线性螺线管驱动装置的制作方法

文档序号:15884844发布日期:2018-11-09 18:39阅读:310来源:国知局
线性螺线管驱动装置的制作方法

在本说明书中公开的本公开的发明涉及线性螺线管驱动装置。

背景技术

以往,作为这种线性螺线管驱动装置,提出一种具备如下的部分的线性螺线管驱动装置:pwm信号生成部,基于来自微型计算机的控制电流目标值来生成pwm信号;螺线管驱动电路,根据来自pwm信号生成部的pwm信号而输出线性螺线管的驱动信号;螺线管驱动晶体管,通过来自螺线管驱动电路的驱动信号进行工作并驱动线性螺线管;电流监视器,对在线性螺线管中流动的驱动电流进行检测并反馈;以及误差校正部,对电流监视器的输出值相对于控制电流目标值的误差进行校正(例如,参照专利文献1)。在专利文献1的线性螺线管驱动装置中,pwm信号生成部、螺线管驱动电路、螺线管驱动晶体管、电流监视器、误差校正部由一个芯片的驱动ic构成。

专利文献1:日本特开2007-276702号公报

如上述那样,虽然通过将各构成要素集中于一个芯片能够使线性螺线管驱动装置小型化,但因螺线管驱动晶体管的驱动等所导致的发热的影响,而电流监视器的温度有时上升。要是那样的话,则有时电流监视器的输出值根据电流监视器的温度特性而变小,存在不能够精度良好地检测在线性螺线管中流动驱动电流的情况。



技术实现要素:

本公开的发明的目的在于即使在电流检测电路受到热的影响的情况下也精度良好地检测在线性螺线管中流动的驱动电流,并提高反馈控制的控制性。

本公开的线性螺线管驱动装置为了实现上述的主要目的而采用了以下的手段。

本公开的线性螺线管驱动装置是驱动线性螺线管的线性螺线管驱动装置,具备:

驱动电路,基于驱动指令对与上述线性螺线管连接的开关元件进行开关控制;

电流检测电路,具有与上述开关元件和上述线性螺线管连接的电流检测用的检测电阻、以及对上述检测电阻的两端的电压放大并输出的运算放大器;

基准电压输出电路,输出与上述运算放大器的输出电压同样的温度特性的基准电压;以及

控制部,被输入上述输出电压和上述基准电压,并根据基于上述基准电压对温度特性进行校正后的上述输出电压来计算在上述线性螺线管中流动的驱动电流,通过反馈控制生成上述驱动指令并输出至上述驱动电路,以使得该计算出的驱动电流成为规定目标电流。

在该线性螺线管驱动装置中,具备:电流检测电路,具有对电流检测用的检测电阻的两端的电压进行放大并输出的运算放大器;以及基准电压输出电路,由元件构成,以便输出与运算放大器的输出电压同样的温度特性的基准电压,根据基于基准电压对温度特性进行校正后的输出电压来计算在线性螺线管中流动的驱动电流,并通过反馈控制生成驱动指令并输出至驱动电路以使得计算出的驱动电流成为规定的目标电流。由此,即使因开关元件的驱动所导致的发热的影响而电流检测电路的温度上升,运算放大器的输出电压发生变动,也能够精度良好地检测在线性螺线管中流动的驱动电流,所以能够提高反馈控制的控制性。

附图说明

图1是表示作为本公开的一个实施例的电子控制单元10的结构的示意的结构图。

图2是表示基准电压输出电路40的结构的示意的结构图。

图3是表示带隙基准电路的基本结构的一个例子的结构图。

图4是表示输出电压vopa与基准电压vref的关系的一个例子的说明图。

具体实施方式

接下来,参照附图,对用于实施本公开的发明的方式进行说明。

图1是表示作为本公开的一个实施例的电子控制单元10的结构的示意的结构图。实施例的电子控制单元10例如构成为驱动线性螺线管60,该线性螺线管60对向组装到车辆的自动变速器的离合器或制动器的供给液压进行控制。

电子控制单元10具备:驱动电路(驱动器)20,通过开关元件的开关控制使驱动电流流向线性螺线管60的线圈c;电流检测电路30,对在线性螺线管60的线圈c中流动的驱动电流进行检测;基准电压输出电路40,输出规定基准电压vref;以及微型计算机(以下,称为微机)50,内置未图示的cpu、rom、ram等,并进行反馈控制以使得在线性螺线管60的线圈c中流动的驱动电流成为目标电流。在实施例中,将驱动电路20、电流检测电路30和基准电压输出电路40集成在一个芯片12内,进行单芯片化。

驱动电路20构成为对与直流电源14和线性螺线管60的线圈c的一端连接的作为开关元件的第一晶体管22、以及与第一晶体管22和线圈c的一端的连接点和线圈c的另一端连接的作为开关元件的第二晶体管24进行驱动控制。该驱动电路20基于从微机50输出的驱动指令来对第一、第二晶体管22、24进行开关控制。对第一晶体管22进行开关控制,以使得在线性螺线管60的线圈c中流动的驱动电流成为目标电流,对第二晶体管24进行开关控制,以使得伴随着第一晶体管22的截止而在线圈c中产生的反电动势环流。

电流检测电路30具备:检测电阻32,串联连接在第一晶体管22与线圈c的一端之间;以及运算放大器34,第一晶体管22和检测电阻32的连接点与非反转输入端子连接,并且检测电阻32和线圈c的一端的连接点与反转输入端子连接。在电流检测电路30中,运算放大器34对检测电阻32的两端的电压进行放大,并作为输出电压vopa而输出至微机50,能够对从该输出电压vopa向线圈c流动的驱动电流进行检测。此处,若电流检测电路30的检测电阻32、运算放大器34的温度伴随着驱动电路20的第一、第二晶体管22、24的开关控制所导致的发热而上升(变化),则起因于检测电阻32或运算放大器34的温度特性,输出电压vopa有时变化。

基准电压输出电路40构成为输出用于对伴随着那样的电流检测电路30的温度变化而产生的运算放大器34的输出电压vopa的输出变化进行校正的基准电压vref。图2是表示基准电压输出电路40的结构的示意的结构图。实施例的基准电压输出电路40具备利用了半导体材料的硅的物性即带隙电压的带隙基准电路42、和将来自带隙基准电路42的输出电压输入至非反转输入端子进行放大并作为基准电压vref而输出的运算放大器46。此外,运算放大器46的输出被反馈至运算放大器46的反转输入端子。

此处,带隙基准电路是各种结构都可以的公知电路。图3表示带隙基准电路的基本结构的一个例子。这样的基本结构例如在日本特开2014-98984号等中记载。此外,实施例的带隙基准电路42并不限于该结构。如图3所示,带隙基准电路例如由二极管d1、d2、电阻r1~r3和运算放大器opa构成。根据日本特开2014-98984号,带隙基准电路的输出电压vbgr如下式(1)那样。此外,“vbe1”为pn接合的二极管d1的正向电压,具有伴随着温度的上升而减少的负的温度依存性。另外,“q”为电子的电荷,“k”玻耳兹曼常数,“t”为绝对温度。

vbgr=vbe1+(kt/q)·[ln(r2/r1)]·(r2/r3)…(1)

通过适当选定各电阻r1、r2、r3、二极管d1、d2以便这样的带隙基准电路通常用具有正的温度依存性的右边第二项抵消右边第一项的“vbe1”的变化量,从而能够使得输出电压vbgr不取决于温度变化。与此相对,本实施例的带隙基准电路42构成为输出电压vbgr取决于温度变化。此外,在图3的带隙基准电路的基本结构中,通过适当地调整式(1)的右边第二项所包括的各电阻r1、r2、r3的电阻值,并增大或减小右边第二项的正的温度依存性,可以使输出电压vbgr具有温度特性。

另外,对于实施例的带隙基准电路42,虽然详细的图示省略,但通过二极管、晶体管等各半导体元件、各电阻的组合,从而具有选择性地实现多种(例如三种)的温度特性的电路结构(电压输出电路)。例如,如图2的温度(℃)和输出电压(v)的关系图所示,具有:输出电压随着从低温变为高温而变低的电路结构42a;到某个温度为止,输出电压随着变为高温而越高,若超过某个温度则输出电压随着变为高温而降低的电路结构42b、以及输出电压随着从低温变为高温而变高的电路结构42c。带隙基准电路42具备选择切换部44,该选择切换部44选择性地切换为这些电路结构42a~42c中的任意一个并与运算放大器46的非反转输入端子连接。该选择切换部44在对驱动电路20、电流检测电路30和基准电压输出电路40进行单芯片化时接受调整信号as(切换信号)的输入,在选择了电路结构42a~42c的任意一个的状态下被固定。调整信号as是用于选择基准电压输出电路40的电路结构42a~42c中与搭载在同一芯片12内的电流检测电路30(输出电压vopa)的温度特性最接近的一个电路结构的信号。由此,基准电压输出电路40将温度特性与配置在同一芯片12内的电流检测电路30(输出电压vopa)接近的基准电压vref输出至微机50。此外,微机50将这样输出的基准电压vref作为输出电压vopa的温度特性校正系数来使用。

在这样构成的电子控制单元10中,进行如下那样的反馈控制。首先,微机50基于自动变速器的变速挡、加速器开度、车速等来设定应供给给线性螺线管60的线圈c的目标电流。向微机50输入电流检测电路30的运算放大器34的输出电压vopa和基准电压输出电路40的基准电压vref。此处,图4是表示输出电压vopa和基准电压vref的关系的一个例子的说明图。在图4中,示出作为输出电压vopa,不管要输出什么样的电压,输出电压vopa都根据温度的变化而变化的样子,例如处于温度越高则输出电压vopa越低的趋势。另外,由于选择温度特性与输出电压vopa接近的基准电压vref(此处,例如图2的电路结构42a),所以基准电压vref也处于温度越高则越低的趋势,以便追随于输出电压vopa。微机50这样基于具有与输出电压vopa同样的温度特性的基准电压vref来对输出电压vopa的温度特性进行校正,并根据校正后的输出电压来计算(检测)在线性螺线管60的线圈c中流动的驱动电流。此外,温度特性的校正例如通过将输出电压vopa除以基准电压vref来进行。若这样计算驱动电流,则对驱动电流和目标电流进行比较,通过反馈控制来设定目标占空比(例如导通时间相对于第一晶体管22的导通时间和截止时间的和的比例),以使得驱动电流接近目标电流。而且,将目标占空比下的驱动指令输出至驱动电路20,使驱动电路20进行开关控制。

根据以上说明的本公开的电子控制单元10,具备基准电压输出电路40,该基准电压输出电路40输出与电流检测电路30的运算放大器34的输出电压vopa同样的温度特性的基准电压vref,根据基于基准电压vref对温度特性进行校正后的输出电压vopa来计算在线性螺线管60中流动的驱动电流,通过反馈控制生成驱动指令并输出至驱动电路20来进行开关控制,以使得计算出的驱动电流成为规定目标电流。由此,即使因第一、第二晶体管22、24的开关所导致的发热的影响而输出电压vopa发生变动,也能够基于基准电压vref对输出电压vopa进行校正,精度良好地检测(计算)在线性螺线管60中流动的驱动电流,所以能够提高反馈控制的控制性。

另外,根据本公开的电子控制单元10,由于将驱动电路20、电流检测电路30(运算放大器34)和基准电压输出电路40集成在芯片12内而进行单芯片化,所以伴随着第一、第二晶体管22、24的开关控制所导致的发热,而在电流检测电路30和基准电压输出电路40产生同样的温度变化。因此,由于不必设置对电流检测电路30的温度进行检测的温度传感器,而能够对输出电压vopa的温度特性进行校正并精度良好地检测驱动电流,因而能够进一步提高反馈控制的控制性。另外,与将各构成要素分别安装于电子控制单元10的基板的情况相比,能够减少将各构成要素安装于基板时所需的树脂模块以及将构成要素彼此连接时的配线,并能够使电子控制单元10的基板小型化,并且提高反馈控制的控制性。

另外,根据本公开的电子控制单元10,由于基准电压输出电路40构成为包括带隙基准电路42,所以能够以比较简单的结构输出所希望的温度特性的基准电压vref。

另外,根据本公开的电子控制单元10,由于构成为基准电压输出电路40实现多个温度特性,所以能够使基准电压输出电路40具有通用性,并且能够容易地输出与电流检测电路30(输出电压vopa)的温度特性接近的基准电压vref。另外,通过各电路结构42a~42c的选择在将驱动电路20、电流检测电路30和基准电压输出电路40进行单芯片化时进行,能够以芯片12单品保证温度特性的校正精度。因此,能够在芯片12向电子控制单元10的组装工序中,不需要在高温环境或低温环境下调整温度特性。

本公开的电子控制单元10将驱动电路20电流检测电路30(运算放大器34)和基准电压输出电路40集成在芯片12内而进行单芯片化,但是并不限于此,也可以不进行单芯片化。

在本公开的电子控制单元10中,基准电压输出电路40的各电路结构42a~42c的选择(固定)在单芯片化时进行,但并不限于此。例如,也可以在芯片12向电子控制单元10的组装工序中进行。另外,并不限于基准电压输出电路40具备多个电路结构42a~42c,也可以为仅具有与搭载在同一芯片12内的电流检测电路30的温度特性对应的电路结构的有带隙基准电路。

在本公开的电子控制单元10中,基准电压输出电路40构成为包括带隙基准电路,但是并不限于此,只要由具有与运算放大器34的输出电压vopa同样的温度特性并能够输出基准电压vref的元件构成,则可以是任何的电路。

本公开的电子控制单元10保持原样地使用基准电压vref来校正输出电压vopa的温度特性,但并不限于此。例如,可以预先将规定了基准电压vref和温度校正系数的关系的映射存储于微机50的rom等,从输入的基准电压vref导出温度校正系数,并使用导出的温度校正系数来校正输出电压vopa的温度特性等。

如以上说明那样,本公开的线性螺线管驱动装置(10)是控制线性螺线管(60)的驱动的线性螺线管驱动装置(10),其主旨在于,具备:驱动电路(20),基于驱动指令对与上述线性螺线管(60)连接的开关元件(22)进行开关控制;电流检测电路(30),具有与上述开关元件(22)和上述线性螺线管(60)连接的电流检测用的检测电阻(32)、以及对上述检测电阻(32)的两端的电压进行放大并输出的运算放大器(34);基准电压输出电路(40),输出与上述运算放大器(34)的输出电压同样的温度特性的基准电压;以及控制部(50),被输入上述输出电压和上述基准电压,根据基于上述基准电压对温度特性进行校正后的上述输出电压来计算在上述线性螺线管(60)中流动的驱动电流,生成上述驱动指令并输出至上述驱动电路(20)以使得该计算出的驱动电流成为规定目标电流。

由此,即使因伴随着开关元件(22)的驱动所导致的发热的影响而电流检测电路(30)的运算放大器(34)的输出电压发生变动,也能够基于与输出电压同样的温度特性的基准电压来校正输出电压,并适当地检测在线性螺线管(60)中流动的驱动电流。因此,能够精度良好地检测在线性螺线管(60)中流动的驱动电流,并提高反馈控制的控制性。

另外,对于线性螺线管驱动装置(10),能够将上述驱动电路(20)、上述电流检测电路(30)和上述基准电压输出电路(40)搭载在一个芯片(12)内。因此,与将各构成要素分别安装于线性螺线管驱动装置的基板的情况下相比,能够减少将各构成要素安装于基板时所需的树脂模块以及将构成要素彼此连接时的配线,所以能够使线性螺线管驱动装置的基板小型化,并且提高反馈控制的控制性。

另外,上述基准电压输出电路(40)也能够构成为包括带隙基准电路(42)。

另外,上述基准电压输出电路(40)也能够构成为通过切换上述带隙基准电路(42)的电路结构而能够输出温度特性不同的多种电压,并选择性地输出与上述输出电压的温度特性对应的电压作为上述基准电压。

此处,对上述实施方式中的主要的要素和发明内容一栏中所记载的本公开的发明的主要的要素的对应关系进行说明。在上述实施方式中,驱动电路20相当于“驱动电路”,具有检测电阻32和运算放大器34的电流检测电路30相当于“电流检测电路”,基准电压输出电路40相当于“基准电压输出电路”,微机50相当于“控制部”。

而且,本公开的发明并不限于任何上述实施方式,当然能够在本公开的外延范围内进行各种变更。并且,上述实施方式终究只是发明内容一栏所记载的发明的具体的一个方式,并不限定发明内容一栏所记载的发明要素。

工业上的利用可能性

本公开的发明可以利用于线性螺线管驱动装置的制造工业等。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1