一种OLED显示面板及其制备方法与流程

文档序号:11289649阅读:112来源:国知局
一种OLED显示面板及其制备方法与流程

本发明涉及显示技术领域,特别是涉及一种oled显示面板及其制备方法。



背景技术:

目前,由于顶栅结构的半导体氧化物tft具有较小的寄生电容,tft尺寸可以较小,成为oled驱动的较好选择,但是顶栅结构的半导体氧化物tft在制作过程中需要对与源极和漏极接触区域的半导体氧化物做导体化处理,从而降低源极和漏极的接触阻抗,实现tft的开关功能。

现有技术中,一般采用氢气等离子或氩气等离子处理的方式使得与源极和漏极接触的半导体氧化物导体化,但是由于oled显示面板在形成tft之后还会有其他的退火工艺,这些退火工艺会使得导体化的氧化物重新半导体化而使得与源极和漏极的接触阻抗变大,降低了tft特性,甚至使tft失去开关功能。



技术实现要素:

本发明主要是提供一种oled显示面板及其制备方法,旨在解决oled显示面板制备过程中半导体氧化物具有导体特性的部分会重新半导体化而导致与源极和漏极的接触阻抗变大的问题。

为解决上述技术问题,本发明采用的一个技术方案是:提供一种oled显示面板的制备方法,所述方法包括:在基板上沉积缓冲层并在所述缓冲层上形成依次层叠的半导体氧化物图案层、栅极绝缘层及栅极图案层;在所述缓冲层上形成覆盖所述半导体氧化物图案层、所述栅极绝缘层及所述栅极图案层的介电层,所述介电层包括与所述半导体氧化物图案层接触的氮化硅层;对所述介电层进行退火处理,以在退火过程中,所述氮化硅层使得部分半导体氧化物图案层具有导体特性;形成与具有导体特性的所述部分半导体氧化物图案层接触的源极和漏极。

为解决上述技术问题,本发明采用的另一个技术方案是:提供一种oled显示面板,所述显示面板包括:在基板上沉积的缓冲层及在所述缓冲层上依次层叠的半导体氧化物图案层、栅极绝缘层及栅极图案层,其中,部分半导体氧化物图案层具有导体特性;覆盖所述半导体氧化物图案层、所述栅极绝缘层及所述栅极图案层的介电层,所述介电层包括与所述半导体氧化物图案层接触的氮化硅层;与具有导体特性的所述部分半导体氧化物图案层接触的源极和漏极。

本发明的有益效果是:区别于现有技术的情况,本发明通过在基板上沉积缓冲层并在缓冲层上形成依次层叠的半导体氧化物图案层、栅极绝缘层及栅极图案层;在缓冲层上形成覆盖半导体氧化物图案层、栅极绝缘层及栅极图案层的介电层,介电层包括与半导体氧化物图案层接触的氮化硅层;对介电层进行退火处理,以在退火过程中,氮化硅层使得部分半导体氧化物图案层具有导体特性;形成与具有导体特性的部分半导体氧化物图案层接触的源极和漏极的方法,利用氮化硅中含氢较多的特点,使得与氮化硅层接触的具有导体特性的部分半导体氧化物图案层能够持续的掺杂有氢原子而保持导体特性,进而使得该部分半导体氧化物图案层与源极和漏极的接触阻抗能够持续的保持在较低的状态,以实现tft功能。

附图说明

图1是本发明提供的oled显示面板的制备方法实施例的流程示意图;

图2是图1中各步骤制备而成的oled显示面板实施例的结构示意图;

图3是图1中步骤s11的具体流程示意图;

图4是图1中步骤s14的具体流程示意图。

具体实施方式

为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明所提供的一种oled显示面板及其制备方法做进一步详细描述。

共同参阅图1及图2,本发明提供的oled显示面板的制备方法实施例包括:

s11:在基板101上沉积缓冲层102并在缓冲层102上形成依次层叠的半导体氧化物图案层103、栅极绝缘层104及栅极图案层105;

参阅图3,该步骤s11可具体包括:

s111:在基板101上沉积缓冲层102;

具体的,在沉积缓冲层102之前,将基板101清洗干净,然后可使用物理气相沉积法或等离子体气相沉积法在基板101上沉积缓冲层102,其中,可以在基板101上沉积一层氧化硅层作为缓冲层102,也可以先在基板101上沉积一层氮化硅层,然后在该氮化硅层上沉积一层厚度不小于3000埃的氧化硅层以共同作为缓冲层102。

其中,基板101可以是包括但不限于的玻璃基板、硅片基板。

s112:在缓冲层102上形成半导体氧化物图案层103;

具体的,在缓冲层102中的氧化硅层上形成半导体氧化物图案层103,可在缓冲层102中的氧化硅层上沉积一层厚底为400埃至600埃的半导体氧化物层,然后经过光阻涂布、曝光、显影及剥离的光刻工艺,形成图案化的半导体氧化物层,由于氧化硅中不含氢,在该步骤s112中,图案化的半导体氧化物层不会被导体化。

其中,半导体氧化物图案层103包括第一部分1031及与第一部分1031相邻的第二部分1032,在本实施例图示中,第二部分1032位于第一部分1031相对的两侧。

可选的,该半导体氧化物为igzo,即为铟镓锌氧化物。

s113:在半导体氧化物图案层103上形成依次层叠的栅极绝缘层104及栅极图案层105;

其中,栅极绝缘层104与半导体氧化物图案层103的第一部分1031相对设置,栅极绝缘层104包括第三部分1041及与第三部分1041相邻的第四部分1042,在本实施例图示中,第四部分1042位于第三部分1041相对的两侧,且第三部分1041与栅极图案层105相对设置。

具体的,可使用物理气相沉积法或等离子体气相沉积法在缓冲层102上沉积一层厚度为1000埃至2000埃且覆盖半导体氧化物图案层103的氧化硅层,然后在该氧化硅层再沉积一层金属层,进而在进行光阻涂布、曝光及显影之后,对金属层及氧化硅层同时蚀刻,以形成栅极图案层105及栅极绝缘层104,且在蚀刻的过程中,如图2所示,通过合适的蚀刻条件使得栅极绝缘层104相对的两侧超出栅极图案层105,两侧超出的部分即为第四部分1042,中间与栅极图案层105相对设置的即为第三部分1041。

其中,金属层是包括但不限于钼、铝或铜金属层。

可选的,第四部分1042的长度为0.3μm~1μm。

在其他实施例中,栅极绝缘层104及栅极图案层105可在两个步骤中分别形成,可先在缓冲层102上沉积氧化硅层,进行光阻涂布、曝光、显影、蚀刻及剥离的光刻工艺之后形成与半导体氧化物图案层103相对设置的栅极绝缘层104,然后在栅极绝缘层104上沉积金属层,再进行光阻涂布、曝光、显影、蚀刻及剥离的光刻工艺以形成栅极图案层105,且使得栅极图案层105与栅极绝缘层104的第三部分1041相对设置。

s12:在缓冲层102上形成覆盖半导体氧化物图案层103、栅极绝缘层104及栅极图案层105的介电层106;

其中,介电层106包括与半导体氧化物图案层103接触的氮化硅层。

具体的,可使用物理气相沉积法或等离子体气相沉积法在缓冲层102上沉积一层厚度为4000埃至5000埃的氮化硅层以形成介电层106,或者在缓冲层102上沉积一层厚度为3000埃的氮化硅层,然后在该氮化硅层上沉积一层厚度为3000埃的氧化硅层以共同形成介电层106,且通过上述步骤可知,该介电层106中氮化硅层的厚度大于半导体氧化物图案层103及栅极绝缘层104的厚度而能够与半导体氧化物图案层103的第二部分1032、栅极绝缘层104的第四部分1042接触。

s13:对介电层106进行退火处理,以在退火过程中,氮化硅层使得部分半导体氧化物图案层具有导体特性;

具体的,由于氮化硅层中含有氢原子,在对介电层106的退火过程中,氢原子会在高温作用下向图2所示下方的半导体氧化物图案层103扩散,在扩散过程中,半导体氧化物图案层103的第二部分1032由于与氮化硅层接触,氢原子会扩散至第二部分1032使得第二部分1032掺杂有氢原子而具有导体特性。

其中,由于栅极绝缘层104为氧化硅层,与栅极绝缘层104相对设置的第一部分1031会被栅极绝缘层104保护,防止氢原子扩散至第一部分1031,而使得在退火之后,第一部分1031仍然保留半导体特性,且根据上述步骤s113可知,栅极绝缘层104在截面上的尺寸大于栅极图案层105,进一步防止了氮化硅层中的氢原子在向下扩散至第一部分1031而使得第一部分1031仍然保留半导体特性。

s14:形成与具有导体特性的部分半导体氧化物图案层接触的源极107和漏极108。

参阅图4,该步骤s14可具体包括:

s141:在介电层106上开设与部分半导体氧化物图案层连通的接触孔1061;

具体的,可通过光阻涂布、曝光的方法形成图案化的接触孔,然后进行干法刻蚀,去除后即可得到接触孔1061。

其中,在介电层106上与半导体氧化物图案层103两侧的第二部分1032均有接触孔1061。

s142:在介电层106上通过接触孔1061形成与部分半导体氧化物图案层接触的源极107和漏极108。

具体的,可使用物理气相沉积法在介电层106上及接触孔1061中沉积金属,形成金属层,然后在沉积的金属层上沉积光阻层,再进行曝光、显影、刻蚀和剥离的制程,以得到图案化的源极107及漏极108,由于接触孔1061与半导体氧化物图案层103的第二部分1032连通,以使图案化的源极107和漏极108与半导体氧化物图案层103的第二部分1032接触。

进一步的,本实施例还包括:

s15:在介电层106上形成依次层叠的平坦层109及像素定义层110;

具体的,可使用物理气相沉积法或等离子体气相沉积法在介电层106上沉积氮化硅层或氧化硅层,以形成平坦层109,并在平坦层109上沉积氮化硅层或氧化硅层并通过光阻涂布、曝光、显影及蚀刻形成像素发光区,具有像素发光区的氮化硅层或氧化硅层即为像素定义层110。

s16:在像素定义层110上形成oled器件层111。

具体地,在像素定义层110上像素发光区相对的位置依次形成阳极层1111、电子传输层1112、发光层1113、空穴传输层1114及阴极层1115。

进一步参阅图2,本发明提供的oled显示面板实施例包括在基板101上沉积的缓冲层102及在缓冲层102上依次层叠的半导体氧化物图案层103、栅极绝缘层104及栅极图案层105、覆盖半导体氧化物图案层103、栅极绝缘层104及栅极图案层105的介电层106以及与半导体氧化物图案层103接触的源极107和漏极108。

其中,半导体氧化物图案层103包括第一部分1031及与第一部分1031相邻的第二部分1032,第一部分1031与栅极绝缘层104相对设置,第二部分1032具有导体特性。

具体地,介电层106包括与半导体氧化物图案层103接触的氮化硅层,由于氮化硅中含有氢原子,在制备时,氮化硅层中的氢原子向半导体氧化物图案层103扩散,使得与氮化硅层接触的第二部分1032掺杂有氢原子而具有导体特性,第一部分1031与栅极绝缘层104相对设置而被栅极绝缘层104保护以防止第一部分1031掺杂氢原子,保留了半导体特性。

进一步地,本实施例中的显示面板还包括在介电层106上依次层叠的平坦层109、像素定义层110以及oled器件层111。

本实施例中的各膜层可使用上述方法相对应的步骤分别制备而成,在此不再赘述。

区别于现有技术,本发明通过在基板上沉积缓冲层并在缓冲层上形成依次层叠的半导体氧化物图案层、栅极绝缘层及栅极图案层;在缓冲层形成覆盖半导体氧化物图案层、栅极绝缘层及栅极图案层的介电层,介电层包括与半导体氧化物图案层接触的氮化硅层;对介电层进行退火处理,以在退火过程中,氮化硅层使得部分半导体氧化物图案层具有导体特性;形成与具有导体特性的部分半导体氧化物图案层接触的源极和漏极的方法,利用氮化硅中含氢较多的特点,使得与氮化硅层接触的具有导体特性的部分半导体氧化物图案层能够持续的掺杂有氢原子而保持导体特性,进而使得该部分半导体氧化物图案层与源极和漏极的接触阻抗能够持续的保持在较低的状态,以实现tft功能。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1