固。亦即,使熔融接合线的前端形成称为焊球(free air ball,FAB)的正球体。接着,在150~300℃的范围内,一边将该初期焊球与该电极加热,一边施加超音波以进行压接,以将其接合于晶片上的铝垫。

此处,FAB,是指一边对于从接合工具前端延伸出来的被覆铜接合线的前端,吹附氮或氮-氢等的非氧化性气体或还原性气体,一边使接合线的前端火花放电,以形成于接合线前端的熔融焊球。再者,铝垫的材质,除了99.99质量%以上的纯铝(Al)以外,亦具有铝(Al)-1质量%硅(Si)合金、铝(Al)-0.5质量%铜(Cu)合金、铝(Al)-1质量%硅(Si)-0.5质量%铜(Cu)合金等。

以往,可使用钯(Pd)被覆铜线作为将半导体装置的IC晶片电极与外部引线连接的接合线。例如,日本实开昭60-160554号公报中,提出一种半导体用接合细线,其是在Cu或是Cu合金的芯线的外周,直接设置或是隔着中间层设置Pd或是Pd合金的被覆层。之后,日本特开2004-014884号公报中,开发了一种以作为实用的钯(Pd)被覆铜线,其具有芯材与形成于芯材上的被覆层,其中,该芯材,是以显微维式硬度在80Hv以下的、金以外的材料所构成;该被覆层是以融点高于芯材熔点300℃以上、且抗氧化性优于铜的金属所构成。

再者,2006年7月号的SEI Technical Review杂志169号47页以下,改森信吾等人所发表的题目为“混合接合线的开发”的论文中,介绍了被覆抗氧化性金属0.1μm的、线径25μm的镀覆被覆线材。亦具有解析该芯材与被覆层界面的专利申请案(日本特开2010-272884号公报)。

该等的钯(Pd)被覆铜线,如非专利文献“混合接合线的开发”第50页影像5所示,钯(Pd)粒子分散于熔融焊球的根部附近的表面,而接线回路稳定者。再者,钯(Pd)被覆铜线中,来自钯(Pd)延伸层的钯(Pd)微粒子分散于熔融焊球之中。因此,即使在熔融焊球与铝垫的界面产生铝(Al)与铜(Cu)的金属间化合物,该金属间化合物的成长速度亦比金接合线的情况更慢。

然而,因为以往的钯(Pd)延伸层相对于芯材的铜(Cu)较薄,故大部分的钯(Pd)粒子埋入熔融焊球中而合金化。因此,虽然已知钯(Pd)微粒子在与铝垫的界面妨碍AlCu金属间化合物形成的行为,但该钯(Pd)微粒子在界面中仅有些微贡献。

于是,日本特开2013-42105号公报中,提出了一种接合线,其在铜及不可避免的杂质所构成的芯材上形成Pd被覆层;该Pd被覆层的剖面积,相对于线材的总剖面积为0.1~1.0%。同该公报的第二图a(c)的熔融焊球的表面影像中显示“Pd(黑点)散布于FAB(焊球b)整体”。

另外,芯线或被覆芯线的表面形状会因为钻石拉线模的磨耗不断变形,再者,在第二接合中,被覆铜线拉断时的前端的剖面形状亦会不断变形。因此,在形成FAB时,使薄型的钯(Pd)延伸层中的钯(Pd)微粒子停留于熔融焊球的表面极为困难。于是要求一种“即使1秒形成10次以上FAB,亦可均匀地将钯(Pd)粒子分散于熔融铜焊球上而适用于量产化”的接合线构造。



技术实现要素:

为了解决上述的缺点和不足,本发明的目的在于提供一种球焊用钯被覆铜线。

为达上述目的,一方面,本发明提供了一种球焊用钯被覆铜线,其线径为10~25μm;

在纯铜或铜纯度98质量%以上的铜合金所构成的芯材上形成有钯延伸层,其中该钯延伸层为含有硫、磷、硼或碳的钯层。

另一方面,本发明还提供了一种球焊用钯被覆铜线,其线径为10~25μm;

在纯铜或铜纯度98质量%以上的铜合金所构成的芯材上形成有钯延伸层及金极薄延伸层,其中该钯(Pd)延伸层为含有硫、磷、硼或碳的钯层。

根据本发明所述的球焊用钯被覆铜线,优选地,该铜合金,是含有0.1~1.5质量%的铂或镍的铜合金。

根据本发明所述的球焊用钯被覆铜线,优选地,该钯延伸层的理论膜厚在30nm以上300nm以下。

根据本发明所述的球焊用钯被覆铜线,优选地,该钯延伸层来自湿式镀覆浴的镀覆析出物。

根据本发明所述的球焊用钯被覆铜线,优选地,该钯延伸层是使硫或磷共析的钯延伸层。

根据本发明所述的球焊用钯被覆铜线,优选地,该钯延伸层中共含有30~700质量ppm的硫、磷、硼或碳中的至少1种或2种以上,其中单独为磷(P)的情况为0.2~800质量ppm。

根据本发明所述的球焊用钯被覆铜线,优选地,该钯延伸层中含有30~300质量ppm的硫。

根据本发明所述的球焊用钯被覆铜线,优选地,该硫被浓缩于该钯延伸层的表面侧,而在芯材侧中则是在检出界限以下。

根据本发明所述的球焊用钯被覆铜线,优选地,相较于该金极薄延伸层在深度方向上的膜厚,该硫在深度方向的膜厚较厚。

根据本发明所述的球焊用钯被覆铜线,优选地,该金极薄延伸层的理论膜厚在3nm以下。

本发明的目的在于提供一种球焊用钯(Pd)被覆铜线,即使芯线的表面形状因为钻石拉线模的磨耗而变形,亦可稳定使钯(Pd)粒子均匀分散于熔融铜焊球上,而适用于量产化。

解决课题的手段

用以解决本发明课题的球焊用钯(Pd)被覆铜线,其为线径在10~25μm的球焊用钯(Pd)被覆铜线,在纯铜(Cu)或铜(Cu)的纯度为98质量%以上的铜合金所构成的芯材上形成钯(Pd)延伸层的线材中,该钯(Pd)延伸层为含有硫(S)、磷(P)、硼(B)或碳(C)的钯(Pd)层。

再者,用以解决本发明课题的另一球焊用钯(Pd)被覆铜线,其为线径在10~25μm的球焊用钯(Pd)被覆铜线,在纯铜(Cu)或铜(Cu)的纯度为98质量%以上的铜合金所构成的芯材上形成钯(Pd)延伸层及金(Au)极薄延伸层的线材中,该钯(Pd)延伸层,为含有硫(S)、磷(P)、硼(B)或碳(C)的钯(Pd)层。

本发明的较佳实施方式如以下所述。

该铜合金,较佳为含有0.1~1.5质量%的铂(Pt)或镍(Ni)的铜合金。再者,该钯(Pd)延伸层较佳为具有30纳米(nm)以上300纳米(nm)以下的理论膜厚。再者,该钯(Pd)延伸层较佳为来自湿式镀覆浴的镀覆析出物。再者,该钯(Pd)延伸层较佳为使硫(S)或磷(P)共析的钯(Pd)延伸层。再者,该钯(Pd)延伸层中,较佳为含有硫(S)、磷(P)、硼(B)或碳(C)的至少1种或2种以上共30~700质量ppm(其中,单独为磷(P)的情况则为0.2~800质量ppm)。该钯(Pd)延伸层中,特佳为含有硫(S)30~300质量ppm。再者,较佳系该硫(S)被浓缩于该钯(Pd)延伸层的表面侧,而于芯材侧则在检出界线以下。再者,较佳系“硫(S)在深度方向上的膜厚”比“该金(Au)极薄延伸层在深度方向上的膜厚”更厚。再者,该金(Au)极薄延伸层的理论厚度较佳为3纳米(nm)以下。

本发明中,使用钯(Pd)延伸层,是为了使硫(S)、磷(P)、硼(B)或碳(C)的含有元素均匀分散于钯(Pd)层中。较佳可通过湿式镀覆、干式镀覆或熔融盐镀覆,使钯(Pd)层中含有该等的含有元素。接着,通过钻石拉线模进行强拉线加工而使得晶粒被拉伸,进而对于晶粒施加机械性的高应变。通过最终热处理将该高应变状态缓和至某个程度,而完成球焊用钯(Pd)被覆铜线。

再者,本发明中使用钯(Pd)延伸层及金(Au)极薄延伸层,是为了将钯(Pd)层夹入金(Au)层与芯材,而通过强拉线加工,可使钯(Pd)层中所包含的“含有元素”均匀分散。一般而言,金(Au)层的延展性优于钯(Pd)层。然而,金(Au)层为极薄延伸层的情况,即使理论膜厚在金(Au)的原子半径以下,金(Au)粒子亦存在,故在强拉线加工中,被认为是跟随钯(Pd)层的材料。

此处的“理论膜厚”是指假设强拉线加工前后的接合线的剖面为完整的圆,并假设其线径的金(Au)或钯(Pd)均匀地被覆,而算出的膜厚。该“理论膜厚”是因为芯线或被覆芯线的表面形状会因为钻石拉线模磨耗而改变,导致最表面的金(Au)极薄延伸层等的膜厚极薄而无法实际测量所衍伸出来的概念。

例如,通过化学分析,以重量分析法求得接合线整体之中金(Au)所占的比例。接着,假设接合线的剖面为正圆,并假设金(Au)均匀地被覆其线径的最表面,而从该求得的值所算出的膜厚即为理论的膜厚。钯(Pd)延伸层薄的情况中,亦以相同的方式表示。纳米尺寸的等级中,实际接合线的表面为凹凸状,故亦具有该理论的膜厚值小于Au原子半径的情况。另外,关于最表面的金(Au)极薄延伸层与钯(Pd)延伸层的记述,方便上,将金(Au)及钯(Pd)的微粒子存在的范围表示为“层”。

本发明中,将钯(Pd)延伸层设计为“含有硫(S)、磷(P)、硼(B)或碳(C)的钯(Pd)层”,第一点,是为了扩大钯(Pd)微粒子彼此之间的距离,而形成使钯(Pd)分散的微粒子状态。相较于在气相中,较佳是使既定的含有元素存在于从液相中析出的钯(Pd)微粒子。因为化学活性越高,含有元素的热扩散速度越快,故即使对钯(Pd)延伸层进行热处理或是强拉线加工,皆可通过钯(Pd)微粒子相互的热扩散,使成长延迟。第二点,该等的含有元素,在FAB形成时,相较于钯(Pd),更快与铜(Cu)表面发生相互作用,而阻碍钯(Pd)微粒子溶入熔融铜(Cu)之中。结果,可使钯(Pd)微粒子停留于熔融铜(Cu)表面。

申请人认为其理由如下。经强拉线加工的钯(Pd)延伸层的化学反应性,高于纯铜(Cu)或铜(Cu)纯度98质量%以上的铜合金所构成的芯材。于是,即使以低于“芯材中的铜(Cu)与延伸层中的钯(Pd)相互扩散”的温度进行最终热处理,包围钯(Pd)微粒子的含有元素,会比钯(Pd)更快热扩散而使得钯(Pd)微粒子的形成变得容易。另外,铜合金中的铂(Pt)或镍(Ni)在钯(Pd)延伸层中不会热扩散。

因此,若从接合线形成熔融焊球,则包围钯(Pd)微粒子的含有元素较早流出,而可个别地形成钯(Pd)微粒子。接着,高融点的钯(Pd)微粒子分散,而可悬浮在熔融铜焊球之中。另一方面,申请人认为,含有元素存在于铜(Cu)与钯(Pd)的界面,使该界面朝向化学上非活性的方向改质。含有元素特佳为硫(S)。

本发明中可设置最表面的金(Au)极薄延伸层。本发明中具有金(Au)极薄延伸层的情况,该金(Au)极薄延伸层,可使(EFO)方式的放电电流稳定。再者,硫(S)、磷(P)、硼(B)或碳(C),因为最终热处理,亦会热扩散至化学反应性高的金(Au)极薄延伸层,而被认为将钯(Pd)被覆铜线的表面朝向化学上非活性的方向改质。因此,含有元素在深度方向上的膜厚,较佳是比金(Au)极薄延伸层在深度方向上的膜厚更厚。特佳为硫(S)。如此,通过使金(Au)极薄延伸层为非活性,而可使钯(Pd)微粒子停留在铜(Cu)的表面。

含有元素影响钯(Pd)微粒子能力的强度,依序为硫(S)>磷(P)>硼(B)及碳(C)。低熔点的硫(S)乃至磷(P),其将铜(Cu)表面改质、防止铜(Cu)原子移动的能力较强。特别是,表面活性高的硫(S),可最佳地改质芯材的铜(Cu)的表面。

根据下述内容,可理解该等含有元素影响钯(Pd)微粒子的效果。镀覆浴中的钯(Pd)以2价的离子状态存在,而在铜(Cu)芯材的表面,经过零价的状态而析出为钯(Pd)金属。接着,该析出的钯(Pd)金属凝聚,形成钯(Pd)微粒子。此一连串的过程中,若含有元素离子共存于镀覆浴中,则因为钯(Pd)从2价的离子状态经过零价的状态时,含有元素同时从离子状态经过零价的状态,故本发明的钯(Pd)微粒子具有容易分散的效果。再者,本发明的含有元素较快移动至铜(Cu)芯材的表面,而具有抑制钯(Pd)微粒子扩散至铜(Cu)芯材中的效果。例如,即使将碳粉分散于镀覆浴中,亦无法得到本发明的效果。

该等含有元素的含有量,较佳是在钯(Pd)延伸层中,含有硫(S)、磷(P)、硼(B)或碳(C)的至少一种或两种以上共30~700质量ppm(其中,单独为磷(P)的情况为0.2~800质量ppm)。虽可根据钯(Pd)延伸层的厚度或形成方法适当选择该等含有元素,但较佳为钯(Pd)延伸层中含有硫(S)30~300质量ppm。特佳为含有硫(S)80~200质量ppm。

该等含有元素的含量系通过下述方法所求得的浓度:

从线材整体的含有元素在“在镀覆浴加入添加剂的情况”以及“未在镀覆浴中加入添加剂的情况”中的ICP分析值的差值,求得含有元素的含量,并视为该含有元素的总量均匀分布于钯(Pd)的理论膜厚中以进行计算,以此求得的浓度。

再者,本发明中,“被覆”层是从气相或液相中所析出的层体。从液相析出的层体可通过湿式镀覆或干式镀覆形成。从液相中析出的钯(Pd)微粒子,其析出温度低于从气相析出者,因而较佳。再者,湿式镀覆是以室温~90℃的较低温度,使钯(Pd)微粒子析出,因而较佳。湿式镀覆中具有电解镀覆与无电镀覆,两者皆可。为了细微地分散钯(Pd)微粒子,亦可在镀覆浴中添加习知的添加剂。这是因为,结晶粒径较佳为致密的非晶状态。

含有元素可作为一般的化合物而与钯(Pd)电解镀覆浴或钯(Pd)无电镀覆浴并用。因此可进行共析镀覆,而得到含有元素均匀分散在析出的钯(Pd)上的微粒子。再者,通过湿式镀覆析出的这种具有“含有元素”的钯(Pd)微粒子,因为内含有氢,故变得更难移动,因而较佳。

含有元素可单独使用,或作为钯(Pd)母合金而在磁控溅镀等的干式镀覆中使用。干式镀覆中,磁控溅镀及离子镀敷优于真空蒸镀,但镀覆浴更佳。

再者,本发明中,含硫(S)、磷(P)、硼(B)或碳(C)的钯(Pd)层,亦可为钯(Pd)─硫(S)、磷(P)、硼(B)或碳(C)合金层。这是因为,以多层镀覆形成交互层虽亦可得到含有层,但合金层在形成熔融焊球时,可得到微细的钯(Pd)微粒子。

再者,本发明中,若使用含有0.1~1.5质量%的铂(Pt)或镍(Ni)的铜合金,则可抑制铜(Cu)与钯(Pd)彼此扩散,并使钯(Pd)延伸层更薄。

再者,使该钯(Pd)延伸层的理论膜厚为30纳米(nm)以上300纳米(nm)以下较佳,是因为该范围是使钯(Pd)微粒子均匀分散至熔融焊球上的较佳范围。亦即,若过厚则可能导致芯材表面过度改质,若过薄则可能导致芯材表面未改质。

另外,若金(Au)的膜厚增加数百纳米,而能够以欧杰分光分析装置在深度方向的分析进行实测,则可观察到所谓的匍匐现象;该匍匐现象,是熔融焊球浸润位于熔融焊球根部的线材表面的金(Au)膜,而因为熔融焊球的表面张力,导致其在未熔融的线材表面爬升。然而,若金(Au)的膜厚的实测值在50纳米(nm)以下,则成为理论膜厚的区域,而不会观察到这样的现象。另一方面,若金(Au)的理论膜厚在50纳米(nm)以下的范围,则难以控制金(Au)的膜厚。于是,使金(Au)的膜厚极薄,以稳定含有元素的热扩散。

使金(Au)极薄延伸层的理论膜厚为3纳米(nm)以下,是因为即使该金(Au)层在化学上为活性,亦具有钯(Pb)延伸层中的含有元素移动而抑制活性的效果。若金(Au)层极薄,则被消耗的含有元素的量亦变少。即便使金(Au)极薄延伸层的理论膜厚在3纳米(nm)以下,亦不会导致在FAB成形时,火花放电到达之处不均匀而使得FAB不稳定。理论膜厚更佳为2纳米(nm)以下。即使理论膜厚在2纳米(nm)以下,金(Au)微粒子亦以点状存在于钯(Pd)延伸层。申请人认为,因为金(Au)的导电性优于钯(Pd),故火花放电到达金(Au)微粒子,而使得FAB稳定。另外,金(Au)极薄延伸层的下限,较佳为0.1纳米(nm)以上。

再者,在本发明的球焊用钯(Pd)被覆铜线中,由钯(Pd)延伸层或是钯(Pd)延伸层与金(Au)极薄延伸层所构成的贵金属被覆层,一般在0.5微米(μm)以下,较佳在0.1μm以下,更佳在0.05μm以下。特佳是上述钯(Pd)延伸层的理论膜厚在30纳米(nm)以上300纳米(nm)以下,金(Au)极薄延伸层的理论膜厚在3纳米(nm)以下。这种贵金属被覆层的膜厚,相对于接合线的线径10~25μm,是几乎可无视的厚度。因此,即使以FAB形成熔融焊球,亦不会影响被覆层的膜厚。

再者,因为存在该抗氧化性的钯(Pd)延伸层,使得芯材不会因为大气中的硫或氯等而被硫化等。因此,与习知的铜(Cu)纯度99.9质量%以上的铜合金所构成的芯材组成相同,本发明的接合线用钯(Pd)被覆铜线,其熔融焊球可形成正球形,并且与铝垫接合。

芯材的铜合金,一般是由纯度为99.9质量%以上的铜(Cu)所构成的铜合金。纯度99.9质量%的铜(Cu)所构成的铜合金,在选择磷(P)的情况中,其以外的剩余金属成分,可参酌现有的现有技术,适当选定选择元素。然而,铜合金母材,更佳为含有0.1~1.5质量%的铂(Pt)或镍(Ni)的铜合金。这是因为,通过使钯(Pd)延伸层中含有硫(S)、磷(P)、硼(B)或碳(C),可使钯(Pd)微粒子分散于溶融焊球表面。

芯材的铜合金,可因应所需半导体的种类及用途,适当选择添加元素的种类,并因应作为接合线所必需的热性质、机械性质,而适当决定添加元素的组合及其添加量。

若芯材的铜(Cu)中存在磷(P),则可形成稳定的FAB,此已为人所知(日本特开2010-225722号公报及国际公开WO2011/129256号公报)。因此,该铜合金中可含有20质量ppm以上200质量ppm以下的磷(P)。

另外,本发明中,位于线材表面的极薄的钯(Pd)延伸层或极薄的钯(Pd)延伸层及金(Au)极薄延伸层,在第一接合之中,将FAB接合至铝垫时皆消失。再者,在第二接合的超音波接合时,亦在接合处消失。

发明的效果若根据本发明的球焊用钯(Pd)被覆铜线,可将钯(Pd)微粒子均匀分散至FAB的表面上。因此,即便是量产的接合线,亦可使以FAB进行的第一接合相对于铝垫稳定。再者,因为钯(Pd)微粒子必定微分散于铝垫与铜焊球的接合界面,故可延迟AlCu的金属间化合物形成。再者,因为钯(Pd)延伸层很薄,故即使钯(Pd)延伸层中含有硫(S),接合线中的全硫(S)量,与芯材中所含的硫(S)量几乎相同。再者,在第二接合的楔型接合时,因为是在“因含有元素的存在使得钯(Pd)微粒子分散”的状态下与引线接合,故楔型接合亦稳定。

再者,根据本发明的钯(Pd)被覆铜线,可通过含硫(S)、磷(P)、硼(B)或碳(C)的钯(Pd)层遮断从线材表面侵入的氧。该钯(Pd)延伸层越致密,相较于至今的纯钯(Pd)层,越能得到“不会在芯材的铜合金上形成铜氧化物之氧化膜”的效果。再者,本发明的球焊用钯(Pd)被覆铜线,因为其被覆层极薄,故亦可良好地形成回路等。

再者,线材最表面形成金(Au)极薄延伸层的情况下,除了放电电流稳定之外,即使线材彼此卷绕多层,线材彼此亦不会互相粘附。结果,线材的解绕性变得良好。作为附加的效果,线材表面对于焊针的平滑性变得良好。再者,根据本发明的球焊用钯(Pd)被覆铜线,线材最表面的金(Au)极薄延伸层不会从钯(Pd)的被覆层剥离。因此,即使反复接合多次,铜(Cu)的氧化物亦不会附着于焊针,故不会造成焊针的污染。

附图说明

图1为本发明实施例1的接合线的剖面中的钯(Pd)分布影像;

图2为现有技术(对比例1)接合线剖面中的钯(Pd)分布影像。

具体实施方式

为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现结合以下具体实施例及说明书附图对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。

实施例

芯材是使用在纯度为99.9999质量%以上的铜(Cu)之中添加铂(Pt)、镍(Ni)或磷(P)的材料或是未添加的材料,对其进行连续铸造,一边进行前热处理一边压延,之后进行一次拉线,得到粗线(直径1.0mm)。

接着,准备表1所示的钯(Pd)的延伸层及金(Au)的极薄延伸层,被覆于该粗线的外周。极薄延伸层的金(Au)的纯度在99.99质量%以上,钯(Pd)的纯度在99.9质量%以上。

实施例1~3

以下述方法,形成钯(Pd)-硫(S)非晶质合金的被覆层。在市售的钯(Pd)电镀浴(EEJA股份有限公司制ADP700),分别加入同公司制造的ADP700添加剂0.1g/L、0.005g/L及0.15g/L,而使电镀浴中的硫(S)浓度为中浓度、低浓度及高浓度。在该浴中,以电流密度0.75A/dm2对直径1.0mm的铜线流入电流,而形成钯(Pd)-硫(S)非晶质合金的被覆层。通过磁控溅镀,在此三种被覆铜线上以既定的厚度被覆金(Au)。

之后,不进行烘烤处理,通过钻石拉线模以湿式连续拉线两次,再进行480℃×1秒的调质热处理,最后得到直径18μm的球焊用钯(Pd)被覆铜线。将该等铜线作为实施例1~3。再者,平均的缩径率为6~20%,最终线速为100~1000m/分。

实施例4

以下述方法,形成钯(Pd)-磷(P)非晶质合金的被覆层。在市售的钯(Pd)无电镀覆浴(EEJA股份有限公司制ADP700)中,添加亚磷酸(H3PO3)0.2g/L。在该浴中,以电流密度0.75A/dm2对直径1.0mm铜线流入电流,形成钯(Pd)-磷(P)非晶质合金的被覆层。之后,以与实施例1相同的方式,制造实施例4的球焊用钯(Pd)被覆铜线。

实施例5

以下述方法,形成含有钯(Pd)-碳(C)-硼(B)的合金的被覆层。在市售的钯(Pd)电镀浴(EEJA股份有限公司制ADP700)中,加入界面活性剂(EEJA股份有限公司制JS-WETTER)2mL/L,并以既定量添加硼无机化合物。该浴中,以电流密度0.75A/dm2,对直径1.0mm铜线流入电流,而形成钯(Pd)-碳(C)-硼(B)非晶质合金的被覆层。之后,以与实施例1相同的方式,制造实施例5的球焊用钯(Pd)被覆铜线。

此处,表1所示的延伸层的钯与极薄延伸层的金的值,是以王水溶解1000m左右的直径18μm的线材,并使用高频感应耦合电浆发光分光分析法(岛津制作所股份有限公司的ICPS-8100),求得该溶液中的金(Au)与钯(Pd)的浓度,再从该浓度算出接合线线径中的均匀膜厚。亦即,其是以ICP的化学分析所求得的换算值。

实施例1~3的线材中所含的硫(S),是以王水分别溶解100m左右的线材,再以感应耦合电浆质量分析计(Agilent Technologies股份有限公司制Agilent 8800),求得溶液中的硫(S)浓度。

再者,以下述方式求得钯(Pd)延伸层中的硫(S)浓度。亦即,实施例1的市售钯(Pd)电镀浴中未添加ADP700添加剂的情况下,其硫(S)的ICP分析值,如实施例4及5所示,为0.5质量ppm。另一方面,实施例1中,添加ADP700添加剂的硫(S)的ICP分析值为3质量ppm。因为钯(Pd)延伸层的膜厚为50nm,若来自实施例1的添加剂的硫(S)的实际增加量2.5质量ppm完全均匀地包含于钯(Pd)延伸层之中,则硫(S)的理论浓度为170质量ppm。

再者,以王水溶解100m左右的实施例4的线材,并以感应耦合电浆质量分析计(Agilent Technologies股份有限公司制Agilent 8800),求得该溶液中的磷(P)浓度。再者,取500m、约1g的实施例5的线材,以燃烧法(LECO公司制CS844)求得碳(C)浓度。该等的结果显示于表1中栏。

以扫描式欧杰分析装置(VG公司制MICROLAB-310D),对于实施例1的接合线,在深度方向上,针对钯(Pd)、铜(Cu)、金(Au)及硫(S)的各元素进行元素分析;硫(S)层相较于金(Au)层被检测出较长的距离,但小于钯(Pd)层的长度。亦即,通过电镀浴析出的钯(Pd)层,可被理解为“硫(S)容易被去除”的钯(Pd)粒子群的延伸层。

接着,针对实施例1的接合线,在K&S公司制全自动焊线机ICONN ProCu型超音波装置中,使电弧放电电压为6000伏特,以形成1000个34μm的熔融焊球。以扫描式欧杰分析装置(VG公司制MICROLAB-310D),对于其最表面进行定性分析,钯(Pd)均匀地分布于焊球表面。该熔融焊球的剖面影像显示于图1。从图1中明确得知,根据本发明的钯(Pd)-硫(S)电镀合金层,可使钯(Pd)均匀分散至熔融焊球上。

其他实施例2~5的球焊用钯(Pd)被覆铜线,亦与实施例1相同地,可观察到钯(Pd)均匀分散至熔融焊球上。

金属间化合物的腐蚀试验

针对实施例1~实施例5的线材,在K&S公司制全自动焊线机ICONN型超音波装置中,于BGA基板上的厚度400μm的Si晶片上的厚度2μm的Al-1质量%Si-0.5质量%的Cu合金垫上,以EFO电流60mA、EFO时间144μs,制作34μm的熔融焊球,并以压接径50μm,回路长2mm,进行1000条接合。此时,晶片上的Al-1质量%Si-0.5质量%的Cu合金垫,仅电性连接相邻的接合部分,而相邻的线材彼此电性地形成一个电路,而共形成500个电路。之后,使用市售的转印模具装置(第一精工制股份有限公司,GPGP-PRO-LAB80),以树脂密封BGA基板上的Si晶片。

针对该试片(实施例1~实施例5),使用HAST装置(平山制作所股份有限公司,PC-R8D),以130℃×85RH(相对湿度)保存200小时。保存前后,测定上述500个电路的电阻值,只要有一个电路其保存后的电阻值超过保存前的电阻值1.1倍则标示为×,500个电路中所有的电阻值皆小于1.1倍的情况则标示为○,结果显示于表1右栏。

从该HAST试验的试验结果明确得知,本发明的实施例1~实施例5,在500个电路中,电阻值皆小于1.1倍。

比较例

相较于实施例1,从未添加硫(S)的市售的钯浴形成钯(Pd)的被覆层。之后,以磁控溅镀与实施例1相同地被覆金(Au),并将以与实施例1相同的方式形成的接合线作为比较例1及比较例3。相同地,将未被覆金(Au)、在市售的钯浴中以既定添加量添加砷(As)无机化合物所形成的接合线作为比较例2。

以王水溶解100m左右的比较例1的线材,并以感应耦合电浆质量分析计(Agilent Technologies股份有限公司制Agilent8800)求得该溶液中的硫(S)浓度。再者,以王水溶解100m左右的比较例2的线材,并以感应耦合电浆质量分析计(Agilent Technologies股份有限公司制Agilent8800)求得该溶液中的磷(P)浓度。再者,取500m、约1g的比较例3的线材,以燃烧法(LECO公司制CS844)求得碳(C)浓度。该等结果显示于表1中栏。再者,从添加该等添加剂的线材与未添加的线材中的各添加元素的浓度差值,计算钯膜中的添加元素浓度,所求得的结果显示于表1中栏。

再者,以与实施例1相同的方式,从比较例1的接合线制作熔融焊球。该熔融焊球的剖面影像显示于图2。从图2可明确得知,比较例1的钯(Pd)被覆铜线,在线材根部右侧产生微小乱流,导致钯(Pd)微粒子溶入熔融焊球内。亦即,根据条件,微小乱流不会消失而产生变化,其表示钯(Pd)无法均匀分散至熔融焊球上。

再者,对于比较例1及3的接合线,以与实施例1相同的方式,以扫描式欧杰分析装置(VG公司制MICROLAB-310D),在深度方向上,针对钯(Pd)、铜(Cu)、金(Au)及硫(S)的各元素进行元素分析,仅以金(Au)层的厚度,检测出硫(S)层。再者,比较例2的无金(Au)层的钯(Pd)层中,未测出硫(S)。亦即,该钯(Pd)层,是经延伸的钯(Pd)粒子的延伸层。

金属间化合物的腐蚀试验

针对比较例1~3的线材,以与实施例1~5相同的方式,量测电路的电阻值在保存于高温高湿(130℃×85RH)前后的变化。可知比较例1~3的线材,电路的电阻值上升,不适合作为接合线。该结果以×的记号显示于表1右栏。

产业上的可利用性

本发明的球焊用钯(Pd)被覆铜线,可取代以往的金合金线材,除了通用IC、离散式积体电路(discrete IC)、存储器IC以外,亦可用于高温高湿的用途且要求低成本的LED用的IC封装、车用半导体用IC封装等的半导体用途。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1