半导体用粘合膜和半导体器件的制作方法

文档序号:17118616发布日期:2019-03-15 23:34阅读:152来源:国知局
半导体用粘合膜和半导体器件的制作方法

相关申请的交叉引用

本申请要求于2016年11月29日向韩国知识产权局提交的韩国专利申请第10-2016-0160379号的优先权和权益,其全部内容通过引用并入本文。

本发明涉及半导体用粘合膜和半导体器件。



背景技术:

近来,随着电子器件日益趋向小型化、高功能化和容量增大,对高密度和高度集成的半导体封装的需求快速增加,因此,半导体芯片的尺寸日益变大,并且在改善集成度方面,越来越多地使用多级堆叠芯片的堆叠封装法。

取决于多级半导体堆叠封装的使用,芯片的厚度变得更薄并且电路的集成度变得更高。然而,芯片本身的模量降低,引起制造过程和最终产品的可靠性方面的问题。

为了解决这些问题,已尝试增强半导体封装过程中使用的粘合剂的物理特性。

此外,近来,随着半导体芯片变得更薄,存在芯片在现有刀片切割过程中受损因而降低产率的问题,为了克服该问题,提出了首先用刀片切割半导体芯片然后对其进行抛光的制备方法。

在这样的制备方法中粘合剂不被切割。因此,使用激光切割粘合剂然后在低温下通过基础膜的扩展过程切割。

另外,近来,为了保护芯片上的电路,采用通过低温扩展过程和热收缩过程来切割粘合剂的方法而不使用激光。

然而,常规粘合剂具有低的延展性,因此在室温下不易切割,此外,当在切割之后在室温下使其静置时,由于延展性低而发生再粘合,因此降低半导体芯片的生产率。

在另一方面,随着近来半导体封装趋向更高的密度和更高的集成,所产生的电磁波量也增加。然而,存在这样的电磁波通过电子设备的接合部或连接部泄漏而引起有害影响(例如引起其他电元件或电子组件故障,或者使人体的免疫功能减弱)的问题。

因此,已对能够在改善用于半导体封装的产品的切割特性和粘合性的同时,实现可以有效地屏蔽和吸收引起电气元件故障并不利地影响人体的电磁波的特性的方法进行了各种研究。



技术实现要素:

技术问题

本发明的一个目的是提供半导体用粘合膜,其由于固化产物的物理特性改善而可以提高半导体芯片的可靠性,并且可以没有特别限制地应用于各种切割方法以实现优异的切割特性,从而提高半导体封装过程的可靠性和效率,并且其可以表现出优异的电磁波吸收性能。

本发明的另一个目的是提供包括上述半导体用粘合膜的半导体器件。

技术方案

在本发明的一个实施方案中,提供了半导体用粘合膜,其包括:导电层,所述导电层包含选自铜、镍、钴、铁、不锈钢(sus)和铝中的至少一种金属并且具有0.05μm或更大的厚度;以及粘合层,所述粘合层形成在所述导电层的至少一个表面上并且包含基于(甲基)丙烯酸酯的树脂、固化剂和环氧树脂。

在本发明的另一个实施方案中,提供了半导体器件,其包括上述半导体用粘合膜和与所述粘合膜的粘合层的一个表面接触的半导体元件。

在下文中,将更详细地描述根据本发明的具体实施方案的半导体用粘合膜和半导体元件。

如上所述,根据本发明的一个实施方案,可以提供半导体用粘合膜,其包括:导电层,所述导电层包含选自铜、镍、钴、铁、不锈钢(sus)和铝中的至少一种金属并且具有0.05μm或更大的厚度;以及粘合层,所述粘合层形成在所述导电层的至少一个表面上并且包含基于(甲基)丙烯酸酯的树脂、固化剂和环氧树脂。

本发明人对可以用于粘结或封装半导体元件的组件进行了广泛的研究,并且通过大量实验发现,具有以上组成的粘合层的半导体用粘合膜由于固化产物的物理特性改善而可以提高半导体芯片的可靠性,并且可以没有特别限制地应用于各种切割方法以实现优异的切割特性,从而提高半导体封装过程的可靠性和效率,此外,该半导体用粘合膜同时包括导电层,从而确保优异的电磁波吸收性能。本发明基于这样的发现而完成。

特别地,由于该实施方案的半导体用粘合膜包含上述特定的金属和厚度大于或等于预定数值的导电层,因此其可以有效地屏蔽和吸收引起半导体封装过程中的元件或最终生产的产品故障或者不利地影响人体的电磁波。

更具体地,包含选自铜、镍、钴、铁、不锈钢(sus)和铝中的至少一种金属的导电层的厚度必须为0.05μm或更大,使得可以显著实现电磁波屏蔽效果。

当导电层的厚度小于0.05μm时,可以通过导电层吸收的电磁波的总强度不明显,并且导电层的电阻可能大大增加,从而降低电磁波反射效率。

导电层的厚度可以为0.05μm或更大、0.05μm至10μm、或0.1μm至5μm。

此外,根据导电层中包含的金属的类型,导电层的优选范围可以改变。

例如,导电层可以包括0.1μm至10μm的铜层、0.1μm至10μm的不锈钢(sus)层、0.1μm至10μm的铝层、0.05μm至10μm的镍层、0.05μm至10μm的钴层、或0.05μm至10μm的铁(fe)层。

同时,导电层的优选实例包括0.1μm至5μm的铜层、0.1μm至5μm的不锈钢(sus)层、0.1μm至5μm的铝层、0.05μm至2μm的镍层、0.05μm至2μm的钴层、或0.05μm至2μm的铁(fe)层。

上述导电层可以通过诸如在粘合层上气相沉积上述金属或层合上述金属薄膜的方法来形成。

同时,该实施方案的半导体用粘合膜还可以包括形成在导电层与粘合层之间并且厚度为0.001μm至1μm的阻挡层。

阻挡层可以用于防止导电层中的原子或离子扩散至粘合层中。

阻挡层的厚度可以为0.001μm至1μm、或0.005μm至0.5μm。

由于阻挡层具有以上厚度,因此可以在防止导电层的原子或离子扩散至粘合层中的同时防止导电层的金属被离子化,从而进一步提高半导体封装的可靠性。

当阻挡层的厚度太薄时,难以防止包含在上述导电层中的金属的离子化。

此外,当阻挡层的厚度太厚时,该实施方案的整个半导体用粘合膜可能变得非常厚。因此,难以应用于具有精细厚度的半导体封装,或者可能大大降低半导体封装的可靠性,并且可能不必要地增加生产成本。

具体地,阻挡层可以包含选自以下的一种或更多种过渡金属:钛(ti)、锆(zr)、铪(hf)、钒(v)、铌(nb)、钽(ta)、不锈钢、镍合金和稀土金属、或其氧化物和其氮化物。优选地,阻挡层可以包含上述组分中除不锈钢之外的组分、其氧化物和其氮化物。

阻挡层包含与导电层中包含的组分不同的组分。例如,当导电层包含不锈钢时,阻挡层包含上述组分中除不锈钢之外的组分。

如上所述,由于阻挡层包含上述过渡金属,因此可以在防止导电层的原子或离子扩散至粘合层中的同时防止导电层的金属被离子化,从而进一步提高可靠性。

镍合金意指包含镍以及选自以下的一种或更多种元素的合金:碳、锰、硅、硫、铁、铜、铬、铝、钛、钼和钴。合金的具体种类与下表1中的那些相同。

[表1]

在另一方面,如上所述,半导体用粘合膜由于固化产物的物理特性改善而可以提高半导体芯片的可靠性,并且可以没有特别限制地应用于各种切割方法以实现优异的切割特性,从而提高半导体封装过程的可靠性和效率,并且这些效果呈现为是由上述粘合层引起的。

具体地,粘合层可以包含基于(甲基)丙烯酸酯的树脂、固化剂和环氧树脂,所述基于(甲基)丙烯酸酯的树脂包含含有基于环氧的官能团的基于(甲基)丙烯酸酯的重复单元,所述固化剂包含酚树脂。

由于基于(甲基)丙烯酸酯的树脂包含含有基于环氧的官能团的基于(甲基)丙烯酸酯的重复单元,粘合层具有更均匀的刚性内部结构,因此在超薄晶片的多级堆叠期间可以确保高的耐冲击性,此外,可以改善半导体制造之后的电特性。

基于(甲基)丙烯酸酯的树脂表现出0.15eq/kg或更小或者0.10eq/kg或更小的羟基当量,并因此与环氧树脂更顺利且均匀地固化,而不抑制与树脂组合物的其他组分(例如,环氧树脂或酚树脂)的相容性。特别地,其在树脂组合物的固化期间实现更均匀的刚性内部结构,并且表现出提高的初始拉伸模量,从而即使在低温下进行的扩展过程中也实现高切割特性。

当(甲基)丙烯酸酯树脂的羟基当量高时,例如当其大于0.15eq/kg时,与环氧树脂、酚树脂等的相容性降低,并且由以上树脂组合物生产的粘合膜的外观特性和机械特性的均匀性可能劣化。特别地,当初始在室温下拉伸粘合膜时,难以获得高的模量,并且可能难以在低温扩展过程中确保足够的切割特性。

基于(甲基)丙烯酸酯的树脂的玻璃化转变温度可以为-10℃至20℃、或-5℃至15℃。

通过使用具有上述玻璃化转变温度的基于(甲基)丙烯酸酯的树脂,粘合层可以具有足够的流动性并且最终生产的粘合膜可以确保高的粘合强度,并且易于使用该粘合层以薄膜等形式生产粘合膜。

此外,基于(甲基)丙烯酸酯的树脂还可以包含含有芳族官能团的基于(甲基)丙烯酸酯的重复单元(bzma)。

如上所述,粘合层可以包含基于(甲基)丙烯酸酯的树脂,所述基于(甲基)丙烯酸酯的树脂包含含有基于环氧的官能团的基于(甲基)丙烯酸酯的重复单元和含有芳族官能团的基于(甲基)丙烯酸酯的重复单元(bzma)。

由于基于(甲基)丙烯酸酯的树脂包含含有芳族官能团的基于(甲基)丙烯酸酯的重复单元(bzma),因此粘合层可以确保其中包含的组分之间更高的相容性和粘合强度,并且具有高的弹性。此外,可以防止由于切割晶片时产生的热而使粘合剂软化的现象,并且可以防止在粘合剂的一部分中产生毛刺。

另外,粘合层表现出相对提高的初始拉伸模量,从而即使在低温下进行的扩展过程中也实现高的切割特性。

基于(甲基)丙烯酸酯的树脂中的含有芳族官能团的基于(甲基)丙烯酸酯的官能团的含量可以为2重量%至40重量%、3重量%至30重量%、或5重量%至25重量%。

如果基于(甲基)丙烯酸酯的树脂中的含有芳族官能团的基于(甲基)丙烯酸酯的官能团的含量太低,则提高与环氧树脂或酚树脂的相容性的效果可能不显著,并且降低最终生产的粘合膜的吸湿特性的效果也不显著,从而使得难以获得由该实施方案的组合物预期的效果。

如果基于(甲基)丙烯酸酯的树脂中的含有芳族官能团的基于(甲基)丙烯酸酯的官能团的含量太高,则最终生产的粘合膜的粘合强度可能降低。

芳族官能团可以为具有6至20个碳原子的芳基;或包含具有6至20个碳原子的芳基和具有1至10个碳原子的亚烷基的芳基亚烷基。

含有基于环氧的官能团的基于(甲基)丙烯酸酯的重复单元可以包括具有3至20个环氧碳原子的环烷基甲基(甲基)丙烯酸酯重复单元。“具有3至20个环氧碳原子的环烷基甲基”是指这样的结构,其中键合有环氧基的具有3至30个碳原子的环烷基被甲基取代。

具有3至20个环氧碳原子的环烷基甲基(甲基)丙烯酸酯的实例包括(甲基)丙烯酸缩水甘油酯和(甲基)丙烯酸3,4-环氧环己基甲酯。

同时,基于(甲基)丙烯酸酯的树脂还可以包含选自含有反应性官能团的基于乙烯基的重复单元和含有具有1至10个碳原子的烷基的基于(甲基)丙烯酸酯的官能团中的至少一种重复单元。

反应性官能团可以包括选自以下的至少一种官能团:醇、胺、羧酸、环氧化物、酰亚胺,(甲基)丙烯酸酯、腈、降冰片烯、烯烃、聚乙二醇、硫醇和乙烯基基团。

当基于(甲基)丙烯酸酯的树脂还包含选自含有反应性官能团的基于乙烯基的重复单元和含有具有1至10个碳原子的烷基的基于(甲基)丙烯酸酯的官能团中的至少一种重复单元时,基于(甲基)丙烯酸酯的树脂可以包含0.1重量%至20重量%或0.5重量%至10重量%的含有基于环氧的官能团的基于(甲基)丙烯酸酯的重复单元。

同时,在该实施方案的粘合层中,基于(甲基)丙烯酸酯的树脂相对于基于(甲基)丙烯酸酯的树脂、环氧树脂和酚树脂的总重量的重量比可以为0.55至0.95。

由于粘合层包含相对于基于(甲基)丙烯酸酯的树脂、环氧树脂和酚树脂的总重量在上述范围内的基于(甲基)丙烯酸酯的树脂,粘合层在初始拉伸时表现出相对高的模量的同时表现出低的伸长率,因此可以在低温扩展过程中实现高的切割特性,同时可以实现高的弹性、优异的机械特性和高的粘合强度。

如果基于(甲基)丙烯酸酯的树脂相对于基于(甲基)丙烯酸酯的树脂、环氧树脂和酚树脂的总重量的重量比小于上述范围,则粘合层的粘合特性降低并因此晶片的润湿性降低,这使得无法预期均匀的切割特性,并且从可靠性的角度出发,晶片与粘合膜界面之间的粘合降低,这导致粘合强度降低并使可靠性变弱。

如果基于(甲基)丙烯酸酯的树脂相对于基于(甲基)丙烯酸酯的树脂、环氧树脂和酚树脂的总重量的重量比高于上述范围,则当将粘合层在室温下拉伸5%至15%时产生的模量可能不足并且可能变得显著高,并且粘合层在室温下的伸长率可能大大增加同时切割特性变低,从而大大抑制可加工性。

粘合层中的环氧树脂和酚树脂的重量比可以考虑最终生产的产品的特性来调节,例如,重量比可以为10:1至1:10。

同时,粘合层中包含的固化剂可以包含酚树脂,更具体地,其可以包含软化点为100℃或更高的酚树脂。

酚树脂的软化点可以为100℃或更高、110℃至160℃、或115℃至150℃。

上述实施方案的粘合层可以包含软化点相对高的酚树脂,并且如上所述的软化点为100℃或更高、110℃至160℃或115℃至150℃的酚树脂可以与液体环氧树脂和玻璃化转变温度为-10℃至30℃的热塑性树脂一起形成粘合剂组分的基材(或基体),并且使得由粘合层生产的粘合膜在室温下具有更高的拉伸模量和优异的粘合强度并且具有针对半导体优化的流动特性。

相反地,如果酚树脂的软化点低于上述范围,则由粘合层生产的粘合膜的拉伸模量可能降低或者室温下的伸长率可能显著增加,并且粘合膜的熔体粘度可能降低或者模量可能降低,因此可能由于切割过程中产生的热而产生更多的毛刺,或者切割特性或拾取效率(pickupefficiency)可能降低。

另外,在粘结粘合膜的过程中或者当粘合膜被长时间暴露于高温条件时,可能产生大量渗出。

此外,酚树脂可以具有80g/eq至400g/eq的羟基当量、90g/eq至250g/eq的羟基当量、100g/eq至178g/eq的羟基当量或210g/eq至240g/eq的羟基当量。

由于酚树脂具有上述羟基当量范围,固化度即使在短的固化时间内也可以增加,因此粘合层可以提供在室温下更高的拉伸模量和优异的粘合强度。

酚树脂可以包括选自双酚a酚醛清漆树脂和联苯酚醛清漆树脂中的至少一者。

同时,环氧树脂可以用于调节粘合层的固化度或提高粘合性能等。

环氧树脂的具体实例包括选自以下的至少一种聚合物树脂:基于联苯的环氧树脂、双酚a环氧树脂、双酚f环氧树脂、甲酚酚醛清漆环氧树脂、苯酚酚醛清漆环氧树脂、四官能环氧树脂、三苯甲烷型环氧树脂、烷基改性的三苯甲烷型环氧树脂、萘型环氧树脂、二环戊二烯型环氧树脂、和二环戊二烯改性的苯酚型环氧树脂。

环氧树脂的软化点可以为50℃至120℃。

如果环氧树脂的软化点太低,则粘合层的粘合强度可能增加并因此在切割之后芯片的拾取特性可能降低。如果环氧树脂的软化点太高,则粘合层的流动性可能降低,并且粘合层的粘合强度可能降低。

环氧树脂的环氧当量可以为100g/eq至300g/eq。

固化剂还可以包含选自基于胺的固化剂和基于酸酐的固化剂中的至少一种化合物。

可以考虑最终生产的粘合膜的物理特性等来适当地选择使用的固化剂的量,例如,基于100重量份的环氧树脂,可以以10重量份至700重量份或30重量份至300重量份的量使用固化剂。

粘合层还可以包含固化催化剂。

固化催化剂用于促进固化剂的作用或粘合层的固化,并且可以没有特别限制地使用已知用于制造半导体用粘合膜等的任何固化催化剂。

例如,作为固化催化剂,可以使用选自以下的一种或更多种:磷化合物、硼化合物、磷-硼化合物和基于咪唑的化合物。可以考虑最终生产的粘合膜的物理特性等来适当地选择使用的固化催化剂的量,例如,基于100重量份的液体和固体环氧树脂、基于(甲基)丙烯酸酯的树脂以及酚树脂的总重量,可以以0.5重量份至10重量份的量使用固化催化剂。

粘合层还可以包含离子清除剂,所述离子清除剂包含:含有选自锆、锑、铋、镁和铝中的一种或更多种金属的金属氧化物;多孔硅酸盐;多孔硅铝酸盐;或沸石。

含有选自锆、锑、铋、镁和铝中的一种或更多种金属的金属氧化物的实例可以包括:锆氧化物、锑氧化物、铋氧化物、镁氧化物、铝氧化物、基于锑铋的氧化物、基于锆铋的氧化物、基于锆镁的氧化物、基于镁铝的氧化物、基于锑镁的氧化物、基于锑铝的氧化物、基于锑锆的氧化物、基于锆铝的氧化物、基于铋镁的氧化物、基于铋铝的氧化物、或者其两种或更多种的混合物。

离子清除剂可以用于吸附存在于粘合层或由其生产的粘合膜的内部的金属离子或卤素离子等,并因此可以改善与粘合膜接触的线的电可靠性。

粘合层中的离子清除剂的含量没有特别限制,但考虑到与过渡金属离子的反应性、可加工性和由树脂组合物制造的粘合膜的物理特性,基于半导体用粘合剂组合物的总固体重量,离子清除剂可以以0.01重量%至20重量%,优选地0.01重量%至10重量%的量包含在内。

粘合层还可以包含10重量%至90重量%的有机溶剂。可以考虑粘合层的物理特性、最终生产的粘合膜的物理特性和制造过程来确定有机溶剂的含量。

粘合层还可以包含选自偶联剂和无机填料中的一种或更多种添加剂。偶联剂和无机填料的具体实例没有特别限制,并且可以没有明显限制地使用已知可用于半导体封装用粘合剂的组分。

同时,当在室温下以0.3mm/秒的速度被拉伸高至5%时,粘合层可以具有100mpa或更大的模量。

此外,当在室温下以0.3mm/秒的速度被拉伸至10%时产生的,粘合层可以具有55mpa或更大的模量,并且在被拉伸15%时产生的,粘合层可以具有40mpa或更大的模量。

此外,粘合层在室温下的伸长率可以为300%或更小。

粘合层在初始拉伸期间表现出相对高的弹性的同时表现出低的伸长率,并且在低温扩展过程中可以实现高的切割特性,同时可以实现高的弹性、优异的机械特性和高的粘合强度。

此外,粘合层被应用于半导体芯片的具有多层结构的封装以实现更稳定的结构、机械特性例如优异的耐热性和耐冲击性,并且还防止回流裂纹等。特别地,即使在长时间暴露于半导体制造过程中施加的高温条件时,也可以基本上不产生孔隙。

此外,粘合层具有高的断裂强度和低的断裂伸长率,并因此可以应用于非接触型粘合剂切割(例如dbg(先切割后研磨))以及使用刀片的晶片切割,并且即使在低温下也具有优异的切割特性,因此,即使在切割后将其在室温下静置,再粘合的可能性也变低,从而提高半导体制造过程中的可靠性和效率。

可以使用粘合膜作为用于将引线框或基底与管芯附接或者将管芯与管芯附接的管芯附接膜(daf)。

因此,粘合膜可以以管芯接合(diebonding)膜、切割管芯接合膜等形式来加工。

同时,在半导体用粘合膜中,粘合膜的厚度可以为0.1μm至300μm。

此外,导电层相对于粘合层的厚度可以为0.001至0.8或0.002至0.5。

由于导电层相对于半导体用粘合膜的厚度在0.001至0.8或0.002至0.5的范围内,粘合膜可以实现高的粘合强度甚至同时确保稳定的电磁波屏蔽效率。

导电层和粘合层各自的厚度可以为一个层的厚度、一个或更多个导电层的总厚度、或者一个或更多个粘合层的总厚度。

半导体用粘合膜可以包括至少一个的各导电层和粘合层。

例如,半导体用粘合膜可以具有这样的结构,其中在导电层的两个表面上形成有两个粘合层,并且导电层和粘合层可以顺序层合。

同时,根据本发明的另一个实施方案,可以提供半导体器件,其包括半导体用粘合膜和与粘合膜的粘合层的一个表面接触的半导体元件。

如上所述,半导体用粘合膜由于固化产物的物理特性改善而可以提高半导体芯片的可靠性,并且可以没有特别限制地应用于各种切割方法以实现优异的切割特性,从而提高半导体封装过程的可靠性和效率,此外,半导体用粘合膜同时包括导电层,从而表现出优异的电磁波吸收性能。

位于粘合膜的最外表面的粘合层可以接合至半导体元件的一个表面上。

此外,位于粘合膜的另一最外表面的另一粘合层可以接合至诸如基底的被粘物上。

被粘物的具体实例没有限制,例如,被粘物可以为电路板或引线框。

具体地,作为电路板,可以使用常规已知的基底,例如印刷线路板。

此外,作为引线框,可以使用cu引线框和42合金引线框等金属引线框,或者包含玻璃环氧树脂、bt(双马来酰亚胺-三嗪)、聚酰亚胺等的有机基底。

如上所述,半导体用粘合膜可以包括选自导电层和粘合层中的至少一个。

例如,半导体用粘合膜可以具有其中在导电层的两个表面上形成有两个粘合层的结构,或者其可以具有其中导电层和粘合层顺序层合的结构。

此外,半导体器件可以包括一个或更多个的半导体用粘合膜和半导体元件。

例如,半导体器件可以具有其中一个或更多个的半导体用粘合膜和半导体元件分别顺序层合的结构。

更具体地,半导体器件还可以包括用于通过线接合(wirebonding)或倒装芯片法(flip-chipmethod)与半导体元件接合的被粘物。半导体用粘合膜可以形成在被粘物与半导体元件之间,或者粘合膜可以形成在接合有半导体元件和被粘物的表面相反的表面上。

此外,半导体器件可以包括两个或更多个半导体元件,并且两个或更多个半导体元件中的至少两个可以通过半导体用粘合膜接合。

该实施方案的半导体器件的实例如图1至3所示。

然而,以上实施方案的半导体器件的详细内容不限于此。

例如,如图1所示,半导体器件配置成使得电路图案116形成在封装基底110上,可以在其上设置信号焊盘112和接地点114,信号焊盘或接地点可以通过接合焊盘122和导线125接合至半导体元件120,并且上述半导体用粘合膜可以形成在半导体元件与电路图案或封装基底之间。

半导体元件可以埋入模制构件130中。

此外,如图2所示,半导体器件可以具有以下结构:其中第一半导体元件201和第二半导体元件202层合在封装基底200上,第一半导体元件和第二半导体元件通过导线204连接至接地部203,并且第一半导体用粘合膜210和第二半导体用粘合膜220可以分别形成在封装基底与第一半导体元件之间和第一半导体元件与第二半导体元件之间。

第一半导体元件、第二半导体元件和导线可以埋入模制构件205中。

此外,如图3所示,第一半导体元件301可以通过线接合或倒装芯片法接合在封装基底300上,并且fow(filmoverwire,线上膜)308可以形成在第一半导体元件上。

第二半导体元件302、第三半导体元件303、第四半导体元件304和第五半导体元件305顺序层合在fow上,并且第一半导体用粘合膜310、第二半导体用粘合膜320和第三半导体用粘合膜330可以分别形成在第二半导体元件302、第三半导体元件303、第四半导体元件304和第五半导体元件305之间。

第二半导体元件302、第三半导体元件303、第四半导体元件304和第五半导体元件305可以通过导线307分别或同时连接至接地部306。所有这些也可以埋入模制构件中。

有益效果

根据本发明,可以提供半导体用粘合膜和包括上述半导体用粘合膜的半导体器件,所述半导体用粘合膜由于固化产物的物理特性改善而可以提高半导体芯片的可靠性,并且可以没有特别限制地应用于各种切割方法以实现优异的切割特性,从而提高半导体封装过程的可靠性和效率,并且其可以表现出优异的电磁波吸收性能。

附图说明

图1示出了根据本发明的一个实施方案的包括半导体用粘合膜的半导体器件的实例。

图2示出了根据本发明的一个实施方案的包括半导体用粘合膜的半导体器件的另一个实例。

图3示出了根据本发明的一个实施方案的包括半导体用粘合膜的半导体器件的又一个实例。

具体实施方式

将通过以下实施例更详细地描述本发明的具体实施方案。然而,这些实施例仅用于说明本发明的具体实施方案,并且本发明的范围不限于此。

实施例1至5:粘合层和半导体用粘合膜的制造

实施例1

(1)粘合层的溶液的制造

将57g酚树脂kh-6021(由diccorp.生产,双酚a酚醛清漆树脂,羟基当量:121g/eq,软化点:125℃)(其是用于环氧树脂的固化剂)、85g环氧树脂eocn-104s(由nipponkayakuco.,ltd.生产,甲酚酚醛清漆型环氧树脂,环氧当量:214g/eq,软化点:83℃)、425g丙烯酸酯树脂(kg-3015p)、61.7gr972、0.96gdicy和0.11g2maok混合在甲基乙基酮溶剂中以获得用于粘合层的溶液(固体含量:20重量%浓度)。

(2)半导体用粘合膜的制造

将以上制造的用于粘合层的溶液涂覆在经剥离处理的聚对苯二甲酸乙二醇酯膜(厚度38μm)上,然后在110℃下干燥3分钟以获得厚度为约9μm的粘合膜。

然后,将粘合膜层合在约2μm厚的铜箔的两个表面上以制造厚度为约20μm的半导体用粘合膜。

实施例2

以与实施例1中相同的方式获得用于粘合层的溶液(固体含量:20重量%浓度),不同之处在于使用kg-3082代替kg-3015p用于丙烯酸酯树脂。通过使用所得的溶液,将粘合膜以与实施例1中相同的方式层合在约2μm厚的铜箔的两个表面上以制造厚度为约20μm的半导体用粘合膜。

实施例3

通过溅射沉积法在约2μm厚的铜箔的一个表面上形成约0.05μm厚的铌(nb)氧化物层。

然后,将实施例1中获得的厚度为约9μm的粘合膜层合在铌(nb)氧化物层上。

类似地,通过溅射沉积法在约2μm厚的铜箔的另一表面上形成约0.05μm厚的铌(nb)氧化物层,并层合厚度为约9μm的粘合膜。

比较例1

将实施例1中制造的用于粘合层的溶液涂覆在经剥离处理的聚对苯二甲酸乙二醇酯膜(厚度:38μm)上,然后在110℃下干燥3分钟以获得厚度为20μm的粘合膜。

比较例2

在实施例1中获得的厚度为约9μm的粘合膜上形成0.04μm厚的铜层,并在铜层上再次层合厚度为约9μm的粘合膜以制造厚度为约18.4μm的半导体用粘合膜。

[表2]

实施例的树脂组合物的组成[单位:g]

kh-6021:双酚a酚醛清漆树脂(diccorp.,软化点:约125℃,羟基当量:118g/eq)

eocn-104s:甲酚酚醛清漆环氧树脂(nipponkayakuco.,ltd.,环氧当量:180g/eq,软化点:90℃)

<填料>

r972:evonikindustries,热解法二氧化硅,平均粒径17nm

<丙烯酸酯树脂>

kg-3015p:以丙烯酸丁酯:丙烯酸乙酯:丙烯腈:甲基丙烯酸甲酯:甲基丙烯酸缩水甘油酯=41:24:30:2:3的组成比合成的丙烯酸树脂(重均分子量:约900000,玻璃化转变温度:17℃)

kg-3082:以丙烯酸丁酯:丙烯腈:甲基丙烯酸缩水甘油酯:甲基丙烯酸苄酯=46:20:6:28的组成比合成的丙烯酸树脂(重均分子量:约660000,玻璃化转变温度:14℃,羟基当量:约0.05eq/kg)

<添加剂>

dicy:双氰胺

2maok:基于咪唑的硬化促进剂

[实验例:半导体用粘合膜的电磁波屏蔽效果的评估]

(1)半导体器件的制造

在温度为70℃的条件下将分别在实施例和比较例中获得的半导体用粘合膜附接至第一半导体元件,所述第一半导体元件具有一侧为10mm的四边形形状且厚度为80μm。在温度为125℃、压力为1kg和时间为1秒的条件下将附接有粘合膜的第一半导体元件附接至bga基底。

然后,将接合有第一半导体元件的bga基底用干燥器在125℃下热处理1小时以使粘合膜热固化。

随后,使用线接合机(制造商:shinkawa,产品名称:utc-1000)在以下条件下在150℃下以23μm的线径(wirediameter)和100μm的间距在第一半导体元件上进行线接合。

(2)电磁波屏蔽效果的评估

通过信号源向以上制造的半导体器件施加电力,将近场天线(nearfieldantenna)设置在半导体器件上,然后使用频谱分析仪在约1mhz至8ghz的频率范围内以2d扫描测量由天线获得的电磁波的强度(dbm)。

测量结果示于下表3中。

[表3]

实施例的粘合膜在初始拉伸时表现出高的模量,但随着伸长率增加,模量相对降低。由于粘合膜在室温下具有低的伸长率,其可以在低温下扩展过程中实现高的切割特性。还确定,可以实现优异的电磁波吸收性能,如上表3所示。

特别地,在实施例2的粘合膜的情况下,与实施例1相比,由于其在初始拉伸时具有更高的模量并且在室温下具有更低的伸长率,因此在低温下扩展过程中可以实现改善的切割特性。

更具体地,如上表3所示,确定实施例1至3的半导体用粘合膜被配置成使得2μm厚的铜层位于粘合层之间,因此与比较例相比,其在1mhz至8ghz的频带内将电磁波屏蔽性能改善了约6dbm至14dbm。

相反地,确定比较例2的具有其中0.04μm厚的铜层位于粘合层之间的结构的半导体用粘合膜在1mhz至8ghz的频带内在电磁波屏蔽性能方面与比较例相比没有显著差异。因此,可以看出,为了改善电磁波屏蔽性能,需要厚度不小于预定值的导电层。

因此,确定实施例1至3的半导体用粘合膜可以实现可以有效地屏蔽和吸收引起电气元件故障并不利地影响人体的电磁波的特性。

(3)离子迁移的评估

将实施例1和3的半导体用粘合膜层合在以75μm的间隔设置的两个铜电极上,然后以该状态在125℃下热处理1小时以使粘合膜热固化。

随后,在85℃和85rh%的条件下对铜电极施加5.5v的电压,并测量直至电阻值在等于数分钟的短时间内突然降低(发生短路)所需的时间。

作为时间测量的结果,确定实施例1的半导体用粘合膜需190小时以发生短路,以及实施例3的半导体用粘合膜需220小时以发生短路。因此,确定在实施例的粘合膜的情况下,由于粘合层的特性,导电层的原子或离子相对难以扩散至粘合层中。特别地,实施例2的半导体用粘合膜由于存在形成在铜箔层的两个表面上的铌氧化物层而可以防止原子或离子扩散至粘合层中,并且可以改善导电层的金属的离子化。

【符号说明】

110:封装基底112:信号焊盘

114:接地点116:电路图案

120:半导体元件122:接合焊盘

125:导线130:模制构件

140:半导体用粘合膜

200:封装基底

201:第一半导体元件

202:第二半导体元件

203:接地部

204:导线

205:模制构件

210:第一半导体用粘合膜

220:第二半导体用粘合膜

300:封装基底

301:第一半导体元件

302:第二半导体元件

303:第三半导体元件

304:第四半导体元件

305:第五半导体元件

306:接地部

307:导线

308:fow(线上膜)

310:第一半导体用粘合膜

320:第二半导体用粘合膜

330:第三半导体用粘合膜

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1