本发明涉及一种承载装置,特别是涉及一种应用于半导体磊晶制程中的晶圆承载装置。
背景技术:
化学气相沉积(chemicalvapordeposition,cvd)为半导体组件制程中重要的制程技术之一。其方法主要是将晶圆暴露在一种或多种不同的前驱物(precursor)下,使晶圆表面发生氧化还原等化学反应,藉此沉积薄膜于晶圆表面上。在进行化学气相沉积的过程中,薄膜之膜厚均匀度是决定薄膜质量好坏的重要指标之一。为此,在化学气相沉积的过程中,常用加热晶圆载体、变化反应腔室之形状、修改簇射头特性,以及旋转晶圆载体等方式提高薄膜之膜厚均匀度。
上述所提及的方法中,旋转晶圆载体虽能有效提高膜厚均匀度,却也衍生了另一个影响制程良率的问题。当晶圆在载体上旋转时会受到离心力之影响进而压迫载体,造成晶圆边缘或表面产生缺陷、损伤,导致晶圆质量下降,不利于后续的半导体组件制作。
技术实现要素:
本发明的目的在于提供一种在半导体磊晶制程中,避免放置在旋转的载体上之晶圆因压迫载体,而导致边缘或表面产生缺陷、损伤,导致晶圆质量下降的晶圆承载装置。
本发明晶圆承载装置,供多个晶圆置放,每一晶圆之顶部周缘经倒角处理而形成一倒角部,该晶圆承载装置包含:一盘体,以及多个容置机构。该盘体可绕其中心轴线旋转且包括一上表面,以及一沿该中心轴线方向相反于该上表面的下表面。所述容置机构自该盘体之上表面凹陷而成,每一容置机构包括一形成于该盘体之上表面的开口、一自该开口朝向该盘体之下表面延伸的侧壁面,以及一连接该侧壁面以与该侧壁面共同界定出一容置槽的底壁面,该容置槽供晶圆自该开口放入。其中,定义一垂直通过对应之底壁面中心的第一轴线,每一容置机构的侧壁面具有一上区段、一倾斜段,以及一下区段。该上区段自对应之开口向下延伸至一第一转折部,该倾斜段自该第一转折部朝远离该第一轴线之方向斜向下延伸至一第二转折部且面朝晶圆的倒角部,该第二转折部不高于晶圆之顶表面。该下区段邻近对应之底壁面且自该容置机构的底壁面之周缘向上延伸至水平对齐于该第二转折部之位置。该下区段具有一远离该盘体之中心轴线且的抵靠部,当该盘体绕该中心轴线旋转时,晶圆抵靠该下区段之抵靠部。
本发明所述的晶圆承载装置,该抵靠部自水平对齐于该第二转折部之位置被向下挖空而形成一缺口,以使该下区段形成一高于对应之底壁面的凹部。
本发明所述的晶圆承载装置,每一晶圆之周缘经切削而形成一定向平面,每一容置机构之容置槽的横切面对应晶圆之形状,且该容置机构的下区段形成一抵贴部,当该盘体绕该中心轴线旋转时,晶圆的定向平面抵贴该抵贴部。
本发明所述的晶圆承载装置,每一容置机构的倾斜段与该水平线之夹角不小于晶圆之倒角部与该水平线之夹角且小于九十度。
本发明所述的晶圆承载装置,每一容置机构的倾斜段与该水平线之夹角等于晶圆之倒角部与该水平线之夹角。
本发明所述的晶圆承载装置,每一容置机构的倾斜段与该水平线之夹角不大于晶圆之倒角部与该水平线之夹角加上三十度。
本发明所述的晶圆承载装置,每一容置机构的倾斜段与晶圆的倒角部之间距不小于10微米。
本发明所述的晶圆承载装置,每一容置机构的下区段的凹部具有一自该凹部底端朝向该第一轴线延伸的阶梯部,该阶梯部之宽度不小于10微米。
本发明所述的晶圆承载装置,自每一容置机构的底壁面垂直延伸至对应之阶梯部的高度是晶圆之厚度的二分之一以上。
本发明的有益效果在于:在半导体磊晶制程中,该盘体绕该中心轴线旋转时,能藉由上述容置机构特殊设计的侧壁面使得所述容置槽内的晶圆受压均匀分布,避免因受离心力挤压而导致边缘或表面产生缺陷、损伤,使得晶圆质量下降,并且藉由上述倾斜段防止晶圆脱离容置槽。
附图说明
图1是一俯视图,说明本发明晶圆承载装置的一第一实施例;
图2是沿图1中线2-2剖切的一不完整的剖视图;
图3是一俯视图,说明本发明晶圆承载装置的一第二实施例;
图4是图3的一横剖面图,说明每一容置机构的一下区段;
图5是一剖视图,说明本发明晶圆承载装置的一第三实施例。
具体实施方式
下面结合附图及实施例对本发明进行详细说明。
参阅图1、2,说明本发明晶圆承载装置的第一实施例。该晶圆承载装置包含一盘体3,以及多个凹陷形成于该盘体3的容置机构2。该晶圆承载装置供多个晶圆1置放,每一晶圆1具有相反的一底表面11以及一顶表面13,其顶部周缘经倒角处理而形成一倒角部14且其部分周缘经切削而形成一定向平面12。
该盘体3可绕其中心轴线c旋转且包括一上表面301以及一沿该中心轴线c方向相反于该上表面301的下表面302。在本实施例中,该盘体3是由一镀有碳化硅的石墨所制成,且呈一圆盘状。
所述容置机构2以该盘体3之中心轴线c为基准呈一环状排列,须特别注意的是,所述容置机构2的数量以及在该盘体3上之排列方式可依不同的需求作修改,不以本实施例之数量以及排列方式为限制。每一容置机构2包括一形成于该盘体3之上表面301且呈圆形的开口21、一自该开口21朝向该盘体3之下表面302的方向延伸的侧壁面22,以及一连接该侧壁面22以与该侧壁面22共同界定出一容置槽200的底壁面32,该容置槽200供晶圆1自该开口21放入。在本实施例中,该底壁面32是一平面且供晶圆1置放,该底壁面32之设计是为了在进行半导体磊晶的制程中能够使晶圆1均匀地受热,但在其他实施态样中也可以是一凹面或是凸面,不以本实施例所揭露之平面为限制。
该容置机构2的侧壁面22具有一邻近对应之底壁面32的下区段23、一远离该底壁面32的上区段24,以及一形成于该下区段23以及该上区段24之间的倾斜段25。
定义一垂直通过对应之底壁面32中心的第一轴线p,该上区段24自对应之该开口21向下延伸至一第一转折部241,该倾斜段25自该第一转折部241朝远离该第一轴线p之方向斜向下延伸至一第二转折部251,且该倾斜段25面对晶圆1之倒角部14。该第二转折部251不高于晶圆1之顶表面13,当该盘体3绕该中心轴线c高速旋转时,该倾斜段25能够防止晶圆1脱离容置槽200。
此外,定义一水平通过所述容置机构2之第二转折部251的水平线l,该倾斜段25与该水平线l具有一夹角
该下区段23所围绕之空间的尺寸大于该容置机构2的开口21,该下区段23邻近对应之底壁面32且自该底壁面32的周缘向上延伸至水平对齐于该第二转折部251之位置231,该下区段23具有一远离该盘体3之中心轴线c的抵靠部31。当晶圆1放置于该容置机构2且该盘体3绕该中心轴线c旋转时,晶圆1会朝离心力之方向(亦即远离该中心轴线c之方向)偏移,而使晶圆1的定向平面12(或是除了该定向平面12之外的侧周面)抵靠该抵靠部31。该抵靠部31自水平对齐于该第二转折部251之位置231被向下挖空而形成一缺口311,以使该下区段23形成一高于对应之底壁面32的凹部312。在本实施例中,该凹部312具有一自该凹部312底端朝向该第一轴线p延伸的阶梯部313,该阶梯部313自该凹部312底端朝向该第一轴线p之方向延伸的宽度y较佳为不小于10微米。此外,自该底壁面32垂直延伸至对应的该阶梯部313的高度h较佳为晶圆1之厚度的二分之一以上。如果该高度h太小,该盘体3绕该中心轴线c旋转时晶圆1会因受压不均匀而容易导致边缘或表面产生缺陷、损伤。
参阅图3、4,说明本发明晶圆承载装置的第二实施例,该第二实施例与该第一实施例相似,其差异处在于在该第二实施例中,该容置机构2之容置槽200的横切面对应晶圆1之形状,且该抵靠部31形成有一抵贴部310,定义一条平行相关于该中心轴线c之切线t的假想线x,该抵贴部310沿着该假想线x之宽度w不小于晶圆1之定向平面12之宽度,当该盘体3绕该中心轴线c旋转时,晶圆1的定向平面12抵贴该抵贴部310。该抵贴部310之作用在于当该盘体3绕中心轴线c旋转时,能大幅地减少抵贴于该抵贴部310之晶圆1的缺陷产生。
参阅图5,说明本发明晶圆承载装置的第三实施例,该第三实施例与该第二实施例相似,其差异处在于在该第三实施例中,该容置机构2的侧壁面22自该开口21朝远离该第一轴线p之方向直接斜向下延伸至该底壁面32。该第三实施例之侧壁面22具有一下区段23,该下区段23供晶圆1抵靠,且该下区段23定义一抵贴部310(与该第二实施例类似),该抵贴部310之作用在于当该盘体3绕中心轴线c旋转时,晶圆1之定向平面12抵靠该抵贴部310而使晶圆1受压均匀而能大幅地减少晶圆1边缘或是表面产生缺陷。
以下结合实验数据(如下表一所示)对本发明作进一步说明,下表一所列之编号1至编号5之容置机构所用之晶圆为六吋(15.24厘米)硅晶圆(参照图4之晶圆1),晶向平面为(111)。每一晶圆之顶表面经倒角处理而形成一倒角部,且每一晶圆之周缘经切削而形成一定向平面,该倒角部之长度为350微米且该晶圆厚度1000μm,而该晶圆的定向平面之宽度为57.5毫米。每一晶圆之倒角部与其顶表面之夹角为24度。
下表一所列之编号6的容置机构所用之晶圆与上述编号1至编号5之容置机构所用的晶圆类似,但其侧表面是一圆弧面。以下分别对不同编号之容置机构作说明。
编号1之容置机构
编号1之容置机构(参考图1、5)之开口21呈圆形,而侧壁面22是自开口21直接斜向下延伸至底壁面32。
编号2之容置机构
其样式与该第二实施例相似(参考图2至4),其倾斜段25之夹角
编号3之容置机构
其样式与编号2之容置机构相似(参考图2至4),但自该底壁面32垂直延伸至该阶梯部313的高度h等于所使用晶圆之厚度的三分之二。
编号4之容置机构
其样式与编号2之容置机构相似,(参考图2至4),且其抵靠部31之高度接近所使用晶圆之厚度。
编号5之容置机构
其样式与编号2之容置机构相似(参考图2至4),但自该底壁面32垂直延伸至该阶梯部313的高度h等于所使用晶圆之厚度的三分之一。
编号6之容置机构
其样式与该第三实施例相似(参考图4、5),其开口21与晶圆1对应,且侧壁面22是自开口21直接斜向下延伸至底壁面32。
将对应编号1至编号6之容置机构的晶圆分别放入后即可进行半导体磊晶制程,该盘体之转速设定为1000rpm且以温度1060摄氏度进行加热一小时观察得出之滑移线(slipline)相关数据如下表所示。
表一
在表1中,高度比值是阶梯部313之高度h与所使用之晶圆1的厚度之比值;接触面积是抵靠部31与所使用之晶圆1的接触面积。
将编号2至编号6之容置机构(容置槽200之横切面形状对应于所使用之晶圆1)与对照组之容置机构(容置槽200之横切面为圆形)比较后可知,容置槽200之横切面形状若与晶圆1对应则滑移线长度缩短很多,且滑移线密度也大幅度地降低。
此外,将编号2至编号6之容置机构相比较后可知,编号2、3、4,若高度比值至少大于1/2,则晶圆1之边缘或是表面不易产生滑移线而使质量提高。编号4,容置机构高度接近所使用晶圆1之厚度,其与晶圆1之接触面积最大,滑移线最短。
需特别注意的是,编号1以及编号6之容置机构的侧壁面22都是自开口21直接斜向下延伸至底壁面32(参考图5),但编号6之容置机构之容置槽200的横切面形状对应于所使用之晶圆1,可从表1得知滑移线密度相较于编号1之容置机构大幅地下降。
综上所述,在半导体磊晶制程中,该盘体3绕该中心轴线c旋转时,能藉由上述容置机构2特殊设计的侧壁面22使得所述容置槽200内的晶圆1受压均匀分布,避免因受离心力挤压而导致边缘或表面产生缺陷、损伤,使得晶圆1质量下降,并且藉由上述倾斜段25防止晶圆1脱离容置槽200,故确实能达成本发明的目的。
惟以上所述者,仅为本发明的实施例而已,当不能以此限定本发明实施的范围,即大凡依本发明权利要求书及说明书内容所作的简单的等效变化与修饰,皆仍属本发明涵盖的范围内。