提高铟砷/镓锑超晶格红外探测器材料截止波长的方法及铟砷/镓锑Ⅱ类超晶格及其应用与流程

文档序号:13008162阅读:571来源:国知局
提高铟砷/镓锑超晶格红外探测器材料截止波长的方法及铟砷/镓锑Ⅱ类超晶格及其应用与流程

本发明涉及铟砷/镓锑ⅱ类超晶格及红外探测器材料技术领域,特别涉及铟砷/镓锑ⅱ类超晶格材料及提高铟砷/镓锑超晶格红外探测器材料截止波长的的方法。本发明是对已知的inas/gasb组成的第二类超晶格的晶格层结构进行改进并给出了提高第二类超晶格材料截止波长的方法并公开了本发明结构的铟砷/镓锑ⅱ类超晶格材料的应用。



背景技术:

与其它红外探测器相比,铟砷/镓锑ⅱ类超晶格红外探测器具有响应波段精确可控,响应波段宽、工作温度高、载流子寿命长、量子效率高、暗电流低和均匀性好及光学性能优异的特点;由inas,insb,gaas或者gasb重复性的沉积薄膜得到的超晶格材料显示了特殊的材料性能,例如有效的半导体能隙能,这些性能可以通过改变超晶格膜层厚度或者超晶格单位晶胞结构来实现。

在专利号为us8426845b2专利申请日为2013年3月23日的美国专利中公开了一种inas和gasb组成的第二类超晶格,它是一种长波红外超晶格,它在超晶格的单元晶胞中添加一层或者多层锑化铟,来调整超晶格的有效能隙能的自由度。通过向超晶格的晶胞中添加一层或者多层砷化镓则平衡由插入锑化铟层引起的晶格应力。它通过改变每个周期内每层insb层厚度来调节超晶格可见光截止波长,通过在gasb层和/或inas层内增插入薄的gaas层来补偿由于insb厚度增加带来的应力,超晶格内的gaas内层的应用补偿了由insb层引起的超晶格质量的损失。采用上述结构的超晶格,尽管其可见光截止波长有所提高,使红外探测器的优点可以在更宽的范围内得到应用,但是,由于此种结构的超晶格中是在inas或gasb材料中插入了gaas层,得到了一种对称的结构,它不仅需要在同一晶胞内的inas或gasb插入insb,还在两相邻晶胞的inas和gasb间插入insb,因此,每个晶胞中不同材料间形成的界面增多,使得材料的生成难度提高,也就是材料的生成成本提高,质量下降、设备的寿命降低,比如,在一个周期内假设原有四个界面,每增加两个界面设备的寿命会降低50%,同时设备的探测率不高。



技术实现要素:

本发明的目的是针对现有技术由于铟砷/镓锑ⅱ类超晶格的晶内界面多,使得材料的生长难度提高,材料的生长成本高、生产设备寿命低的不足,提供一种提高铟砷/镓锑超晶格红外探测器材料截止波长的方法及铟砷/镓锑ⅱ类超晶格材料及其应用。

本发明的目的是通过下述技术方案实现的:

一种提高铟砷/镓锑超晶格红外探测器材料截止波长的方法,通过增加所述铟砷/镓锑ⅱ类超晶格单胞中insb层的应力,改变超晶格材料的能带结构,增加所述铟砷/镓锑ⅱ类超晶格红外探测器材料截止波长;

所述的提高铟砷/镓锑超晶格红外探测器材料截止波长的方法,通过增加insb层的厚度增加所述insb层的应力;

所述的提高铟砷/镓锑超晶格红外探测器材料截止波长的方法,inas和gasb的单位晶胞内部界面层是insb层在insb界面层加入insb层,来增加所述铟砷/镓锑ⅱ类超晶格中晶格的应力;

所述的提高铟砷/镓锑超晶格红外探测器材料截止波长的方法,通过在铟砷/镓锑ⅱ类超晶格中在晶胞与晶胞的界面加入gaas层给单位晶胞加入反向应力,补偿由insb层加入引起的单位晶胞的应力,使单位晶胞的静应力为0;

所述的提高铟砷/镓锑超晶格红外探测器材料截止波长的方法,在insb与gasb层之间加入gaas层给单位晶胞加入反向应力补偿单位晶胞的应力,使单位晶胞的静应力为0。

本发明进一步提供一种铟砷/镓锑ⅱ类超晶格,所述的铟砷/镓锑ⅱ类超晶格中单位晶胞内部inas和gasb的界面层是insb层,单位晶胞结构为:inas层、insb层、gasb层和gaas层,insb层在inas层和gasb层间,gaas层在gasb层外;

所述铟砷/镓锑ⅱ类超晶格,插入的所述的insb层的厚度为inas和gasb形成的insb界面层的1-3倍。

本发明进一步提供一种铟砷/镓锑ⅱ类超晶格的应用,用于红外探测器超长波的探测;

所述铟砷/镓锑ⅱ类超晶格的应用,探测10微米以上的远红外光。

采用本发明方法,采用单位晶胞内界面层为insb层的铟砷/镓锑ⅱ类超晶格,通过增加insb层的应力来改变能带结构增加超晶格红外探测材料的截止波长,insb层应力越大,材料禁带宽度越大,可吸收截止波长越长,提高了红外探测器材料的探测波长,,且在相同的波长的情况下,采用本发明方法得到的铟砷/镓锑ⅱ类超晶格材料制成的器件具有更高的探测率。

采用本发明结构的铟砷/镓锑ⅱ类超晶格材料,在单位晶胞inas和gasb形成的界面层insb层处增加insb层的厚度,形成了单独的insb层,将gaas层插入到了两个相邻晶胞的界面处,位于单位晶胞gasb层外,补偿因插入insb层应力而造成的单位晶胞内应力的增加,通过薄的gaas层使晶格的每个晶胞内的应力和为0,使晶格中的inas、gasb不再对称,也就是将gaas层插入到一层的gasb与另一层的inas层间,减少了单位晶胞内不同材料形成的界面的数量,简化了单位晶胞内材料的结构,降低了晶格的生成难度,同时,由于此种结构打破了现有技术在补偿应力时采用的对称结构,采用了非对称结构平稳应力,不仅减少了材料界面数量,减少了层级,且进一步提高了铟砷/镓锑ⅱ类超晶格材料的探测波长和探测率,本专利通过减少层级增加了探测波长,取得了意想不到的效果。

附图说明

图1为本发明超晶格材料单位晶胞的结构示意图;

图2为由inas/gasb组成的ⅱ类超晶格材料单位晶胞第一种原子排列示意图;

图3为由inas/gasb组成的ⅱ类超晶格材料单位晶胞第二种原子排列示意图;

图4为采用图2所示单位晶胞原子排列方式的inas/gasbⅱ类超晶格材料中加入insb层和gaas层后单位晶胞结构示意图;

图5为采用图3所示单位晶胞原子排列方式的inas/gasbⅱ类超晶格材料中加入insb层和gaas层后单位晶胞结构示意图。

附图标记说明

1-inas2-insb3-gasb4-gaas

具体实施方式

下面结合具体实施例及附图对本发明作进一步地描述:

对于由inas/gasb组成的ⅱ类超晶格,其具有两种基本的材料组份,inas和gasb,对于由inas和gasb组成的ⅱ类超晶格材料,其元素的排列方式具有一定的规律性,就是ⅴ族元素和ⅲ族元素依次交替排列,即一层ⅴ族元素、一层ⅲ族元素、一层ⅴ族元素、一层ⅲ族元素依次排列,或一层ⅲ族元素、一层ⅴ族元素、一层ⅲ族元素、一层ⅴ族元素依次交替排列。采用不同的元素排列方式,inas/gasbⅱ类超晶格中inas层和gasb层形成的晶胞内界面层不同,一种如图2所示,单位晶胞inas和gasb的界面层是gaas,另一种如图3所示,单位晶胞inas和gasb的界面层是insb,经研究表明,当界面层是insb时可以获得好的超晶格材料质量。

经我们研究表明改变超晶格材料中insb层的应力可以改变材料的禁带宽度从而改变探测截止波长,也就是提高insb层的应力可提高超晶格材料的禁带宽度,提高材料的探测截止波长,尤其是超晶格红外探测器材料的禁带宽度越大,探测率越高。

可以通过增加单位晶胞中insb层的厚度来增加insb层的应力。如图2所示,可以选用单位晶胞界面层是gaas的铟砷/镓锑ⅱ类超晶格材料,在inas和gasb组成的单位晶胞内增加insb层厚度,通过增加单位晶胞中insb层的厚度提高单位晶胞的应力,其单位晶胞的结构如图4所示,得到一层是inas、下一层是insb、下一层是gasb、下一层是gaas、下一层是gasb的单位晶胞结构的铟砷/镓锑ⅱ类超晶格材料。优选采用如图3所示单位晶胞界面层是insb的超晶格,直接在in原子和sb原子形成的insb界面层插入单独的insb层,得到如图5所示的一层是inas、下一层是insb、下一层是gasb的单位晶胞结构的超晶格材料。采用如图5所示结构的超晶格材料,在inas/gasb的单位晶胞内原有的insb界面层插入insb,使insb连续生长,增加insb层厚度,经研究表明,单位晶胞中在insb层厚度一致的情况下,连续生长的insb层的应力远高于不连续生长insb层的应力,也就是图5所示的单位晶胞的insb层的应力远远高于图4所示的单位晶胞的应力,可以得到超高应力层(highly-strained)。经研究表明,当单位晶胞中应力增大后,随着insb层生长周期的加大,每长一个周期insb层应力就会继续增加,超晶格材料会有很强的压应力,因此超晶格材料会在压应力的作用下破坏,因此,需要保证每个单位晶胞内的静应力为0。因为铟锑的晶格常数比铟砷和镓锑这两个的晶格常数大很多,所以insb层的厚度增加将引起单位晶格应力的变化,由于单位晶格应力应为0,为了补偿由于insb而造成的单位晶格应力的增加,因此在单位晶胞中加入晶格常数小的与insb层应力相反的反应力,对单位晶胞中的应力进行补偿,使单位晶胞中的静应力为0。本发明中优选在单元晶胞的两侧,也就是相邻两单位晶胞的界面间插入gaas层,给单位晶胞加入一反向应力。

本发明在材料单位晶胞内界面层为insb的超晶格中,在inas层1和gasb层3两种材料的insb界面层插入insb层2,增加insb层的厚度,使insb层连续生长,增加材料的禁带宽度,增大材料探测波长,提高inas/gasbⅱ类超晶格材料单位晶胞的insb层应力,从而提高铟砷/镓锑超晶格红外探测材料的探测波长。经研究表明,插入的insb越厚,材料的应力增加越大,铟砷/镓锑ⅱ类超晶格红外探测材料的探测波长越大。采用本发明的方法得到的铟砷/镓锑ⅱ类超晶格红外探测材料,它的截止波长大于3um,可以吸收3um-300um的红外光,因此采用本发明的方法生成的铟砷/镓锑ⅱ类超晶格红外探测材料可探测大于10um以上的任何波长。

采用本发明的方法生成的超晶格材料,将镓砷移到两个相邻单元晶胞形成的界面之间,因此材料的结构是不对称的,每个单位晶胞内因不同材料形成的界面少,材料生成相对简单,材料生成难度降低,材料的生成成本降低,生长时间短,质量提高,生成材料所用的设备的裂解炉阀门开关次数得到降低,比现有技术专利中可以降低50%,生成成本降低50%。

红外探测器的波长与晶格中每层材料的厚度相关,每层材料的厚度增加应力增加,红外探测器材料的禁带宽度增加,材料探测的波长增加,本发明中只在inas/gasb材料的单位晶胞间插入insb,单位晶胞内insb的单层厚度大,因此可在相同的晶格厚度下获得更长的探测波长,在相同的探测波长下有更高的器件性能,比如高的探测率,因得到的材料的噪声小,在外界环境一致的条件下,所以探测率更高。本发明方法中将现有技术中单位晶胞由不同材料分隔的两层insb合并成一层后,使两层insb合在一起生长,其增长是连续的,因此材料应力会成倍增加,其截止波长会成线性增加,可以探测背景技术所述专利中公开的晶格结构更长的波长。插入的insb层的厚度优选为inas/gasb超晶格材料中insb界面层厚度的1-3倍。

本发明用于红外探测器设备,促进红外光设备材料的发展。这种设备用于电子和光子设备,用来检测或者传递以红外线形式存在的能量。例如应用在工业光探测器,例如二极管或光电元件,或者光发射装置例如二极管和激光中。本发明的铟砷/镓锑ⅱ类超晶格材料的沉积基体可主要由gasb或inas组成,沉积在此沉底上的材料与沉底点阵结构相同。本发明的沉积沉底不局限于某一特定的主体基体。

将本发明用于光电二极管时,需对超晶格设备进行外部电子接触,一旦超晶格设备接触到一定的光波长时,即产生外部电流。这种电流可用于分析具有特定波长或一定波长带的光。当光的光子能量超过要撞击的超晶格的有效能隙能时,这种光即可被超晶格吸收,在材料内部产生电子-空穴对,产生外部电流。

当本发明应用于生产光发射器时,需要对本发明中的长大的第二类超晶格材料设定外部电接触,以使超晶格材料以表现二极管的性质沉积。电流可从外部穿过超晶格材料。当这种电流遍超晶格设备时,在超晶格能带隙两边的电子和空穴相结合,从而使得具有和超晶格能带隙能量相当的光子可以完成发射。

沉积基体还可主要由si组成;沉积基体还可主要由ge组成。可在第二类超晶格材料可添加掺杂物,使超晶格材料呈现p-型电性能;还可在第二类超晶格材料可添加掺杂物,使超晶格材料呈现n-型电性能。可在沉积过程中添加不同次的掺杂物,使超晶格材料呈现二极管电性能。

第二类超晶格材料可以用分子束外延生长技术沉积。也可以和金属-有机化学气相沉积技术沉积。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1