一种硅通孔电镀的三步预浸润方法与流程

文档序号:13986381阅读:578来源:国知局

本发明属于3d封装领域,更具体地,涉及一种硅通孔电镀的三步预浸润方法。



背景技术:

硅通孔电镀中,小孔径的tsv(硅通孔)可以支持更高的电路密度。然而,较小的孔径意味着更高的深径比,此外,为了兼容其他3d集成过程,tsv电镀过程中往往是在晶圆减薄之前完成,这意味着必须电镀填充深径比超过10∶1的盲孔。由于电镀液表面张力的存在,这样的深径比会使镀液很难完全浸润盲孔内部,这会导致盲孔电镀后内部存在孔隙甚至完全无法填充。

高的真空度可浸润的深径比越高,因此对于高深径比的tsv,需要使用昂贵的真空泵和复杂的工艺程序。同时,由于水的沸点在高真空度环境中会大大降低,容易沸腾,因此抽真空浸润还需要对温度环境进行严格控制。此外,对于有特殊结构的芯片,例如带薄膜结构的压力传感器芯片,还容易对其特殊结构造成不可逆损坏,导致tsv技术与芯片制造工艺的不兼容问题。超声波浴方法容易导致种子层脱落,且对于高深径比的tsv效果不理想,可靠性低。

由此可见,现有技术存在成本高、工艺复杂、容易导致种子层脱落、效率低且效果不理想的技术问题。



技术实现要素:

针对现有技术的以上缺陷或改进需求,本发明提供了一种硅通孔电镀的三步预浸润方法,由此解决现有技术存在成本高、工艺复杂、容易导致种子层脱落、效率低且效果不理想的技术问题。

为实现上述目的,本发明提供了一种硅通孔电镀的三步预浸润方法,包括:

(1)将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆;

(2)将初浸润晶圆浸入并浸泡在去离子水中,得到再浸润晶圆;

(3)将再浸润晶圆浸入并浸泡在电镀液中,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

进一步的,步骤(1)的具体实现方式为:将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为0°至90°,种子铜层的硅通孔晶圆的浸入速度小于等于20mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为3μm-50μm、孔深径比为15∶1-1∶1。

进一步的,步骤(2)的具体实现方式为:将初浸润晶圆浸入并浸泡在去离子水中,初浸润晶圆与去离子水的液面夹角为0°至90°,初浸润晶圆的浸入速度大于等于3mm/s,得到再浸润晶圆。

进一步的,步骤(3)的具体实现方式为:将再浸润晶圆浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为0°至90°,再浸润晶圆的浸入速度大于等于3mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

进一步的,浸润液为无水乙醇、丙酮或者异丙醇。

总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:

(1)采用本发明的预浸润方法,可以实现与抽真空相同的预浸润效果,且省去了昂贵抽真空设备,降低了成本,同时相对于较长的抽真空过程,大大缩短了工艺时间,提高了效率;

(2)本发明对于一些具有特殊脆弱结构的芯片或晶圆,例如带薄膜空腔结构的压力传感器芯片,由于其没有产生较明显的力学过程,因此也不对其特殊结构造成破坏;

(3)本发明相对于超声波浴的预浸润方法,可以实现高的多的深径比的tsv的浸润,而且不会导致种子层脱落等问题。

(4)将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,确保tsv完全被浸润,将初浸润晶圆浸入并浸泡在去离子水中,浸入速度大于等于3mm/s,保证孔内浸润液挥发之前浸入到去离子水中,去离子水不影响电镀液,将再浸润晶圆浸入并浸泡在电镀液中,浸入速度大于等于3mm/s,保证孔内去离子水挥发之前浸入电镀液中,可以实现高的多的深径比的硅通孔的浸润,而且不会导致种子层脱落等问题,降低了成本,大大缩短了工艺时间,提高了效率。

附图说明

图1是本发明实施例提供的一种硅通孔电镀的三步预浸润方法的流程图;

图2是本发明实施例1提供的一种硅通孔电镀的三步预浸润方法的示意图;

图3是本发明实施例1提供的竖直向下浸入浸润液、去离子水、电镀液的示意图;

图4是本发明实施例2提供的向下与液面夹角为45°时浸入浸润液、去离子水、电镀液的示意图;

在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:

1为种子铜层的硅通孔晶圆,2为种子铜层的硅通孔晶圆中的tsv,3为浸入的液体,4为水槽。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

如图1所示,一种硅通孔电镀的三步预浸润方法,包括:

(1)将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为0°至90°,种子铜层的硅通孔晶圆的浸入速度小于等于20mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为3μm-50μm、孔深径比为15∶1-1∶1,浸润液为无水乙醇、丙酮或者异丙醇。

(2)将初浸润晶圆浸入并浸泡在去离子水中,初浸润晶圆与去离子水的液面夹角为0°至90°,初浸润晶圆的浸入速度大于等于3mm/s,得到再浸润晶圆。

(3)将再浸润晶圆浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为0°至90°,再浸润晶圆的浸入速度大于等于3mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例1

如图2所示,将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,如图3所示,种子铜层的硅通孔晶圆的浸入速度为5mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,由于乙醇对种子铜的高度浸润性质(接触角接近于0°),乙醇将可以完全浸润并填充tsv内部。所述硅通孔的孔径为3μm、孔深径比为15∶1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,tsv中的乙醇将溶解于水中,从而使得去离子水完全填充tsv,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为10mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为10mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例2

将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为45°,如图4所示,种子铜层的硅通孔晶圆的浸入速度为5mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,由于乙醇对种子铜的高度浸润性质(接触角接近于0°),乙醇将可以完全浸润并填充tsv内部。所述硅通孔的孔径为3μm、孔深径比为15∶1,浸润液为无水乙醇。将初浸润晶圆浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,tsv中的乙醇将溶解于水中,从而使得去离子水完全填充tsv,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为45°,初浸润晶圆的浸入速度为10mm/s,得到再浸润晶圆。将再浸润晶圆浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为45°,再浸润晶圆的浸入速度为10mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例3

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为0°,种子铜层的硅通孔晶圆的浸入速度为5mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,由于乙醇对种子铜的高度浸润性质(接触角接近于0°),乙醇将可以完全浸润并填充tsv内部。所述硅通孔的孔径为3μm、孔深径比为15∶1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,tsv中的乙醇将溶解于水中,从而使得去离子水完全填充tsv,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为0°,初浸润晶圆的浸入速度为10mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为0°,再浸润晶圆的浸入速度为10mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例1-实施例3中的变量为浸入角度,当种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,初浸润晶圆与去离子水的液面夹角为90°,再浸润晶圆与电镀液的液面夹角为90°时,浸润效果最好。当种子铜层的硅通孔晶圆与浸润液的液面夹角为45°,初浸润晶圆与去离子水的液面夹角为45°,再浸润晶圆与电镀液的液面夹角为45°时,浸润效果较好。当种子铜层的硅通孔晶圆与浸润液的液面夹角为0°,初浸润晶圆与去离子水的液面夹角为0°,再浸润晶圆与电镀液的液面夹角为0°时,浸润效果一般。

实施例4

对于部分情形,例如浸润液与电镀液可溶,且浸润液残留不影响电镀液的电镀效果,则可以省略掉利用去离子水浸润步骤。即先浸入浸润液中,然后浸入电镀液中。将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为2mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,由于无水乙醇对种子铜的高度浸润性质(接触角接近于0°),无水乙醇将可以完全浸润并填充tsv内部。所述硅通孔的孔径为3μm、孔深径比为15∶1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为50mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例5

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为20mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为10μm、孔深径比为12∶1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,tsv中的乙醇将溶解于水中,从而使得去离子水完全填充tsv,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为3mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为3mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例6

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为13mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为10μm、孔深径比为12∶1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,tsv中的乙醇将溶解于水中,从而使得去离子水完全填充tsv,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为5mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为5mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例7

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为10mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为10μm、孔深径比为12∶1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,tsv中的乙醇将溶解于水中,从而使得去离子水完全填充tsv,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为10mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为20mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例8

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为1mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为10μm、孔深径比为12∶1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,tsv中的乙醇将溶解于水中,从而使得去离子水完全填充tsv,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为30mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为40mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例9

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为0.01mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为10μm、孔深径比为12∶1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,tsv中的乙醇将溶解于水中,从而使得去离子水完全填充tsv,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为100mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为100mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例5-实施例9中浸入速度为变量,当种子铜层的硅通孔晶圆的浸入速度较小,初浸润晶圆的浸入速度和再浸润晶圆的浸入速度较大时,浸润效果最好,当种子铜层的硅通孔晶圆的浸入速度为0.01mm/s,初浸润晶圆的浸入速度为100mm/s,再浸润晶圆的浸入速度为100mm/s时,浸润效果最好。

实施例10

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为0.01mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为20μm、孔深径比为10∶1,浸润液为丙酮。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为15mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为15mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例11

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为0.1mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为30μm、孔深径比为8∶1,浸润液为异丙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为25mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为25mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例12

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为3mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为40μm、孔深径比为5∶1,浸润液为异丙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为35mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为45mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

实施例13

将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为2mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为50μm、孔深径比为1∶1,浸润液为异丙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,实现对tsv内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为55mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为75mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1