一种砷化镓晶圆的光刻工艺的制作方法

文档序号:14748847发布日期:2018-06-22 09:29阅读:809来源:国知局

本发明涉及半导体器件制作工艺,特别是涉及一种砷化镓晶圆的光刻工艺。



背景技术:

砷化镓(GaAs)是第二代半导体,具有高饱和电子速率、高电子迁移率、高击穿电压等优异的电学特性,制作的半导体器件高频、高温、低温性能好,噪声小,抗辐射能力强,广泛适用于集成电路、红外线发光二极管、半导体激光器和太阳电池等领域。其中砷化镓基晶体管在晶体管的应用中越来越引人注目。

在半导体制作工艺中,光刻制程是其核心工序,通过涂布光阻、曝光、显影、蚀刻等步骤将半导体晶圆表面特定部分去除,以实现微纳尺寸的精密制作。然而,在砷化镓光刻过程中,光阻与砷化镓结合力较差,光阻边缘容易发生翘起、粗糙不均等问题,在蚀刻过程中极易发生侧蚀现象,造成蚀刻后的图案形貌发生变化而无法满足预设需求,影响产品的性能,增加产品报废率。



技术实现要素:

本发明的目的在于克服现有技术之不足,提供一种砷化镓晶圆的光刻工艺以避免侧蚀等不良现象。

本发明解决其技术问题所采用的技术方案是:

一种砷化镓晶圆的光刻工艺包括以下步骤:

1)于砷化镓晶圆表面沉积氮化硅层,氮化硅层的厚度为30~80nm;

2)于氮化硅层上涂布正光阻,并通过曝光、显影形成蚀刻窗口;

3)对蚀刻窗口之内的氮化硅进行干法蚀刻至裸露砷化镓表面,所述干法蚀刻的蚀刻气体为SF6;

4)对蚀刻窗口之内的砷化镓进行湿法蚀刻,所述湿法蚀刻的蚀刻液为H3PO4+H2O2;

5)剥离光阻;

6)通过干法蚀刻去除余下的氮化硅,所述干法蚀刻的蚀刻气体为SF6。

优选的,所述氮化硅层的厚度为40~60nm。

优选的,所述氮化硅层的沉积方式为等离子体增强化学气相沉积。

优选的,步骤4)中,所述蚀刻液浓度为H3PO4+H2O2的质量分数为8~15%,湿法蚀刻的时间为30~50s。

优选的,步骤5)中,通过N-甲基吡咯烷酮剥离光阻。

优选的,步骤6)中,还包括对去除氮化硅后的砷化镓晶圆表面进行清洗的步骤,所述清洗溶液为盐酸。

本发明的有益效果是:

1)在砷化镓晶圆表面先镀上一层氮化硅后再涂布正光阻,氮化硅与砷化镓和正光阻均具有较好的结合力,以氮化硅作为粘结层提高了光阻和砷化镓表面之间的粘附力,从而避免了因粘附力不够出现的侧蚀不良等问题,提高了产品的良率,避免报废;

2)氮化硅采用干法蚀刻形成蚀刻窗口,后续采用干法蚀刻去除,所用的蚀刻气体不会对砷化镓造成影响,确保了砷化镓的完整性,不影响最终产品的结构;

3)工艺步骤均可通过半导体器件生产的常用设备和材料进行,适于实际生产应用。

附图说明

图1本发明的工艺流程图;

图2为实施例1蚀刻后砷化镓晶圆表面的CDSEM图像;

图3为对比实施例蚀刻后砷化镓晶圆表面的CDSEM图像。

具体实施方式

以下结合附图及实施例对本发明作进一步详细说明。本发明的各附图仅为示意以更容易了解本发明,其具体比例可依照设计需求进行调整。文中所描述的上下,是相对于各层形成的先后顺序而言,以在先形成的为下,在后形成的为上。

参考图1,一种砷化镓晶圆的光刻工艺包括以下步骤:

1)于洁净的砷化镓晶圆1表面沉积氮化硅层2,氮化硅层2的厚度为30~80nm,优选为40~60nm,沉积方式为等离子体增强化学气相沉积(CVD);

2)于氮化硅层2上涂布正光阻3,采用旋转涂布方式进行涂布,涂布厚度约为1-2μm,烘烤条件为热板烘烤90-110℃下60-90s,然后通过曝光、显影形成蚀刻窗口4,;

3)对蚀刻窗口4之内的氮化硅层2进行干法蚀刻至裸露砷化镓晶圆1表面,所述干法蚀刻的蚀刻气体为SF6;则氮化硅对应蚀刻窗口4的部分去除,保留了与正光阻3对应的形状;

4)对蚀刻窗口4之内的砷化镓进行湿法蚀刻至所需深度,所述湿法蚀刻的蚀刻液为H3PO4+H2O2,具体浓度为8-15%,蚀刻时间为35-45S;

5)采用N-甲基吡咯烷酮剥离光阻3;

6)通过干法蚀刻去除余下的氮化硅层2,所述干法蚀刻的蚀刻气体为SF6,然后采用盐酸对砷化镓晶圆1表面进行清洗,得到预设图形的砷化镓表面结构。

氮化硅对砷化镓和习知的正光阻均有较好的结合力,通过氮化硅层的设置,可以避免因结合力不足而导致蚀刻窗口边缘粗糙、翘曲甚至剥离,蚀刻液渗透进入而造成的侧蚀问题。

以下以一具体实施例说明其效果。

实施例1:于砷化镓晶圆表面通过等离子体增强化学气相沉积方法沉积厚度为50nm的氮化硅层,然后旋涂正光阻(例如S1813光阻),涂布厚度约为1.5μm,烘烤条件为热板烘烤105℃/60s,通过曝光、显影形成蚀刻窗口,采用SF6气体对蚀刻窗口之内的氮化硅进行干法蚀刻至裸露砷化镓表面,采用蚀刻液H3PO4+H2O2对蚀刻窗口之内的砷化镓进行湿法蚀刻至所需深度,蚀刻液浓度为10%,蚀刻时间为40s;通过N-甲基吡咯烷酮剥离光阻,采用SF6气体进行干法蚀刻去除余下的氮化硅层2,对蚀刻后砷化镓晶圆通过盐酸清洗后通过CDSEM观测其表面结构(见图2),CD=2.0±0.15μm。

作为对比实施例,于砷化镓晶圆表面直接涂布相同正光阻,通过曝光、显影形成蚀刻窗口,采用相同浓度的蚀刻液H3PO4+H2O2对蚀刻窗口之内的砷化镓在相同时间下进行湿法蚀刻至相同深度,同样方式剥离光阻,同样清洗后通过CDSEM观测其表面结构(见图3)。

由实施例1和对比实施例的SEM图像可见,本发明的方法显著改善了侧蚀现象,具体见图2与图3对比,可见图3边缘有明显的因侧蚀导致的白边(即该部分高度与砷化镓晶圆表面高度以及蚀刻后沟槽的高度均不相同;而图2中其边界线清晰,无白边现象,可见本发明的方法效果明显,提高了制程良率。

上述实施例仅用来进一步说明本发明的一种砷化镓晶圆的光刻工艺,但本发明并不局限于实施例,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明技术方案的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1