检测和分析来自半导体腔室部件的纳米颗粒的方法和设备与流程

文档序号:18005023发布日期:2019-06-25 23:16阅读:219来源:国知局
检测和分析来自半导体腔室部件的纳米颗粒的方法和设备与流程

本公开内容的实施方式一般地涉及颗粒检测,且特别是涉及来自半导体制造部件的液体中的纳米颗粒的分析和检测。



背景技术:

随着半导体基板处理朝向越来越小的特征尺寸及线宽前进,在半导体基板上更精准地进行遮蔽、蚀刻及沉积材料也越显重要。

然而,随着半导体特征的缩小,可能造成装置无法运作的污染物颗粒的尺寸也变得更小且更难去除,例如直径小于50纳米,例如直径为10纳米至30纳米的颗粒(即,纳米颗粒)。因此,要了解会对半导体制造工具及半导体制造腔室部件产生影响的微缺陷及污染物的性质及来源,必须对纳米颗粒进行监控及化学特定特性鉴定(characterization)。

典型的半导体制造腔室部件清洁工艺包括使腔室部件浸泡在液体清洁溶液中且分析该清洁溶液的样本以确定颗粒特性,例如,颗粒的数目(颗粒数)及这些颗粒的组成(例如,金属、氧化物、陶瓷、碳氢化合物、聚合物)。

在确定颗粒数时,会使用液体颗粒计数(lpc)工具来确定清洁溶液中的颗粒数,该液体颗粒计数(lpc)工具运作的原理是检测由纳米颗粒散射的激光。然而,本案发明人观察到在某些情况中,污染物纳米颗粒会凝聚成团,导致在lpc工具中进行分析时得到不正确的颗粒数。本案发明人已确定纳米颗粒的表面性质(例如,这些纳米颗粒的荷质比)在纳米颗粒的凝聚作用中是重要因素且从而是精确确定纳米颗粒数的重要因素。然而,lpc工具无法提供有关纳米颗粒的表面性质的任何信息。

可使用ζ电位(zetapotential)工具确定基板处理腔室部件清洁溶液中的纳米颗粒的表面性质。ζ电位是用来表示胶态分散液中的动电位的科学术语。ζ电位是指在界面双层中的滑动面(slippingplane)的位置相对于远离界面的主体流体(bulkfluid)中某一点的电位。换言之,ζ电位是该分散介质(dispersionmedium)与附着于该分散颗粒上的流体稳定层(stationarylayer)之间的电位差。

此外,现行的液体颗粒计数器(lpc)能够检测约50纳米的颗粒尺寸,在用来清洁半导体处理部件及工具的洗涤液中可能出现约50纳米的颗粒尺寸。然而,依据动态光散射(瑞利散射,rayleighscattering)所设计的lpc工具仅能记录该洗涤液中的散射颗粒的尺寸分布情况却不能推断出这些污染物颗粒的本质或化学性质。

因此,本案发明人开发出可用来确定半导体工艺中所产生的污染物纳米颗粒的纳米颗粒数、ζ电位及化学特性鉴定的改良方法及设备,以利于借由将纳米颗粒凝聚作用纳入考虑来提供改进的纳米颗粒计数信息及改进的纳米颗粒计数分析效率。



技术实现要素:

在此提供用于分析和检测来自半导体制造部件的液体中的纳米颗粒的方法和设备。在某些实施方式中,检测基板处理腔室部件清洁溶液中的纳米颗粒的颗粒数(particlecount)及ζ电位的方法包括:(a)以来自基板处理腔室部件清洁槽内的清洁溶液填充样本槽,基板处理腔室部件清洁槽装有基板处理腔室部件,其中该清洁溶液包含从该基板处理腔室部件上去除的材料纳米颗粒;(b)将来自激光器的光导向该样本槽,在该样本槽中,该清洁溶液中的纳米颗粒散射来自该激光器的光以形成散射光;及(c)经由位在该样本槽附近的一个或多个检测器检测该散射光以确定该清洁溶液中的纳米颗粒的ζ电位及颗粒数。

在某些实施方式中,一种确定基板处理腔室部件清洁溶液中的纳米颗粒的颗粒数及ζ电位的方法包括:(a)以来自基板处理腔室部件清洁槽内的清洁溶液填充样本槽,基板处理腔室部件装有半导体处理腔室部件;(b)使来自激光器的光导向该样本槽,在该样本槽内,该清洁溶液中的纳米颗粒散射来自该激光器的光以形成散射光;及(c)经由位在该样本槽附近的一或多个检测器检测该散射光以确定该清洁溶液中的纳米颗粒的ζ电位及颗粒数。

在某些实施方式中,一种用于定量及定性分析待测分析物(analytes-of-interest)的系统包括:与被构造成测量一或多个待测分析物的ζ电位的设备流体连通的液体颗粒计数器。

在某些实施方式中,一种使清洁溶液改性的方法包括:使含有一或多个纳米颗粒污染物的清洁溶液与设备接触,该设备被构造成确定该清洁溶液中的所述一或多个纳米颗粒污染物的ζ电位和/或颗粒数;鉴定所述一或多个纳米颗粒污染物的ζ电位和/或颗粒数;及根据所述一或多个纳米颗粒污染物的该ζ电位和/或颗粒数来使该清洁溶液改性。

以下描述本发明的其他及进一步的实施方式。

附图说明

参阅附图中所绘示的本公开内容的示例性实施方式可了解以上简要阐述及以下更详细讨论的本发明实施方式。然而,这些附图仅绘示本公开内容的典型实施方式,因而这些附图不应视为对本发明的范围的限制,因为本公开内容可允许其他等同有效的实施方式。

图1描绘根据本公开内容某些实施方式的可用于确定基板处理腔室部件清洁溶液中的颗粒的ζ电位及液体颗粒计数的设备。

图2描绘根据本公开内容某些实施方式的用于确定基板处理腔室部件清洁溶液中的颗粒的ζ电位及液体颗粒计数的方法流程图。

图3a至图3e描绘根据本公开内容某些实施方式的用于对基板处理腔室部件清洁溶液中的纳米颗粒进行化学鉴定的设备。

图4a至图4c描绘根据本公开内容某些实施方式用于确定清洁溶液中纳米颗粒的ζ电位的设备。

图5a描绘根据本公开内容某些实施方式用于选择性检测氟化物的设备,该设备可用于化学鉴定纳米颗粒。

图5b示意性描绘氟离子在晶格空位中的移动。

为了便于了解,尽可能地使用相同附图标号来标示图式中共通的相同元件。所述图式未按比例绘制且可能为了清晰而简化。在没有进一步地描述下,可将实施方式中的元件及特征有利地并入其他实施方式中。

具体实施方式

在此提供用于分析和检测来自半导体制造部件的液体中的纳米颗粒的方法及设备。本发明的新颖方法及设备有益于确定基板处理腔室部件清洁溶液中的颗粒的颗粒数及ζ电位两者,以利于借由将纳米颗粒凝聚作用(agglomeration)纳入考虑来提供改进的颗粒计数信息以及改进的颗粒计数分析效率。此外,本发明的方法是依据纳米颗粒荧光、拉曼(raman)散射光和/或离子选择性电极来检测半导体工艺中所产生的这些污染物纳米颗粒及对这些污染物纳米颗粒进行化学特性鉴定(chemicalcharacterization),这些污染物纳米颗粒通常为金属、金属离子、氟化物、来自蚀刻残余物的纳米颗粒、聚合物、有机金属聚合物等等,本案中所述的新颖方法显著改善对腔室衬垫反应或处理气体间的任何其他寄生反应的检测及产量,这类寄生反应会导致在处理工具及腔室上形成非所欲的非挥发性副产物及污染物的涂层。再者,使用本公开内容的方法及设备所得到的有关来自微电子制造腔室及其部件的污染物的定量及定性信息可用来使清洁溶液改性以增进整体清洁性能。

图2描绘根据本公开内容某些实施方式用于确定基板处理腔室部件清洁溶液中颗粒的颗粒数及ζ电位两者的方法200的流程图。确定清洁溶液中的纳米颗粒的ζ电位可提供纳米颗粒的性质(即,所述纳米颗粒的电荷大小及该电荷的本质,如正电、负电或中性)。所述纳米颗粒的性质有助于确定该清洁溶液用来清除该半导体处理腔室部件表面上的污染物颗粒及使所述纳米颗粒保持悬浮在清洁溶液中所必需的理想ph及配方。例如,可在如以下参照图1所描述的适用的设备100中进行方法200。

半导体处理腔室部件136,诸如,腔室衬垫、腔室挡板或基座,或者铝部件放置在具有清洁溶液140的清洁槽138中。该方法200始于步骤202,在步骤202以来自装有半导体处理腔室部件136的清洁槽138内的清洁溶液140填充样本槽(samplecell)104。

经由第一流管142从清洁槽138中移除清洁溶液140,第一流管142具有与清洁槽138的出口144耦接的第一端及与样本槽104耦接的第二端。一旦填满样本槽104,停止清洁溶液140的液流且密封样本槽104。在某些实施方式中,样本槽104包括管状通道,该管状通道从第一端水平或垂直地贯通样本槽104的底部而到达位在该第一端对面的第二端,该第一端耦接至第一流管142的第二端。第二流管146耦接至样本槽104的第二端以从样本槽104排出清洁溶液140,随后如以下所述般地分析清洁溶液。

接着,在步骤204,将来自激光器102的光(即,入射光108)导向样本槽104。因布朗运动而在该清洁溶液中移动的纳米颗粒112会散射入射光108而成为散射光110。散射光110的频率偏离入射光108的程度与纳米颗粒112运动的速度成比例,从而允许确定颗粒的电泳移动率(electrophoreticmobility)。

接着,于步骤206,由一或多个检测器检测散射光110。在某些实施方式中,一或多个检测器包括两个检测器114、116。在某些实施方式中,第一检测器114可定位成以90度来检测散射光110以确定纳米颗粒112的尺寸及分子量。由第一检测器114检测散射光110,第一检测器114输出电压脉冲。纳米颗粒112越大,则对应的输出脉冲越高。在某些实施方式中,第二检测器116定位成在样本槽104附近以确定纳米颗粒112的ζ电位。

设备100进一步包括第一镜120,第一镜120定位在激光器102的输出与样本槽104之间。入射光108的第一部分122通过第一镜120且继续前往样本槽104。

利用第一镜120引导入射光108的第二部分124远离第一部分,并使第二部分124进入第二检测器116。例如,引导第二部分124以90度(或诸如70度至110度的约90度)远离第一部分122并前往第二检测器116。若有需要,附加的镜134或其他反射器可用来导向第二检测器116。由于散射光110的频率偏离入射光108的程度与纳米颗粒112运动的速度成比例,因此可由入射光108与散射光110之间的频率偏移(frequencyshift)来测量颗粒的电泳移动率且从而确定ζ电位。

使用光散射法的上述方法要求清洁溶液140在样本槽104中是静止的(即,不流过样本槽104)。然而,本案发明人观察到:能够原位(即,当清洁溶液正流过检测工具时)确定颗粒数及ζ电位可提高效率且可提供清洁溶液中的纳米颗粒性质的实时数据。

图4a提供一种直列式(in-line)设备400以用于确定清洁溶液中的纳米颗粒的ζ电位。如图4a中所示,使清洁溶液402的样本流过lpc工具404以确定清洁溶液402中的颗粒数。lpc工具404可为任何合适的市售lpc工具。清洁溶液402随后通过设备406以确定清洁溶液402中的纳米颗粒的ζ电位。

如图4b中所示的设备406包括样本槽408,样本槽408具有第一端410及位于第一端410对面的第二端412。离开lpc工具404的清洁溶液402于第一端410处进入样本槽408。样本槽408包括管状通道414,管状通道414从第一端410水平地贯通样本槽408而至第二端412。管状通道414包括相对的电极(即,电极416可为阳极(anode),及电极418可为阴极(cathode)),电极416及电极418耦接至电源420。当清洁溶液402通过电极416及电极418之间时,纳米颗粒的本质(正电、负电、中性)及电荷大小将会确定纳米颗粒对电极416及电极418的吸引力及吸引力的强弱。

图3a至图3e描绘根据本公开内容的某些实施方式用于对基板处理腔室部件清洁溶液中的纳米颗粒进行化学鉴定的设备300。如图3a中所示,本案发明人提供一种单分子荧光成像及光谱的设备300,设备300可用于化学鉴定纳米颗粒。

荧光及拉曼成像技术是可化学鉴定存在于溶液中的纳米颗粒的光敏性方法,溶液诸如超纯水或可用于lpc系统中的清洁溶液。如图3b中所示,在uv至可见光波长(即,200nm至500nm)内的辐射吸收作用会激发分子成为较高的电子激发态(例如,从s0(基态)成为s1、s2、s3…sn)。经激发的分子随后或可直接松弛至基态s0或是透过无辐射能量转移(radiationlessenergytransfer)而松弛成较低能阶(lowerstate)。荧光发射作用仅会发生在从s1跃迁至s0的时候。当分子是在激发波长处被激发时会产生最大荧光。通常荧光发生在从激发光波长经显著红移(red-shifted)后的波长处。当使用可调激光器以uv-可见光区域中的金属纳米颗粒的特定激发波长来激发金属纳米颗粒,例如这些表现出强等离子体共振的金属纳米颗粒(例如铜、金、铝)时,会显现出独特的荧光发光,因此可使用本公开内容的方法及设备来检测及鉴定。

如图3c中所示,由于光的非弹性散射,由激发分子从较高激发态跃迁至基态电子能阶的共振振动状态可能产生拉曼散射,这样造成光谱上的偏移,且诸如污染物或待测分析物的不同材料在光谱上所产生的偏移是独特的。在本公开内容的实施方式中,非金属可能显现出拉曼散射信号,且该拉曼散射信号可由图3a的设备300及视情况需要可包括合适的陷波光谱滤波器(notchspectralfilter)380来检测之。

回到图3a,设备300包括微流体流量槽(microfluidicflowcell)302。微流体流量槽302具有与第一端306耦接的流入管304及位在第二端310处的流出管308,用以运送具有纳米颗粒的清洁溶液进入及离开微流体流量槽302。如图3d及图3e中所示,微流体流量槽302包括玻璃或石英玻璃载玻片340,在载玻片340上康宁(corning)#1玻璃或石英盖玻片342(厚度<150微米)以在载玻片340与盖玻片342之间的间隔垫390固定,故而在两者之间创造出可供液体流过的空容积344。在载玻片340的中央部分上的两长端处钻出两个直径为1.4毫米(mm)的孔346,使得孔346通向介于以间隔垫隔开的载玻片340与盖玻片342之间的中央空间。利用配接器350使两个1/16”的hplc管(流入管304及流出管308)附接至两钻孔上。如上所述,微流体流量槽包括玻璃/石英玻璃载玻片,在该玻璃/石英玻璃载玻片上玻璃/石英盖玻片以在载玻片与盖玻片之间的间隔垫固定以创造出空容积。

回到图3a,设备300进一步包括可调式二极管激发固态(dpss)激光器312。激光器312是一种提供小于1瓦(w)功率的连续波激光器。激光器312可在uv-可见光区域内做调整、例如在200纳米至500纳米之间、或在200纳米至410纳米之间做调整,以针对流过微流体流量槽302中的激发容积中的不同缺陷纳米颗粒来激发不同的电子激发模式。激光器312提供同调近单色光(coherentnear-monochromaticlight,即,激发光束314),该同调近单色光通过光束扩展器348且视情况需要通过聚焦透镜336。引导来自激光器312的激发光束314通过光束衰减器316,如一或多个中性密度滤光器(neutraldensityfilter)。在聚焦激发光束314的路径中配置二向分光镜318,二向分光镜318以90度的角度反射光束而使光束射向显微镜物镜324(na~1.5;60~100倍)及微流体流量槽302。二向分光镜318具有可反射较短波长(激发)且可让较长波长透射(荧光/拉曼)的特性。共轭焦针孔320定位在二向分光镜318与显微镜物镜324之间。共轭焦针孔320位在聚焦透镜336的焦距处,使得通过于空间上过滤掉激发光束314的非聚焦部分来维持高的光学分辨率及对比。

随后将激发光束314导向与微流体流量槽302的第一侧322耦接的显微镜物镜324。显微镜物镜324将激发光束聚焦在微流体流量槽中,而在流量槽内建立出激发空间。流经流量槽的纳米颗粒在激发空间内受到激发,随后,就金属污染物或金属待测分析物而言会以特定(数个)波长发出单一分子荧光辐射,就非金属的污染物或待测分析物而言会发出拉曼散射光。在实施方式中,将可利用设备300检测拉曼散射光。随后利用显微镜物镜324收集并准直(collimated)荧光/拉曼发光,且接着透过二向分光镜318及陷波滤波器326将荧光/拉曼发光导向设备(setup)的成像及光谱检测部件。在实施方式中,陷波滤波器326预选为用来成像来自单一纳米颗粒污染物或待测分析物的荧光/拉曼信号。利用荧光计(perkin-elmer公司的fluoromax-4荧光计)来取得欲研究的各种材料纳米颗粒或待测分析物的发光及激发光谱,有助于陷波滤波器的预选,使得可正确地选择出适当的陷波滤波器及激发波长。在实施方式中,陷波滤波器经选择以去除激发光。在实施方式中,陷波滤波器经选择以传送荧光和拉曼信号。

在穿透陷波滤波器326之后,在陷波滤波器326与增强型电荷耦合装置(iccd)330之间设置光束分离器(或回转镜)328,以得以将该单一纳米颗粒荧光/拉曼图像及这些经光谱色散(spectrallydispersed)的荧光光谱记录在单一的电荷耦合装置(ccd)传感器上。在实施方式中,在一光束路径中,可通过透射过光谱滤波器380而照射在增强型电荷耦合装置(iccd)330(例如,相机)上来直接成像出该荧光/拉曼图像,而可在该相机上进行颗粒计数及定尺寸。在另一光束路径中,利用光栅光谱仪(gratingspectrometer)334对该荧光/拉曼信号进行光谱色散,且随后将该荧光/拉曼信号投射在电子倍增电荷耦合装置(emccd)338的波长校准像素(wavelengthcalibratedpixel)上。在实施方式中,光栅光谱仪334用于对荧光进行光谱色散并将该荧光投射在电子倍增电荷耦合装置上。在实施方式中,电子倍增电荷耦合装置设置在适于在光谱频率范畴下色散荧光和拉曼信号的可调式光栅光谱仪内。在实施方式中,光栅光谱仪334适于单一的颗粒光谱仪。在实施方式中,光栅光谱仪334包括每毫米1200线。在实施方式中,光栅光谱仪334是电子倍增电荷耦合装置(emccd)338的部件。在实施方式中,光栅光谱仪334和电子倍增电荷耦合装置(emccd)338接收荧光和拉曼信号并形成荧光和拉曼光谱。

在实施方式中,位在emccd338与光束分离器(或回转镜)328之间的透镜332可用来将荧光/拉曼信号聚焦在该emccd像平面上。该iccd对于高光子计数具有高量子效率且适合用于成像目的。电子倍增电荷耦合装置(emccd)对于低光子计数具有高量子效率,适合用于光谱应用用途。

在实施方式中,根据本公开内容所做的单一分子荧光/拉曼成像及光谱的一些优点包括:(1)可在流动时(in-flow)检测单一分子纳米颗粒(颗粒数/立方厘米/分钟);(2)对不同的荧光/拉曼光谱特性具有化学特异性(chemicalspecificity);(3)快速的撷取时间及高的量子效率;(4)在静态模式中,可从荧光/光子相关分析中反推出纳米颗粒尺寸;及(5)相对容易设置及打包(package)。

在实施方式中,视情况需要地,在透镜332与光栅光谱仪334之间定位狭缝孔333,诸如50微米狭缝孔,以致将光点聚焦在光栅光谱仪334上。

在图5a中所示的另一实施方式中,本案发明人根据本公开内容的某些实施方式提供用于选择性检测氟化物的设备500,设备500可用于化学鉴定纳米颗粒。设备500可浸没在装有半导体处理腔室部件136的清洁槽138的清洁溶液140中。设备500包括主体516,该主体具有第一端502及将浸没在清洁溶液中的第二端504。主体516为中空且呈管状造型,且该主体包括电极506(例如,由银或氯化银所制成的电极)和在主体516内的化学溶液508(例如,氯化钠或氟化钠),电极506耦接单晶膜510。

单晶膜510,例如,可为掺有euf2而产生晶格空位512的laf3。如图5b中所示,氟离子514在晶格空位512中移动导致可被检测到的传导作用。该晶格空位的尺寸仅允许氟离子移动通过单晶膜510。可使用类似的设备来检测其他化学物质,例如k+、na+、cl-、nh3、ca2+、s2-、ag+、pb3+、pb4+、no2-、no3-、cn-

在实施方式中,设备500为离子选择性电极。适用的离子选择性电极包括对一或多种待测分析物具有已知检测极限及检测特异性的市售离子选择性电极。在本公开内容的实施方式中,可包括直列式离子选择性电极的阵列。现参阅图4c,使清洁溶液402的样本通过lpc工具404以确定清洁溶液402中的纳米颗粒数。lpc工具404可为任何适用的市售lpc工具。清洁溶液402随后通过设备406以确定清洁溶液402中的纳米颗粒的ζ电位。清洁溶液402接着通过设备300以确定可溶性颗粒的种类。视情况需要,可使清洁溶液进一步接触一或多个离子选择电极421以鉴定可溶性待测分析物,例如k+、na+、cl-、nh3、ca2+、s2-、ag+、pb3+、pb4+、no2-、no3-、cn-、f-离子。

在实施方式中,本公开内容的方法包括鉴定半导体集成电路清洁溶液中的污染物的方法,包括:使半导体集成电路清洁溶液与集成电路部件接触以形成含有一或多个不溶性待测分析物的排出液(effluent);使含有一或多个不溶性待测分析物的排出液与被构造成测量来自所述一或多个不溶性待测分析物的荧光及视情况需要的拉曼信号的设备;及鉴定所述一或多个待测分析物。在实施方式中,所述一或多个待测分析物包括一或多种金属。金属(例如金属污染物)的非限制性实例包括铜、金、铝、镍、铬、镍铬合金(nichrome)、锗、银、钛、钨、铂、钽及上述金属的组合。在实施方式中,特别是包含光谱滤波器(例如光谱滤波器380)的实施方式中,所述一或多个待测分析物可包括一或多种非金属。非金属的非限制性实例包括氧化物、氮化物、硅的氧化物、硼及其类似物。在实施方式中,该待测分析物为该清洁溶液中的不溶性颗粒或悬浮颗粒。

根据本公开内容的方法进一步包括使排出液与一或多个离子选择性电极接触以用于鉴定可溶性的待测分析物,排出液例如是使用过的清洁溶液。

在实施方式中,使用本公开内容的方法及设备所得到有关待测分析物(例如污染物)的定量及定性信息可用于预选、选择或使清洁溶液改性以增进整体清洁效能。在实施方式中,例如在清洁溶液显示有较高浓度的一或多个已鉴定的污染物的实施方式中,可使该清洁溶液改性以使其更有效地去除已鉴定的污染物。例如,若一种金属污染物已经鉴定且发现是一种阴电性比硅高的金属,可改性或选择具有较高氧化还原电位值的清洁溶液以提高或促进此种污染物的去除。若一金属污染物经鉴定为阴电性比硅要低的金属,则可能发现污染物为化学氧化物的形式并可使用稀释的氢氟酸处理来清除该金属污染物。在实施方式中,可通过调整该清洁溶液的ph、添加螯合剂、表面活性剂及类似物来使该清洁溶液改性,以选择性地针对该经鉴定的污染物来提高从受污染的部件上去除该污染物的能力。

在实施方式中,提供清洁溶液改质的方法,包括使含有一或多种纳米颗粒污染物的清洁溶液与被构造成确定该清洁溶液中所述一或多种纳米颗粒污染物的ζ电位和/或颗粒数的设备(例如设备100)接触。在实施方式中,该方法包括鉴定所述一或多种纳米颗粒污染物的ζ电位和/或颗粒数;及根据所述一或多种纳米颗粒污染物的ζ电位和/或颗粒数来使该清洁溶液改性。在实施方式中,改性步骤包括于该清洁溶液中加入一或多种酸性溶液、于该清洁溶液中加入一或多种碱性溶液,于该清洁溶液中加入一或多种螯合剂,于该清洁溶液中加入一或多种表面活性剂,及于该清洁溶液中加入上述的组合物。在实施方式中,所述方法包括改变该清洁溶液的温度。

尽管上述内容针对本发明的多个实施方式,但在不背离本发明的基本范围下可设计本发明的其他及进一步的实施方式。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1