具有延伸到导热电介质片外的导电层的芯片载体的制作方法

文档序号:14251503阅读:150来源:国知局
具有延伸到导热电介质片外的导电层的芯片载体的制作方法

本发明涉及多种芯片载体、一种封装体、一种车辆、一种使用方法和多种制造方法。



背景技术:

例如用于汽车应用的功率模块为一个或两个以上功率器件提供物理容纳,该功率器件通常是成包括一个或两个以上集成电路器件的电子芯片形式的功率半导体装置。功率模块的集成电路器件的示例是绝缘栅双极晶体管(igbt:insulatedgatebipolartransistor)和二极管。

还有潜在的空间在高效地去除热量和提供扩展功能的同时简化封装体的可制造性。



技术实现要素:

可能需要一种芯片载体和一种封装体,从而在高效地去除在运行期间产生的热量的同时简化了可制造性并提供了扩展功能。

根据一个示例性实施例,提供了一种芯片载体,其包括:导热电绝缘片、位于所述片的第一主表面上(特别是直接地,即在之间没有附加元件,或者间接地,即在之间具有至少一个附加元件)的第一导电结构和位于所述片的第二主表面上(特别是直接地,即在之间没有附加元件,或者间接地,即在之间具有至少一个附加元件)的第二导电结构,其中,所述第一导电结构和所述第二导电结构延伸到所述片的侧向边缘(特别是外侧向边缘)外。

根据另一示例性实施例,提供了一种芯片载体,其包括:导热电绝缘片、位于所述片的第一主表面上的第一导电结构和位于所述片的第二主表面上的第二导电结构,其中,所述第一导电结构和所述第二导电结构中的至少一个(特别是两者)延伸到所述片的侧向边缘外并且比所述片具有更大的表面(即,具有面积比所述片的相应主表面的面积更大的主表面)。

根据又一示例性实施例,提供了一种封装体(例如功率封装体),其包括:具有上述特征的芯片载体、安装在所述芯片载体的所述第一导电结构上的至少一个电子芯片(例如半导体芯片)以及包封所述至少一个电子芯片的至少一部分和所述芯片载体的至少一部分的包封材料。

根据又一示例性实施例,提供了一种制造芯片载体的方法,其中,所述方法包括:将导热电绝缘片、位于所述片的第一主表面上的第一导电结构和位于所述片的第二主表面上的第二导电结构互连,以及将所述第一导电结构和所述第二导电结构中的一个或两者配置成延伸到所述片的侧向边缘外。

根据又一示例性实施例,提供了一种制造封装体的方法,其中,所述方法包括:提供具有上述特征的芯片载体,将至少一个电子芯片安装在所述芯片载体的所述第一导电结构上,以及通过包封材料包封所述至少一个电子芯片的至少一部分和所述芯片载体的至少一部分。

根据另一示例性实施例,提供了一种车辆,其包括具有上述特征的芯片载体或具有上述特征的封装体。

根据又一示例性实施例,具有上述特征的芯片载体或具有上述特征的封装体用于汽车应用。

根据本发明的一个示例性实施例,提供了一种芯片载体和一种相应的封装体,其中,所述芯片载体的外侧向边缘不由电绝缘导热片限定,而是由布置在所述片的两个相反的主表面上的一个或两个导电结构限定。与传统方法(其中,例如直接铜结合(dcb:directcopperbonding)衬底包括具有载体功能的电介质导热片,在电介质导热片上,电介质导热片的主表面的仅部分区域被铜箔覆盖)相比,本发明的示例性实施例实施了一种构型,其中,所述电介质导热片的主表面上的导电结构中的一个或甚至两者具有比所述电介质导热片更大的延伸尺度。通过采取这种措施,可以降低所述芯片载体和所述封装体的成本和重量,因为所述电介质导热片的尺寸可以显著降低,而不会影响所述芯片载体的功能。相反,通过在导热电绝缘片的主表面上布置一个或两个具有延伸超过所述电绝缘导热片的延伸尺度的区域的导电结构,所述芯片载体的电功能甚至可以增加。例如,所述导电结构中的一个、特别是完全嵌入所述封装体的包封材料中的那个导电结构,不仅可以用作用于电子芯片的电安装基座,而且甚至可以延伸出包封材料,从而另外还提供将所述封装体的外部与内部电耦合的布线结构的功能。此外,已经惊奇地发现,与具有大尺寸的非常昂贵的电介质导热片的传统构型相比,根据一个示例性实施例的包括具有缩回的电介质导热片的芯片载体的封装体中的均匀散热没有明显降低。因此,可以提供一种芯片载体和一种相应的封装体,其可在简单和高紧凑性制造的同时提供高的热性能、增加的使用灵活性和扩展的功能。特别是当两个导电结构都侧向延伸到所述电介质导热片的侧边界外时,可以在层堆叠体的侧面形成凹部或底切部。这个凹部可以在包封时用包装材料填充,这提高了粘附性并防止层离。

进一步示例性实施例的描述

在下文中,将说明所述芯片载体、所述封装体、所述车辆和所述方法的进一步示例性实施例。

在一个实施例中,所述导热电绝缘片是诸如连续层或图案化层的连接结构。然而,在另一个实施例中,所述导热电绝缘片可以由多个单独的(并且优选共面的)岛组成,所述岛仅设置在所述芯片载体的需要导热电绝缘片的特定位置处(例如在要安装在所述芯片载体上的一个或两个以上电子芯片的一个或两个以上安装位置处和/或在需要机械支撑的一个或两个以上区域中)。这产生了一种可以简单制造的紧凑配置。

在一个实施例中,所述第一导电结构和所述第二导电结构中的至少一个比所述片具有更大的表面积。换句话说,所述导热电绝缘片的主表面可以小于相应的导电结构的主表面中的一个。在这种实施例中,所述相应的导电结构的仅一部分与导热电绝缘片直接接触,而所述相应的导电结构的另一部分可延伸到所述导热电绝缘片的侧向界限外,例如形成悬伸结构。因此,所述相应的导电结构的功能活动区域可以延伸到所述导热电绝缘片的侧向界限外。

在一个实施例中,所述第一导电结构和所述第二导电结构中的至少一个比所述片具有更大的厚度。通过采取这种措施,可以增加电导率并且可以减小电阻,这使所述芯片载体适合于低损耗电应用。此外,可以有利地减少所需的通常昂贵的导热电绝缘片的相对量。

在一个实施例中,所述第一导电结构包括被配置用于安装电子芯片的至少一个安装区域。这样的安装区域可以通过提供适合于机械地安装和/或电耦合所述电子芯片的焊料结构或其它材料来限定。

在一个实施例中,所述第一导电结构附加性地包括至少一个另外的功能元件。鉴于相应的导电结构的增加的尺寸,还可以实施一个或两个以上另外的功能、特别是电功能。

在一个实施例中,所述至少一个另外的功能元件包括用于电连接所述电子芯片的至少一个引线(例如至少一个电源管脚和/或至少一个信号管脚)。通过提供图案化的导电层或片(其中,一个或两个以上引线延伸到所述导热电绝缘片的侧向边缘外),可以省略单独的引线结构、例如单独的引线框架。这增加了所述芯片载体和所述封装体的紧凑性,并且降低了制造所述芯片载体和所述封装体的工作量。

在一个实施例中,所述第二导电结构被配置为连续层。因此,通过这种连续的导电层,可以提高在所述封装体运行期间由所述至少一个电子芯片产生的热量的适当的热量去除。此外,可以增加在连续外部导电层处安装封装体的接触面积。

在一个实施例中,凹部在由所述片、所述第一导电结构和所述第二导电结构组成的堆叠体的侧向边缘处(更确切地说是在缩回的片位置处)形成在所述片中。这种凹部或底切部可以例如是周向闭合的,因此可以围绕所述芯片载体的外周延伸。通过采取这种措施,可以形成在制造所述封装体方面在包封期间可以由包封材料填充的底切部。因此,可以改善如此形成的封装体的机械完整性,并且可以抑制所述芯片载体与所述包封材料之间的层离。

在一个实施例中,所述芯片载体包括可以与所述第一导电结构整体形成(或者可以与所述第一导电结构分离设置)并且承载所述第一导电结构的引导框架。这种环形引导框架可以用作临时载体,用于支撑相应的导电结构的延伸到所述导热电绝缘片外的部分。因此,制造的封装体的精度和可靠性可以是非常高的。

在一个实施例中,所述引导框架具有一个孔,所述第一导电结构在所述孔中暴露给所述片。因此,在基于所述芯片载体制造封装体期间,可以在去除临时引导结构之前支撑相应的导电结构的基本上整个表面。例如,所述片和所述引导框架可以一起形成平面结构、例如图案化层,并且可以有利地实施为共同的冲压部件。

在一个实施例中,所述封装体包括安装在所述至少一个电子芯片上或上方、即在所述电子芯片的与所述芯片载体相反的另一侧上的另外的芯片载体(特别是也具有上述特征)。因此,所述一个或两个以上电子芯片可以夹置在两个芯片载体的相对的主表面之间,所述两个芯片载体优选地均是在相应的导热电绝缘片的至少一个主表面上具有延伸到导热电绝缘片的侧向界限外的至少一个导电结构的这种类型。通过采取这种措施,整体上可以进一步增加所述封装体的功能。应该说,所述一个或两个以上电子芯片在所述两个芯片载体之间的这种夹置可以是直接夹置,即在之间没有其它结构,或间接夹置,即在之间具有一个或两个以上其它结构、例如一个或两个以上间隔块(如下面的描述)。

在一个实施例中,所述封装体在所述至少一个电子芯片和所述另外的芯片载体之间包括间隔体、特别是导热间隔体。这样的一个或两个以上间隔体可以例如被实施为允许适配所述封装体的垂直尺寸的铜块。它们可以由诸如铜的高导热材料制成,以便另外有助于双面冷却封装体的热量去除。

在一个实施例中,所述芯片载体和所述另外的芯片载体中的至少一个的所述第二导电结构形成所述封装体的外表面的一部分。这样的外表面可以与热界面材料、冷却流体、冷却片和/或冷却体耦合,用于高效地去除热量。

在一个实施例中,所述封装体被配置成双面冷却(例如通过提供形成所述封装体的两个相反的主表面的一部分的上述类型的两个芯片载体)。通过双面冷却意味着,在所述封装体运行期间产生的热量可以经由所述封装体的两个相反的主表面从所述封装体消散。特别适用于功率半导体应用的这种双面冷却构型与根据本发明的一个示例性实施例的芯片载体构型完好兼容。

在一个实施例中,所述芯片载体的所述第一导电结构的至少一个引线延伸到所述包封材料外。因此,可以省去单独的引线框架,因为相应的第一导电结构(其上安装有所述至少一个电子芯片并且由包封材料包封)可以侧向延伸到所述包封材料外,因此可以用于电接触包封的所述至少一个电子芯片。将引线框架功能集成在所述芯片载体的所述导热电绝缘片上的所述导电结构之一中允许制造特别紧凑和轻便的封装体。

在一个实施例中,所述芯片载体的所述第一导电结构的至少一个引线特别是使用由至少一个接合导线(其可能是特别是用于连接一个或两个以上信号管脚的合适的措施)和至少一个接合带(其可能是特别是用于连接一个或两个以上电源管脚的合适的措施)组成的组中的至少一个与所述至少一个电子芯片电连接。这种连接构型使单独的引线框架可省去。

在一个实施例中,所述方法包括在所述片与所述第一导电结构和所述第二导电结构中的至少一个之间提供连接介质。鉴于所述芯片载体的所述导电结构在所述片之上的重叠几何形状,特别有利的是,在片与相应的导电结构之间的连接介质提高了粘附性并抑制了层离。这增加了制造的封装体的可靠性。

在一个实施例中,所述连接介质包括焊料材料。所述导热电绝缘片与相应的导电结构之间的焊接连接提供了即使在诸如高热负载的恶劣条件下仍坚固、可靠的机械连接。

在一个实施例中,所述互连包括加热,特别是在真空环境、保护气体氛围、形成气体氛围和存在机械按压力中的至少一种情况下进行加热。特别是在所述加热工序期间当保护气体氛围、真空、形成气体和/或机械按压力被施加时,通过供应热能将所述片与所述导电结构互连已经成为制造可靠的芯片载体的有力措施。

在一个实施例中,所述方法包括提供在所述互连之前承载所述第一导电结构的引导框架,以及在使用所述芯片载体形成封装体之后从制造的芯片载体移除引导框架。因此,所述引导框架可以用作用于支撑所述第一导电结构的一个或两个以上悬伸部分的临时载体,从而简化操纵并防止所述芯片载体在制造所述芯片载体和使用所述芯片载体制造封装体期间出现不希望的弯曲。这也有助于抑制所述芯片载体内的内部应力,从而提高所述封装体的可靠性。在封装体制造好之前,所述引导框架可以从所述封装体的其余部分移除,使得所述引导框架不形成最终产品的一部分。所述引导框架可以与所述第一导电结构整体形成(例如,作为例如由铜片制成的共用的冲压部件)。

在一个实施例中,所述方法包括使所述第一导电结构和所述第二导电结构中的至少一个粗糙化。在包封之前粗糙化的优点在于,可以显著地提升所述第一导电结构与所述包封材料之间的粘附性。这有效地抑制了所述封装体的组成部分的层离。有利地,表面粗糙化可以在附连所述电子芯片之前完成,因为这能保护灵敏电子芯片而不会遭受与可能有利地用于粗糙化的化学物质相互作用产生的损害。作为在裸片附连之前粗糙化所述导电结构中的至少一个的替代性方案,还可以在裸片附连之后在所述导电结构中的至少一个上附连粘附促进剂。

在一个实施例中,所述包封材料包括模制化合物。对于通过模制进行包封来说,可以使用塑性材料或陶瓷材料。所述包封材料可以包括环氧树脂材料。例如用于提高导热率的填料颗粒(例如sio2、al2o3、si3n4、bn、aln、金刚石等)可以嵌入所述包封材料的环氧树脂基基质中。

在一个实施例中,所述电子芯片被配置为功率半导体芯片。因此,所述电子芯片(例如半导体芯片)可以用于例如汽车领域中的功率应用,且例如可以具有至少一个集成绝缘栅双极晶体管(igbt)和/或至少一个其它类型的晶体管(诸如mosfet、jfet等)和/或至少一个集成二极管。这样的集成电路元件可以采用例如硅技术或基于宽带隙半导体(例如碳化硅、氮化镓或硅上氮化镓)制成。半导体功率芯片可以包括一个或两个以上场效应晶体管、二极管、逆变电路、半桥、全桥、驱动器、逻辑电路、其它装置等。

在一个实施例中,所述电子芯片经受垂直电流流动。根据本发明的示例性实施例的所述封装体构型特别适用于需要垂直电流流动、即在垂直于所述电子芯片的两个相反的主表面的方向上的电流流动的高功率应用,其中一个主表面被用于将所述电子芯片安装在所述载体上。在这样的实施例中,双面冷却是非常重要的。

在多个实施例中,所述半导体芯片可以形成用作半桥、共基共射电路、由场效应晶体管和双极晶体管彼此并联连接构成的电路或功率半导体电路的电路。因此,根据多个示例性实施例的封装构型可与各种不同的电路概念的要求兼容。

在一个实施例中,所述功率模块或封装体被配置为以下组中的一种:引线框架连接的功率模块、晶体管外形(to:transistoroutline)电子器件、四方扁平无引线封装(qfn:quadflatnoleadspackage)电子器件、小外形(so:smalloutline)电子器件、小外形晶体管(sot:smalloutlinetransistor)电子器件、以及薄型小外形封装(tsop:thinsmalloutlinepackage)电子器件。因此,根据一个示例性实施例的所述模块或封装体与标准封装概念完全兼容(特别是与标准to封装概念完全兼容),并且外观上作为常规模块或封装体呈现,这是高度便利用户的。在一个实施例中,所述封装体被配置为功率模块,例如,模制功率模块。

作为形成所述半导体芯片或电子芯片的基础的衬底或晶片,可以使用半导体衬底、优选硅衬底。替代性地,可以提供氧化硅或另一绝缘体衬底。也可以实施锗衬底或iii-v族半导体材料。例如,示例性实施例可以以gan或sic技术实施。

此外,示例性实施例可以利用诸如合适的刻蚀技术(包括各向同性和各向异性刻蚀技术,特别是等离子体刻蚀、干刻蚀、湿刻蚀)、图案化技术(其可能涉及光刻掩模)、沉积技术(例如化学气相沉积(cvd:chemicalvapordeposition)、等离子体增强化学气相沉积(pecvd:plasmaenhancedchemicalvapordeposition)、原子层沉积(ald:atomiclayerdeposition)、溅射等)的标准半导体加工技术。

从以下结合附图所作的描述和所附权利要求书中,本发明的上述和其它目的、特征和优点将变得显见,在附图中,相同的部件或元件由相同的附图标记表示。

附图说明

所包括的用以提供对示例性实施例的进一步理解并构成说明书的一部分的附图示出了示例性实施例。

在图中:

图1至图3示出了根据一个示例性实施例的在制造芯片载体期间获得的结构的剖视图。

图4示出了根据本发明的一个示例性实施例的芯片载体的预成型品的部件的分解图。

图5示出了根据本发明的一个示例性实施例的芯片载体的三维视图。

图6示出了根据本发明的一个示例性实施例的具有安装的电子芯片的芯片载体的三维视图。

图7示出了在电子芯片上具有间隔体的根据图6的芯片载体。

图8示出了在其上附连另外的芯片载体的根据图7的结构。

图9示出了根据本发明的一个示例性实施例的芯片载体的三维视图,在所述芯片载体上已经安装有电子芯片,但是仍然有连接并支撑所述芯片载体的第一导电结构的临时引导框架。

图10示出了根据本发明的一个示例性实施例的封装体的三维视图。

图11示出了根据图10的所述封装体的三维剖视图。

图12示出了根据图10和图11的所述封装体的剖视图。

图13示意性地示出了根据本发明的一个示例性实施例的包括功率封装体的车辆。

具体实施方式

图中的图示是示意性的。

在更加详细地描述进一步的示例性实施例之前,将基于已开发的示例性实施例总结本发明人的一些基本考虑,所述已开发的示例性实施例提供了可简单制造的封装体的高效冷却。

根据本发明的一个示例性实施例,提供了一种用于双面冷却封装体的最小衬底。

传统的芯片载体例如为直接铜结合(dcb)衬底、绝缘金属衬底(ims:insulatedmetalsubstrate)等。然而,在所有这些概念的情况下,具有包封的芯片的封装体中的热量去除仅经由一面实现。对于功率半导体应用,这可能还不够。而且,由于上述的和其它的衬底所需的大面积的导热结构的高成本,这种传统的芯片载体的成本高。

根据本发明的一个示例性实施例,提供了一种封装体,其可以优选地以双面冷却构型配置。高度优选地,这种封装体可以基于在导热电绝缘片的相反的主表面上具有一个或两个导电结构的芯片载体制造,所述一个或两个导电结构延伸到所述片的侧向界限外。这种芯片载体允许将导热电绝缘片的尺寸与金属载体箔(即,所述导电结构)的尺寸解耦。因此,可以实现这种芯片载体的可用导电表面的增加,而不需要增加所需的导热电绝缘材料的量。这节省了成本,并允许制造紧凑的封装体。此外,由于至少两个传统上分离的元件的功能可以组合或集成在具有延伸区域的导电结构中的一个中,所以这种构型可以减少封装体所需的单独部件的数量。例如,这种导电结构可以同时用作用于电子芯片的安装基座和提供延伸到使用这种芯片载体的封装体的包封材料外的一个或两个以上引线。此外,根据本发明的一个示例性实施例的芯片载体构型允许所述芯片载体的各单独的片或层的完全解耦。

根据一个示例性实施例,提供了一种由不同功能的三个层类型结构组成的芯片载体。导电结构中的一个可以被配置为电位的载体,另一个导电结构可以被配置为封装体的有助于高效去除热量的外层,所述导热电绝缘材料的芯部片可以提供电隔离并且还可以有助于去除集成在所述封装体内的所述一个或两个以上电子芯片在运行期间产生的热量。

有利地,电介质高性能热片在空间上小于上下导电层。通过相应地摆脱所述导电结构中的一个或两者的可能尺寸方面的约束或限制,可以在这种空间扩展的导电结构中集成至少一个另外的功能。例如,这种附加功能可以是替代引线框架。因此,这种导电结构可以形成容易制造的封装体的包封材料外接触部或引线的至少一部分。这种引线可以是电源管脚和/或信号管脚。

由具有空间上过大的芯片载体的这种构型形成的中空空间或凹部可以由诸如树脂型包封材料的包封材料、例如模制化合物填充。通过采取这种措施,可以相对于环境实现对封装体的内部的保护。填充间隙、空间、空隙或凹部的这种包装材料还可以在被填充的区域中提供可靠的电隔离,以便在可用于再分配和/或热扩散的铜区域之间提供电介质解耦。

利用根据本发明的示例性实施例的芯片载体构型,可以以合理的工作量制造三维芯片载体,其中,所述导电结构(特别是铜层)的尺寸和/或厚度基本上与夹置在之间的高导热绝缘材料的尺寸无关。

根据本发明的一个示例性实施例,可以提供一种封装体(特别是实施了双面冷却,其中,在其它实施例中也可能是单面冷却),其中,在所述至少一个芯片之上和/或在所述至少一个芯片之下的高导热片被配置为使其具有比其内和外导电覆盖结构或层更小的面积。这些导电结构可用于电再分配任务和/或用于热扩散。

所述导电结构之间的区域可有利地用合适的包封材料、例如模制化合物(例如基于环氧树脂)部分或完全填充。所述包装材料可以至少部分地限定所述封装体的外形。

与传统方法(其中,单独的引线框架用于使一个或两个以上电子芯片与包封的封装体的外部电接触并且可以提供信号管脚以及电源管脚)相反,可以省略单独的引线框架并且其功能可以由所述芯片载体的一部分、更确切地由所述芯片载体的导电结构中的至少一个来实现。换句话说,特别是通过所述芯片载体的封装体内部导电结构,引线框架功能可以集成在所述芯片载体或衬底内。这允许制造具有低的不希望的层离倾向的紧凑的封装体。

例如,所述导热电绝缘片可以由陶瓷材料(例如氧化铝、氮化硅或氮化铝)制成。例如,所述导热电绝缘片可以具有至少10w/mk、特别是至少50w/mk、更特别是至少100w/mk的导热率。

所述导电结构的材料可以是例如具有高导热率和高导电率的铜或铝。

图1至图3示出了根据一个示例性实施例的在制造芯片载体100期间获得的结构的剖视图。

从图1可以看出,制造芯片载体100和最终的封装体120的制造工艺的起点是构成导热电绝缘片102的陶瓷板。导热电绝缘片102可以是具有高导热率和耐断裂性的陶瓷、例如氮化硅(si3n4)。可以根据由某一应用所要求的电压击穿性能来选择导热电绝缘片102的厚度。此外,导热电绝缘片102的厚度可以根据要在导热电绝缘片102的两个相反的主表面上施加的两个相反的导电结构104、106之间所需的间隙或空间进行选择(见图4)。还可以考虑用于包封封装体120的包封材料的模制流动特性来选择厚度。

参考图2,连接介质128被施加在导热电绝缘片102的两个相反的主表面上。然后,连接介质128将设置在片102与第一导电结构104和第二导电结构106中的每个之间。

从图2可以看出,片102的两个相反的主表面被连接介质128的多个层区段覆盖。图2中所示的导热电绝缘片102可用于制造多个芯片载体100,其中,连接介质128的每对相反的层区段对应于一个芯片载体100,对比图3可以看出。连接介质128可以通过丝网印刷施加到导热电绝缘片102的相应的表面部分。从图2可以看出,通过连接介质128实现导热电绝缘片102的双面覆盖。为了提升与随后施加的铜材料的粘附性,连接介质128可以包括焊料材料(例如银)以及粘附促进剂(例如钛)。连接介质128在导热电绝缘片102的两个相反的主表面上的印刷可以根据稍后施加的铜材料的位置进行。可以调节负孔径,使得连接介质128的印刷区域可以小于其后施加的铜结构。

应该注意,连接介质128的材料不会覆盖导热电绝缘片102的不希望的表面部分,从而可以确保两个相反的导电结构104、106之间的可靠的电流隔离。在将导电结构104、106安装在导热电绝缘片102的两个相反的主表面上之后,可以去除连接介质128的任何残留的暴露材料。

在所述印刷工序之后,图2所示的结构可被单个化分割为多个单独的件,其中,每个件可以用作用于制造相应的芯片载体100的基础。图3示出了这种单个化分割工序的结果。为了对图2所示的半成品进行单个化分割,可以通过激光锯切出沟槽,所得到的结构可以通过将其折断成图3所示的单独的件而被单个化分割。当通过这种折断工序形成粗糙的侧表面时,这在稍后的包封工序中对与包封材料的粘附具有附加的有利效果。

图4示出了根据本发明的一个示例性实施例的芯片载体100的预成型品的部件的分解图。

参考图4,导热电绝缘片102(其可以由陶瓷、例如氧化铝、氮化硅、氮化铝制成)与第一导电结构104(其在这里被实施为图案化铜片,包括具有四个用于安装四个电子芯片110的安装基座111的安装区域108、信号管脚113和电源管脚115以及辅助引导框架116)利用它们间的连接介质128互连。引导框架116用作第一导电结构104的临时载体,并且在制造过程中提供稳定性。这与传统的直接铜结合(dcb)衬底不同,在传统的直接铜结合(dcb)衬底中,陶瓷片用作两个铜片的载体。此外,导热电绝缘片102在其另一主表面上与第二导电结构106(其在这里被实施为连续铜片)利用它们之间的连接介质128互连。第一导电结构104可以例如是例如由铜制成的冲压部件。第二导电结构106可以例如是平面连续金属片、例如铜片。连接介质128有助于所述组成部分之间的正确互连。从图4可以看出,第一导电结构104和第二导电结构106都延伸到片102的外侧向边缘外,并且每个都具有比导热电绝缘片102更大的表面积。所描述的互连工序可以通过在真空环境中或在保护气体氛围中加热来实现。引导框架116在所述互连之前承载第一导电结构104的安装区域108、信号管脚113和电源管脚115。在完成封装体120的形成之后,引导框架116可以与第一导电结构104的安装区域108、信号管脚113和电源管脚115分离。因此,引导框架116可以被表示为在分离之前与安装区域108、信号管脚113以及电源管脚115整体形成的临时载体。因此,引导框架116可以稍后与制造的芯片载体100分离。

引导框架116暂时地、即仅在制造工序的一部分期间承载第一导电结构104,引导框架116可以与第一导电结构104整体形成。替代性地,引导框架116和第一导电结构104可以形成为分离的结构。为了暂时地承载第一导电结构104,引导框架116具有由环形结构限定的中心孔118,其中,第一导电结构104在中心孔118的区域中暴露给片102。

从图4可以看出,图1至图3的工序通过形成导热电绝缘片102与导电结构104、106的层堆叠体来继续。有利地,导热电绝缘层结构102的表面积和侧向延伸尺度小于导电结构104、106的表面积和侧向延伸尺度。因此,可以使用相对较厚的导电结构104、例如厚度为0.8mm的铜片。使用非对称铜层是可能的。通过允许导电结构104、106的侧向延伸尺度超过导热电绝缘片102的侧向延伸尺度,可以根据外部冷却系统的要求自由地选择导电结构104、106中的一个或两者的尺寸。这些要求涉及冷却表面和相应的密封要求。内部铜层、即第一导电结构104的尺寸受要安装在其上的所述一个或两个以上电子芯片110的尺寸的影响。对于这种设计,也可以考虑电流和信号的引导路径以及所需的隔离距离。还可以设计内部铜层、即第一导电结构104,使得满足诸如提供外部信号和电流供给的附加特性。通过采取这种措施,可省去实施传统上用于dcb衬底的单独的引线框架。

由铜制成的导电结构104、106与导热电绝缘片102的连接可以在真空炉中进行,优选在保护气体氛围或还原氛围中进行,以防止或抑制安装部件和连接材料的氧化。可以实施耐热引导工具,其可以对层堆叠体施加压力,以便防止不希望的未对准等等,这可改善制造工艺的结果(特别是其可以抑制内部不希望的空隙的形成)。此外,可以使芯片载体100成为化学处理的制造对象。这种化学处理可以去除可能积聚在导热电绝缘片102的陶瓷材料的侧边缘上的过多的连接介质128。另一方面,这种化学处理可以使陶瓷结构的侧壁没有金属污染。此外,可以对铜表面进行清洁、粗糙化和脱氧。由于所述化学处理,导电结构104、106的铜表面被适当地准备好用于提升与待形成的包封材料的材料、例如模制化合物的粘附性。

如上所述,第一导电结构104包括被配置用于安装四个电子芯片110的中心安装区域108(对照四个安装基座111)。作为另一功能元件,第一导电结构104的周边部分附加性地包括多个用于电连接电子芯片110的引线112。这些引线112包括在基于芯片载体100制造的封装体120的运行期间承载电信号的信号管脚113。此外,引线112包括多个电源管脚115,所述多个电源管脚115包括一个承载正电位的电源管脚115、另一个承载负电位的电源管脚115以及又一个对应于一个或两个以上相位连接的电源管脚115(或多个这样的电源管脚115)。

与此不同,第二导电结构106被配置为连续层,其形成容易制造的封装体120的外表面的一部分,即可暴露于环境而不是被包封材料完全覆盖。

图5示出了根据本发明的一个示例性实施例的相应制造的芯片载体100的三维视图。图5示出了在组装芯片载体100组成部分102、104、106之后、即在它们互连之后和在用于调理芯片载体100以形成图10至图12所示的包封的封装体120的可选的化学处理之后的根据图4的芯片载体100。特别地从图5可以看出,第一导电结构104和第二导电结构106都具有比片102更大的厚度。

在下文中,将描述如何基于根据图1至图5制造的芯片载体100来形成封装体120。

图6示出了根据本发明的一个示例性实施例的具有安装的电子芯片110的芯片载体100的三维视图。

从图6可以看出,电子芯片110安装在导电结构104上的专用安装区域或安装基座111上。例如,这些电子芯片110可以是绝缘栅双极晶体管(igbt)和二极管芯片。将这些电子芯片110安装在第一导电结构104上可以通过焊接或烧结或胶合来实现。

此后,与电子芯片110相关的导线接合焊盘可以通过导线接合与引线112(特别是信号管脚113)连接,参见连接信号管脚113的接合导线170(电源管脚115可以通过接合导线或接合带被相应地连接,未示出)。此时,信号管脚113仍然与引导框架116连接。

图7示出了在电子芯片110上具有间隔体126的根据图6的芯片载体100。

在导线接合之后,间隔体126安装在电子芯片110上。间隔体126用作电子芯片110与上部芯片载体124之间的导热间隔元件。此外,为了提供高侧与低侧之间的连接,还有两个(较小的)过孔间隔件作为另外的间隔体126施加。更具体地,面向电源管脚115的过孔间隔件用于至低侧的连接,而面向信号管脚113的过孔间隔件用于高侧与低侧之间的连接。

图8示出了其上附连有另外的芯片载体124的根据图7的结构。

如图8所示,上部芯片载体124(例如相应于芯片载体100实施或实施为直接铜结合衬底)安装在间隔体126的顶部上。相应的连接可以通过烧结或焊接或胶合进行。

图9示出了根据本发明的一个示例性实施例的芯片载体100的三维视图,在所述芯片载体100上已经安装有电子芯片110,但是仍然有临时引导框架116连接到和支撑所述芯片载体100的第一导电结构104。当封装体120的制造期间的包封完成时,引导框架116可以从其余部分移除。

图10示出了根据本发明的一个示例性实施例的封装体120的三维视图。图11示出了根据图10的封装体120的三维剖视图。图12示出了根据图10和图11的封装体120的剖视图。

封装体120由底侧的芯片载体100、顶侧的另外的芯片载体124和夹置在芯片载体100与另外的芯片载体124之间的电子芯片110组成。更具体地,电子芯片110安装在芯片载体100的第一导电结构104上。可以对应于上文参考图1至图5描述的芯片载体100实施或者可以被实施为直接铜结合(dcb)衬底的另外的芯片载体124在与芯片载体100相反的一侧上安装在电子芯片110之上。可以实施为铜块或铜柱的多个导热间隔体126在垂直方向上布置在电子芯片110与另外的芯片载体100之间。

在这里被实施为模制化合物的包装材料122包封电子芯片110、间隔体126、芯片载体100的一部分以及另外的芯片载体124的一部分。从图12可以看出,芯片载体100的第二导电结构106和另外的芯片载体124的第二导电结构106形成封装体120的外表面的一部分。

鉴于具有芯片载体100和另外的芯片载体124的所述配置,图10至图13所示的封装体120被配置用于双面冷却。在所述封装体120运行期间由电子芯片110产生的热量,可以通过芯片载体100经由封装体120的底部主表面和通过另外的芯片载体124经由封装体120的顶部主表面从封装体120的内部去除。因此,可以实现非常高效的冷却。

最好从图10可以看出,芯片载体100的第一导电结构104的上述引线112延伸到包封材料122外,使得封装体120可以电连接到外围电子设备。

图10是在利用包封材料122包封之后容易制造的封装体120的三维视图。因此,封装体120的外部形状或外形在模制成型工序中限定。构成包装材料122的模制化合物的第二个任务是没有空隙地填充封装体120的所有区域,以便相对于环境影响保护封装体120的内部。这也实现了封装体120的内部和外部的多种铜结构之间的充分隔离。可以选择这种模制化合物,以便在10kv的电压和200μm的材料厚度下能够可靠地电隔离。

虽然图中未示出,但此时可以通过在信号管脚上和电源管脚上施加锡来处理图10所示的封装体120。然后,封装体120可以通过移除引导框架116而与引导框架116分离。如果需要,还可使信号管脚113和电源管脚115弯曲。

在图12中可以看到,在由后缩的片102、第一导电结构104和第二导电结构106组成的堆叠体的侧向边缘处形成凹部114或底切部。在容易制造的封装体120中,凹部114或底切部可以通过包封材料填充以进一步提高粘附性。

在所示的实施例中,可以相同地制造用于具有双面冷却性能的同一封装体120的两个芯片载体100、124。替代性地,两个不同的芯片载体100可以用于这种封装体120。还可以实现仅单面冷却,在这样的一个实施例中,仅使用一个芯片载体100。当希望也从上侧将一个或两个以上引线112引导出封装体120时,使用图4所示的类型的两个芯片载体100、124是有利的。这种构型的一个应用是平行引导的直流路径。

从图12可以看出,相应的导热电绝缘片102在载体100和另外的载体124中的中心位置被中断。通过采取这种措施,可以节省昂贵的陶瓷材料并且可以获得紧凑且重量轻的封装体120。

从上述描述可以看出,所提供的用于形成芯片载体100和封装体120的制造构型是一种在制造过程中将导电结构104、106施加在导热电绝缘片102上的集成解决方案。此外,导电结构104、106可以被配置为提供一种或两种以上附加功能,例如延伸到包封材料122外的管脚、引导框架(见附图标记116)功能等。在制造工序期间整合传输框架功能和/或密封框架功能也是可能的。

图10至图12所示的封装体120涉及700v单相逆变器。为了进一步简化制造工序,可以经由载体框架将多个电子芯片110连接到衬底条。稍后移除的引导框架116可以形成上部芯片载体100的一部分。它可以在传输和制造过程中提供支撑。虽然上面已经描述了特定的制造工序,但是其它的实现铜结构与陶瓷片之间的可靠连接的制造工序也是可以的。

图13示意性地示出了根据本发明的一个示例性实施例的包括功率封装体120的车辆130。更具体地,功率封装体120可以形成控制发动机/电池组154的运行的控制块152的一部分。因此,根据本发明的一个示例性实施例的封装体120或功率模块可以用于汽车应用。这种功率封装体120的一种优选应用是实施为用于车辆130的逆变器电路或逆变整流器,所述车辆可以是电动车辆或者可以是混合动力车辆。这样的逆变器可以将电池的直流(dc)转换成用于驱动车辆130的电动发动机的交流电(ac)。在混合动力车辆中,还可以至少部分地回收机械能并通过逆变器将机械能转换回电能给电池充电。在这种汽车逆变器应用中,在功率模块120的运行期间产生极大量的热量。通过根据图1至图6的双面冷却概念可以高效地去除这些热量。然而,应该说,在其它实施例中,也可能单面冷却就足够了。

应当指出,术语“包括”不排除其他元件或特征,并且单数形式“一个”不排除多个。还可以组合结合不同实施例描述的元件。还应当指出,附图标记不应被解释为限制权利要求的范围。此外,本申请的范围不限于说明书中描述的过程、机器、制造、物质组成、手段、方法和步骤的特殊实施例。因此,所附权利要求旨在在它们的范围内包括这样的过程、机器、制造、物质组成、手段、方法或步骤。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1