紫外光发光二极管封装结构、紫外光发光单元及其制造方法与流程

文档序号:15940887发布日期:2018-11-14 03:08阅读:140来源:国知局

本发明涉及一种发光单元,尤其涉及一种紫外光发光二极管封装结构、紫外光发光单元及其制造方法。

背景技术

由于紫外光发光二极管芯片所具备的发光效率较低且信赖性较差,所以包含上述紫外光发光二极管芯片的现有紫外光发光单元(或现有的紫外光发光二极管封装结构)如何改良紫外光发光二极管芯片以外的结构(因为本发明并非对芯片进行改良,而是除却芯片以外的构造,如:芯片外部的封装构造),使其具备较佳的发光效率与信赖性,已成为本领域的主要课题之一。

于是,本发明人认为上述缺陷可改善,乃特潜心研究并配合科学原理的运用,终于提出一种设计合理且有效改善上述缺陷的本发明。



技术实现要素:

本发明实施例在于提供一种紫外光发光二极管封装结构、紫外光发光单元及紫外光发光单元的制造方法,用来有效地改善现有紫外光发光单元所可能产生的缺失。

本发明实施例公开一种紫外光发光单元,包括一承载板、一紫外光发光二极管芯片、一侧透镜以及一防水层;所述紫外光发光二极管芯片安装于所述承载板上,并且所述紫外光发光二极管芯片具有一顶面及邻接所述顶面的一环侧面,所述顶面具有一中心区域及围绕于所述中心区域并相连于所述环侧面的一外围区域;所述侧透镜设置于所述承载板上,并且所述紫外光发光二极管芯片的所述环侧面被所述侧透镜覆盖;所述防水层包覆于所述侧透镜的一外表面及所述紫外光发光二极管芯片的所述顶面的所述外围区域;其中,所述防水层的水气穿透率(stempermeability)小于所述侧透镜的水气穿透率,且所述侧透镜与所述防水层的水气穿透率的比值至少大于10。

优选地,所述承载板具有位于相反两侧的一第一板面与一第二板面,并且所述外表面的底缘至少相连所述第一板面的边缘,所述承载板还包含一电极层、一焊垫层、多个导电柱及一反射层,所述电极层位于所述第一板面,并且所述紫外光发光二极管芯片电性连接所述电极层上;所述焊垫层位于所述第二板面;多个所述导电柱埋置于所述承载板内,并且每个所述导电柱的两端分别连接所述电极层与所述焊垫层;所述反射层位于所述第一板面并围绕于所述紫外光发光二极管芯片,并且所述反射层埋置于所述侧透镜。

优选地,所述紫外光发光二极管芯片包含设置于蓝宝石基底上的多层alxga1-xn薄膜,其中x>0.2,所述紫外光发光二极管芯片所能发出的光线波长小于324纳米,而所述紫外光发光二极管芯片的光形图呈蝠翼状(batwing)。

优选地,所述侧透镜的所述外表面包含有多个平面(flatsurface),并且多个所述平面的顶缘相连于所述顶面的边缘,而多个所述平面的底缘相连于所述承载板的边缘。

优选地,所述侧透镜的所述外表面包含有多个凹曲面(concavesurface),并且多个所述凹曲面的顶缘相连于所述顶面的边缘,而多个所述凹曲面的底缘相连于所述承载板的边缘。

优选地,所述侧透镜的所述外表面包含有多个凸曲面(convexsurface),并且多个所述凸曲面的顶缘相连于所述顶面的边缘,而多个所述凸曲面的底缘相连于所述承载板的边缘。

优选地,所述防水层包覆于所述承载板的外侧缘,所述防水层的材质为无定形氟树脂(amorphousfluoropolymer),并且所述无定形氟树脂具有的末端官能基为-conh~si(or)n。

优选地,所述侧透镜是由氟素高分子或聚二甲基硅氧烷(pdms)所制成,所述防水层是由氟素高分子或无机二氧化硅薄膜所制成,且所述防水层进一步包覆所述承载板的外侧缘。

本发明实施例也公开一种紫外光发光二极管封装结构,包括一紫外光发光单元、一基板、一侧墙、一透光组件以及一防水膜,所述紫外光发光单元包含一承载板、一紫外光发光二极管芯片、一侧透镜及一防水层;所述紫外光发光二极管芯片安装于所述承载板上,并且所述紫外光发光二极管芯片具有一顶面及邻接所述顶面的一环侧面,所述顶面具有一中心区域及围绕于所述中心区域并相连于所述环侧面的一外围区域;所述侧透镜由氟素高分子或聚二甲基硅氧烷所制成,所述侧透镜设置于所述承载板上,并且所述紫外光发光二极管芯片的所述环侧面被所述侧透镜覆盖;所述防水层由氟素高分子或无机二氧化硅薄膜所制成,所述防水层包覆于所述侧透镜的一外表面及所述紫外光发光二极管芯片的所述顶面的所述外围区域,所述防水层的水气穿透率(stempermeability)小于所述侧透镜的水气穿透率,且所述侧透镜与所述防水层的水气穿透率的比值至少大于10;所述紫外光发光单元固定于所述基板上;所述侧墙连接于所述基板并且围绕于所述紫外光发光单元的外侧;所述透光组件固定于所述侧墙上,并且所述透光组件、所述侧墙及所述基板包围形成有容置所述紫外光发光单元的一封闭空间;所述防水膜包覆于所述基板的外侧缘、所述侧墙的外侧缘及所述透光组件的至少局部外侧缘。

优选地,所述紫外光发光二极管封装结构包括由聚二甲基硅氧烷所制成的一胶体,所述侧墙与所述透光组件形成有环状的一外角落,并且所述胶体设置于所述外角落,而所述防水膜包覆于所述胶体的外侧缘。

本发明实施例又公开一种紫外光发光单元的制造方法,包括:将多个紫外光发光二极管芯片安装于一承载板组合上;于每个所述紫外光发光二极管芯片的一顶面的一中心区域贴附一保护片;将所述承载板组合贴附于一离型胶带上;切割所述承载板组合,以使所述承载板组合形成多个承载板,并且每个所述承载板上设置有一个所述紫外光发光二极管芯片;在每个所述承载板上形成有覆盖所述紫外光发光二极管芯片的环侧面的一侧透镜;对应每个所述侧透镜形成有一防水层,以包覆于所述侧透镜的所述外表面、相邻的所述紫外光发光二极管芯片的所述顶面的一外围区域及相邻的所述保护片;移除多个所述保护片及所述离型胶带,以形成多个所述紫外光发光单元。

综上所述,本发明实施例所公开的一种紫外光发光二极管封装结构、紫外光发光单元及紫外光发光单元的制造方法,其通过设置(由氟素高分子或聚二甲基硅氧烷所制成的)侧透镜,借以有效地提升紫外光发光单元的发光效率,并且通过设置(由氟素高分子或无机二氧化硅薄膜所制成的)防水层,借以有效地避免水气入侵至紫外光发光二极管芯片,以提升紫外光发光单元的信赖性。

为能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,但是此等说明与附图仅用来说明本发明,而非对本发明的保护范围作任何的限制。

附图说明

图1为本发明实施例一的紫外光发光单元的制造方法的步骤s110至步骤s130的示意图。

图2为本发明实施例一的紫外光发光单元的制造方法的步骤s140与步骤s150的示意图。

图3为本发明实施例一的紫外光发光单元的制造方法的步骤s160的示意图。

图4为本发明实施例一的紫外光发光单元的制造方法的步骤s170的示意图。

图5为本发明实施例一的紫外光发光单元的立体示意图。

图6为图5的分解示意图。

图7为本发明实施例一的紫外光发光单元另一态样的立体示意图。

图8为图7沿剖线vⅲ-vⅲ的剖视示意图。

图9为本发明实施例一的紫外光发光单元又一态样的立体示意图。

图10为图9沿剖线x-x的剖视示意图。

图11为本发明实施例二的紫外光发光二极管封装结构的制造方法的步骤s210至步骤s230的示意图。

图12为本发明实施例二的紫外光发光二极管封装结构的制造方法的步骤s240、步骤s250及部分步骤s260的示意图。

图13为本发明实施例二的紫外光发光二极管封装结构的制造方法的部分步骤s260的示意图。

图14为本发明实施例二的紫外光发光二极管封装结构的立体示意图。

图15为图14的分解示意图。

图16为本发明实施例三的紫外光发光二极管封装结构的制造方法的步骤s310至步骤s330的示意图。

图17为本发明实施例三的紫外光发光二极管封装结构的制造方法的步骤s340与步骤s350的示意图。

图18为本发明实施例三的紫外光发光二极管封装结构的制造方法的步骤s360的示意图。

图19为本发明实施例三的紫外光发光二极管封装结构的制造方法的步骤s370的示意图。

图20为本发明实施例三的紫外光发光二极管封装结构的立体示意图。

图21为图20的分解示意图。

具体实施方式

[实施例一]

请参阅图1至图10,为本发明的实施例一,需先说明的是,本实施例对应附图所提及的相关数量与外型,仅用来具体地说明本发明的实施方式,以便于了解本发明的内容,而非用来局限本发明的保护范围。

本实施例公开一种紫外光发光单元100及其制造方法,为便于说明上述紫外光发光单元100,本实施例先介绍紫外光发光单元100的制造方法,但所述紫外光发光单元100并不以上述制造方法为限。其中,如图1至图4所示,本实施例的紫外光发光单元100的制造方法包括步骤s110至步骤s170,并且所述步骤s110至步骤s170的具体实施方式与实施顺序可依据设计者需求而加以调整,并不受限于下述所载。再者,为便于呈现本实施例紫外光发光单元100的制造方法,附图仅以制造两个紫外光发光单元100作一说明。

步骤s110:如图1所示,将多个紫外光发光二极管芯片2安装于大致呈板状的一承载板组合10上。其中,所述紫外光发光二极管芯片2包含有一顶面21与邻接所述顶面21的一环侧面22,上述顶面21于本实施例中相当于紫外光发光二极管芯片2的出光面,而环侧面22相连于上述顶面21的边缘。再者,上述顶面21包含有一中心区域211及围绕于上述中心区域211并相连于所述环侧面22的一外围区域212。所述中心区域211的形状与尺寸可依据设计者需求而加以调整,本发明不加以限制。举例来说,中心区域211可以是方形且其面积大于上述外围区域212的面积。

步骤s120:如图1所示,于每个紫外光发光二极管芯片2的顶面21的中心区域211贴附一保护片s。其中,所述紫外光发光二极管芯片2的中心区域211是完全被上述保护片s所覆盖,并且所述保护片s于本实施例中可以是一热解胶带、一耐热胶带及一紫外光胶带的其中之一,但本发明保护片s的具体材质不受限于此。

步骤s130:如图1所示,将所述承载板组合10贴附于一离型胶带t上。其中,所述离型胶带t于本实施例中可以是一热解胶带、一耐热胶带及一紫外光胶带的其中之一,并且所述离型胶带t与保护片s较佳是相同的类型(如:皆为紫外光胶带),但本发明不受限于此。

步骤s140:如图2所示,切割所述承载板组合10,以使承载板组合10形成多个承载板11,并且每个承载板11上设置有一个所述紫外光发光二极管芯片2。其中,所述承载板11上具有位于相反两侧的一第一板面111和一第二板面112以及连接上述第一板面111和第二板面112的一外侧缘113,承载板11包含位于第一板面111的一电极层12以及位于第二板面112的一焊垫层13,并且承载板11内埋置电连接电极层12与焊垫层13的多个导电柱14,承载板11还设置围绕于电极层12和所述紫外光发光二极管芯片2的一反射层15,所述紫外光发光二极管芯片2电性连接所述电极层12和所述焊垫层13。

步骤s150:如图2所示,在每个承载板11上形成有覆盖所述紫外光发光二极管芯片2的环侧面22的一侧透镜3。其中,上述侧透镜3是由聚二甲基硅氧烷(pdms)或氟素高分子(fluoropolymer)所制成,并且所述反射层15埋置于侧透镜3。所述侧透镜3的外表面31的底缘较佳是相连于所述承载板11的边缘,而所述侧透镜3的外表面31的顶缘较佳是相连于所述紫外光发光二极管芯片2的环侧面22顶缘,但本发明不受限于此。

步骤s160,如图3所示,对应每个侧透镜3形成有一防水层4,以包覆于承载板11的外侧缘113、所述侧透镜3的外表面31、相邻的紫外光发光二极管芯片2的顶面21的外围区域212及相邻的保护片s。进一步地说,所述承载板11及其上的紫外光发光二极管芯片2、保护片s、与侧透镜3所形成的构造于本实施例中较佳是大致埋置于防水层4内,也就是说,上述构造除了承载板11的底面112之外,其余皆被防水层4所包覆,但本发明不受限于此。

步骤s170:如图4所示,移除多个所述保护片s及所述离型胶带t,以形成多个所述紫外光发光单元100。其中,在上述移除保护片s与离型胶带t的过程中,可以先依据保护片s与离型胶带t的类型,来对保护片s与离型胶带t进行加热、照射紫外光、或接触有机溶液(如丙酮、乙酮、或异丙醇等),以降低保护片s与离型胶带t相对于紫外光发光单元100的黏着性,借以利于移除保护片s与离型胶带t。

本实施例紫外光发光单元100的制造方法大致如上所述,以下接着说明紫外光发光单元100的具体构造。请参阅图4至图6,所述紫外光发光单元100包括一承载板11、一紫外光发光二极管芯片2、一侧透镜3及一防水层4。以下将分别就紫外光发光单元100的各个组件构造做一说明。

所述承载板11包含有一电极层12、一焊垫层13、多个导电柱14及一反射层15。其中,所述承载板11具有位于相反两侧的一第一板面111与一第二板面112,所述电极层12位于承载板11的第一板面111,而所述焊垫层13则是位于承载板11的第二板面112。上述多个导电柱14埋置于承载板11内,并且每个导电柱14的两端分别连接所述电极层12与焊垫层13,借以使电极层12与焊垫层13能通过导电柱14而实现电性连接。所述反射层15位于承载板11的第一板面111并且围绕于电极层12,并且上述反射层15与电极层12较佳为彼此互补的一片状构造,但本发明不受限于此。另,所述反射层15也可以被视为围绕于紫外光发光二极管芯片2的外侧。

更详细地说,所述反射层15的材质于本实施例中可以是氮化铝、金、或铝,但不受限于此。举例而言,当所述反射层15的材质为铝时,反射层15对于280纳米的紫外光线具备有92%的反射率,借以有助于提升发光二极管芯片2的发光效率(如:+27%)。须注意的是,上述以铝制成的反射层15较佳是以氟化镁或二氧化硅进行包覆,进而避免产生氧化。再者,当所述反射层15的材质为金时,反射层15对于280纳米的紫外光线具备有38%的反射率,借以有助于提升发光二极管芯片2的发光效率(如:+13.5%)。而当所述反射层15的材质为氮化铝时,反射层15对于280纳米的紫外光线具备有16%的反射率。

所述紫外光发光二极管芯片2于本实施例中包含有设置于蓝宝石基底上的多层量子井(如:多层alxga1-xn薄膜,其中x>0.2),并且所述紫外光发光二极管芯片2所能发出的光线波长较佳是小于324纳米,而所述紫外光发光二极管芯片2的光形图呈蝠翼状(batwing)且具有大致为126.5度的出光角度,但本发明的紫外光发光二极管芯片2不受限于此。需额外说明的是,本发明中的紫外光发光单元100是排除使用非为紫外光发光二极管芯片2的态样,也就是说,不是使用紫外光发光二极管芯片的发光单元则不同于本发明所指的紫外光发光单元100。

进一步地说,所述紫外光发光二极管芯片2具有一顶面21及一环侧面22,上述顶面21于本实施例中相当于紫外光发光二极管芯片2的出光面,而环侧面22相连于上述顶面21的边缘。其中,上述顶面21包含有一中心区域211及围绕于上述中心区域211并相连于所述环侧面22的一外围区域212。所述中心区域211的形状与尺寸可依据设计者的需求而加以调整,本发明不加以限制。举例来说,所述中心区域211可以是方形且其面积大于上述外围区域212的面积。

再者,所述紫外光发光二极管芯片2包含有位于其底侧的两个电极垫(未标示),所述两个电极垫于本实施例中大致位于上述顶面21的中心区域211正下方。也就是说,所述两个电极垫的位置远离上述顶面21,并且上述两个电极垫朝向顶面21正投影所形成的一投影区域,其落在中心区域211内,但本发明不受限于此。

所述紫外光发光二极管芯片2的两个电极垫焊接于承载板11的电极层12,以使紫外光发光二极管芯片2电性连接所述电极层12上。当所述紫外光发光二极管芯片2朝向承载板11正投影而形成的一投影区域时,所述紫外光发光二极管芯片2的投影区域大致位于反射层15的中央、并且其面积较佳是小于所述反射层15面积的一半。

所述侧透镜3由聚二甲基硅氧烷或氟素高分子所制成且折射率于本实施例中大致为1.4。所述侧透镜3设置于所述承载板11上,并且所述紫外光发光二极管芯片2的环侧面22被侧透镜3(完整)覆盖,而所述反射层15埋置于侧透镜3内。也就是说,所述紫外光发光二极管芯片2仅有顶面21裸露于侧透镜3之外。

其中,所述侧透镜3包含有一外表面31,并且外表面31的顶缘相连于顶面21(或外围区域212)的边缘,而所述外表面31的底缘相连于承载板11的第一板面111边缘。进一步地说,所述侧透镜3在成形的过程中,通过侧透镜3的顶缘与底缘分别相连于上述顶面21的边缘与承载板11的第一板面111边缘,以使侧透镜3的外表面31具备有一表面张力,借以令设计者能够依据发光效率与出光角度的要求,来调整侧透镜3的外表面形状(如:平面、凹曲面、或凸曲面)。以下列举三个紫外光发光单元100的实施方式来做说明。

如图4至图6,所述侧透镜3的外表面31包含有多个平面311(flatsurface),并且上述多个平面311的顶缘相连于顶面21(或外围区域212)的边缘,而多个平面311的底缘相连于承载板11的边缘(或第一板面111边缘)。据此,图4至图6所示的紫外光发光单元100相较于未设有侧透镜3的情况来说,能够有效地提升发光效率(约+23%~+27%)、并能将出光角度控制在大致为115度~120度。

如图7和图8,所述侧透镜3的外表面31包含有多个凹曲面312(concavesurface),并且上述多个凹曲面312的顶缘相连于所述顶面21(或外围区域212)的边缘,而多个凹曲面312的底缘相连于所述承载板11的边缘(或第一板面111边缘)。据此,图7和图8所示的紫外光发光单元100相较于未设有侧透镜3的情况来说,能够有效地提升发光效率(约+17%~+23%)、并能将出光角度控制在大致为100.9度。

如图9和图10,所述侧透镜3的外表面31包含有多个凸曲面313(convexsurface),并且上述多个凸曲面313的顶缘相连于所述顶面21(或外围区域212)的边缘,而多个凸曲面313的底缘相连于所述承载板11的边缘(或第一板面111边缘)。据此,图9和图10所示的紫外光发光单元100相较于未设有侧透镜3的情况来说,能够有效地提升发光效率(约+27%~+33%)、并能将出光角度控制在大致为123.6度。

借此,所述紫外光发光单元100通过设置由聚二甲基硅氧烷或氟素高分子所制成的侧透镜3,借以有效地提升紫外光发光单元100的发光效率。再者,上述侧透镜3的外表面31还能够依据发光效率与出光角度的要求来调整形状,借以符合不同的要求。

如图4至图6,所述防水层4呈透光状且由氟素高分子或无机二氧化硅薄膜所制成,而于本实施例中,防水层4的材质为无定形氟树脂(amorphousfluoropolymer)且折射率大致为1.35,上述无定形氟树脂具有的末端官能基较佳为-conh~si(or)n,但本发明不受限于此。其中,以末端具有-conh~si(or)n的防水层4为例,其水气穿透率(stempermeability)大致为0.2g/m2/1day,以聚二甲基硅氧烷的侧透镜3为例,其水气穿透率大致为105g/m2/1day,也就是说,防水层4的水气穿透率小于侧透镜3的水气穿透率,且侧透镜3与防水层4的水气穿透率的比值至少大于10,较佳介于10~500之间。

所述防水层4包覆于侧透镜3的外表面31及紫外光发光二极管芯片2的顶面21的外围区域212。而于本实施例中,所述防水层4进一步地包覆在承载板11的外侧缘113(如:承载板11的侧面),而使承载板11的第二板面112露出,但本发明不受限于此。也就是说,在本实施例中,除了紫外光发光二极管芯片2的顶面21的中心区域211以及承载板11的第二板面112之外,其余皆被防水层4所包覆。

借此,所述紫外光发光单元100通过设置由氟素高分子或无机二氧化硅薄膜所制成的防水层4,借以有效地避免水气入侵至紫外光发光二极管芯片2,进而降低紫外光发光二极管芯片2的损坏几率。再者,所述紫外光发光单元100通过设有防水层4,还能够使得紫外光发光单元100应用在后续紫外光发光二极管封装结构1000的制造步骤中,无须另行使用氮气或真空封装设备,借以有效地降低制造设备的投资成本。

[实施例二]

请参阅图11至图15,其为本发明的实施例二,本实施例是公开包含实施例一所述的紫外光发光单元100的一种紫外光发光二极管封装结构1000及其制造方法。其中,有关紫外光发光单元100及其制造方法请参酌实施例一所载,本实施例不再加以赘述。

再者,为便于说明上述紫外光发光二极管封装结构1000,本实施例先介绍紫外光发光二极管封装结构1000的制造方法,但所述紫外光发光二极管封装结构1000并不以上述制造方法为限。其中,本实施例紫外光发光二极管封装结构1000的制造方法包括步骤s210至步骤s260,并且所述步骤s210至步骤s260的具体实施方式与实施顺序可依据设计者需求而加以调整,并不受限于下述所载。再者,为便于呈现本实施例紫外光发光二极管封装结构1000的制造方法,附图仅以制造两个紫外光发光二极管封装结构1000作一说明。

步骤s210:如图11所示,提供板状的一基板组合200及设置于基板组合200上的一侧墙组合300,并且所述侧墙组合300与基板组合200包围形成有多个容置空间a。

步骤s220:如图11所示,将多个紫外光发光单元100分别设置于上述多个容置空间a内并安装在所述基板组合200上。

步骤s230:如图11所示,将多个透光组件401以黏着层700固定于所述侧墙组合300上,以使多个所述透光组件401分别封闭多个所述容置空间a。其中,上述透光组件401较佳为平板的石英玻璃或透镜,在此不加以限制。需额外说明的是,上述封闭状的容置空间a内可以是充填有空气(非真空状),因而使得紫外光发光二极管封装结构1000在制造过程中,无须使用氮气或真空封装设备,借以有效地降低制造设备的投资成本。

步骤s240:如图12所示,将所述基板组合200贴附于一离型胶带t上。其中,所述离型胶带t于本实施例中可以是一热解胶带、一耐热胶带及一紫外光胶带的其中之一,但本发明的离型胶带t类型不受限于此。此外,所述多个透光组件401上也可以进一步设置有离型胶带t,以利后续形成防水膜500。

步骤s250:如图12所示,切割所述黏着层700、侧墙组合300、与基板组合200,以使所述基板组合200形成有多个基板201、所述侧墙组合300形成有分别设置于上述多个基板201的多个侧墙301及所述黏着层700形成分别设置于上述多个侧墙301的多个黏着胶701。

步骤s260:如图12和图13所示,在每个基板201及相对应的侧墙301与透光组件401的外侧缘形成有一防水膜500,借以构成一紫外光发光二极管封装结构1000;其后移除上述离型胶带t。

本实施例紫外光发光二极管封装结构1000的制造方法大致如上所述,以下接着说明紫外光发光二极管封装结构1000的具体构造。请参阅图13至图15,所述紫外光发光二极管封装结构1000包含如实施例一所述的紫外光发光单元100、一基板201、一侧墙301、一透光组件401及一防水膜500。

其中,所述基板201包含两个金属垫202、两个外接垫203及两个连接柱204,所述金属垫202位于基板201的顶面2011,所述两个外接垫203位于基板201的底面2012。两个连接柱204埋置于基板201内,并且上述两个连接柱204的一端分别连接于两个金属垫202,而两个连接柱204的另一端则分别连接于两个外接垫203,借以通过所述两个连接柱204而使上述两个金属垫202分别电性连接于两个外接垫203。

进一步地说,所述紫外光发光单元100固定于基板201上,并且紫外光发光单元100的焊垫层13固定于基板201的两个金属垫202上。所述侧墙301连接于基板201上并且围绕于紫外光发光单元100的外侧,借以使紫外光发光单元100位于侧墙301与基板201所包围形成的一容置空间a内。

再者,所述透光组件401通过黏着胶701固定于侧墙301上并且封闭上述容置空间a,以使所述容置空间a呈封闭状,而上述封闭状的容置空间a内可以是充填有空气(非真空状)。也就是说,所述透光组件401、侧墙301及基板201包围形成有容置上述紫外光发光单元100的一封闭空间(也就是上述封闭状的容置空间a)。

所述防水膜500包覆于基板201的外侧缘2013、所述侧墙301的外侧缘3011及所述透光组件401的至少局部外侧缘4011,借以避免水气入侵至上述封闭状的容置空间a内。进一步地说,本实施例的紫外光发光二极管封装结构1000仅有透光组件401的顶面4012及基板201的底面2012裸露于上述防水膜500之外,但本发明不受限于此。其中,所述防水膜500由氟素高分子或无机二氧化硅薄膜所制成,而于本实施例中,防水膜500的材质为无定形氟树脂(amorphousfluoropolymer),并且所述无定形氟树脂具有的末端官能基为-conh~si(or)n,但本发明不受限于此。

[实施例三]

请参阅图16至图21,其为本发明的实施例三,本实施例是公开包含实施例一所述的紫外光发光单元100的一种紫外光发光二极管封装结构1000及其制造方法。其中,有关紫外光发光单元100及其制造方法请参酌实施例一所载,本实施例不再加以赘述。

再者,为便于说明上述紫外光发光二极管封装结构1000,本实施例先介绍紫外光发光二极管封装结构1000的制造方法,但所述紫外光发光二极管封装结构1000并不以上述制造方法为限。其中,本实施例紫外光发光二极管封装结构1000的制造方法包括步骤s310至步骤s370,并且所述步骤s310至步骤s370的具体实施方式与实施顺序可依据设计者需求而加以调整,并不受限于下述所载。再者,为便于呈现本实施例紫外光发光二极管封装结构1000的制造方法,附图仅以制造两个紫外光发光二极管封装结构1000作一说明。

步骤s310:如图16所示,提供一基板组合200及设置于所述基板组合200上的一侧墙组合300,并且所述侧墙组合300与所述基板组合200包围形成有多个容置空间a。

步骤s320:如图16所示,将多个紫外光发光单元100分别设置于多个容置空间a内并安装在所述基板组合200上。

步骤s330:如图16所示,将一透光组件400(包含多个透光组件401)通过黏着层700固定于所述侧墙组合300上,以使多个所述透光组件401分别封闭多个容置空间a。其中,上述透光组件401较佳为凸透镜,在此不加以限制。需额外说明的是,上述封闭状的容置空间a内可以是充填有空气(非真空状),因而使得所述紫外光发光二极管封装结构1000在制造过程中,无须使用氮气或真空封装设备,借以有效地降低制造设备的投资成本。

步骤s340:如图17所示,将所述基板组合200贴附于一离型胶带t上,并在所述离型胶带t上设有高于上述侧墙组合300的一围墙w,且使所述围墙w贴附于所述侧墙组合300的外侧缘3011。其中,所述离型胶带t于本实施例中可以是一热解胶带、一耐热胶带及一紫外光胶带的其中之一,但本发明的离型胶带t类型不受限于此。

步骤s350:如图17所示,在所述侧墙组合300上及每个所述透光组件401旁形成有由聚二甲基硅氧烷所制成的一胶层600。进一步地说,上述胶层600是形成在所述侧墙组合300、透光组件400及围墙w所包围的空间内。

步骤s360:如图18所示,切割所述胶层600、黏着层700、侧墙组合300及基板组合200,以使所述基板组合200形成有多个基板201、所述侧墙组合300形成有分别设置于上述多个基板201的多个侧墙301、所述黏着层700形成分别设置于上述多个侧墙301的多个黏着胶701及所述胶层600形成有分别围绕于上述多个透光组件401的多个胶体601。

步骤s370:如图19所示,在每个基板201以及相对应的所述侧墙301、透光组件401、与胶体601的外侧缘形成有一防水膜500,以构成一紫外光发光二极管封装结构1000;其后移除上述离型胶带t与围墙w。

本实施例紫外光发光二极管封装结构1000的制造方法大致如上所述,以下接着说明紫外光发光二极管封装结构1000的具体构造。请参阅图19至图21,所述紫外光发光二极管封装结构1000包含有如实施例一所述的紫外光发光单元100、一基板201、一侧墙301、一透光组件401、一胶体601及一防水膜500。

其中,所述基板201具有位于其顶面2011的两个金属垫202、位于基板201底面2012的两个外接垫203及埋置于基板201内的两个连接柱204。并且上述两个连接柱204的一端分别连接于两个金属垫202,而两个连接柱204的另一端则分别连接于两个外接垫203,借以通过所述两个连接柱204而使上述两个金属垫202分别电性连接于两个外接垫203。

进一步地说,所述紫外光发光单元100固定于基板201上,并且紫外光发光单元100的焊垫层13固定于基板201的两个金属垫202上。所述侧墙301连接于基板201上并且围绕于紫外光发光单元100的外侧,借以使紫外光发光单元100位于侧墙301与基板201所包围形成的一容置空间a内。

再者,所述透光组件401通过黏着胶701固定于侧墙301上并且封闭上述容置空间a,以使所述容置空间a呈封闭状,而上述封闭状的容置空间a内可以是充填有空气(非真空状)。也就是说,所述透光组件401、侧墙301及基板201包围形成有容置上述紫外光发光单元100的一封闭空间(也就是上述封闭状的容置空间a)。所述胶体601由聚二甲基硅氧烷所制成,并且所述胶体601设置于上述侧墙301与透光组件401所形成的一环状外角落c,借以通过胶体601强化透光组件401与侧墙301之间的固定效果。

所述防水膜500包覆于基板201的外侧缘、所述侧墙301的外侧缘3011、所述胶体601的外侧缘6011及所述透光组件401的至少局部外侧缘4011,借以避免水气入侵至上述封闭状的容置空间a内。进一步地说,本实施例的紫外光发光二极管封装结构1000仅有透光组件401及基板201的底面2012裸露于上述防水膜500之外,但本发明不受限于此。其中,所述防水膜500由氟素高分子或无机二氧化硅薄膜所制成,而于本实施例中,防水膜500的材质为无定形氟树脂(amorphousfluoropolymer),并且所述无定形氟树脂具有的末端官能基为-conh~si(or)n,但本发明不受限于此。

[本发明实施例的技术功效]

综上所述,本发明实施例所公开的紫外光发光二极管封装结构、紫外光发光单元及紫外光发光单元的制造方法,其通过设置由聚二甲基硅氧烷或氟素高分子所制成的侧透镜,借以有效地提升紫外光发光单元的发光效率,并且通过所述防水层的水气穿透率(stempermeability)小于所述侧透镜的水气穿透率,且所述侧透镜与所述防水层的水气穿透率的比值至少大于10,譬如设置由氟素高分子或无机二氧化硅薄膜所制成的防水层于侧透镜的外表面,借以有效地避免水气入侵至紫外光发光二极管芯片。另外,本发明采用的是呈蝠翼状的紫外光发光二极管芯片,当引入侧透镜时,光形会从蝠翼状转变成朗伯特(lambertian),进而提升发光效率。

进一步地说,所述紫外光发光单元的侧透镜的外表面还能够依据发光效率与出光角度的要求来调整形状,借以符合不同的要求。再者,所述紫外光发光单元通过设有防水层,还能够使得紫外光发光单元应用在后续紫外光发光二极管封装结构的制造步骤(如:步骤s230与步骤s330)中,无须另行使用氮气或真空封装设备,借以有效地降低制造设备的投资成本。

以上所述仅为本发明的优选可行实施例,并非用来局限本发明的保护范围,凡依本发明权利要求书所做的均等变化与修饰,皆应属本发明的权利要求书的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1