各向异性导电膜及其制造方法与流程

文档序号:16395822发布日期:2018-12-25 19:48阅读:347来源:国知局
各向异性导电膜及其制造方法与流程

本发明涉及各向异性导电膜及其制造方法。

背景技术

各向异性导电膜是在绝缘性粘合剂中分散有导电颗粒而成,在ic芯片等电子部件的安装中广泛使用。近年来,随着电子器件的小型化,安装部件也小型化,电极的间距为数十μm等的窄间距化得到发展。窄间距化的电极用各向异性导电膜连接,则容易发生电极间导电颗粒连接而导致的短路、电极间不存在导电颗粒而导致的导通不良。

针对这些问题,人们探讨了在各向异性导电膜中使导电颗粒规则排列,例如已知有:在拉伸性膜上将导电颗粒填充于一个面并固定,将该拉伸性膜双轴拉伸,由此使导电颗粒按照规定的中心距配置的方法(专利文献1);或者使用表面具有多个孔部的转印模,使导电颗粒排列的方法(专利文献2)。

现有技术文献

专利文献

专利文献1:日本特许第4789738号说明书

专利文献2:日本特开2010-33793号公报。



技术实现要素:

发明所要解决的课题

但是,在使导电颗粒规则排列的以往的各向异性导电膜中,在使用各向异性导电膜安装电子部件的热压接时,导电颗粒的排列出现混乱,变得不规则,因此无法充分消除电极之间导电颗粒的连接而导致的短路或电极间不存在导电颗粒而导致的导通不良。

对此,本发明的主要课题是:使用使导电颗粒规则排列的各向异性导电膜,降低安装电子部件时的短路或导通不良。

解决课题的方案

本发明人发现:在使导电颗粒保持规定的排列的各向异性导电膜中,通过控制将导电颗粒保持在规定的排列状态的绝缘性树脂层在导电颗粒附近的厚度分布,可控制在使用各向异性导电膜安装电子部件时导电颗粒的流动方向,由此可降低短路、导通不良;还发现:在使用转印模制造使导电颗粒规则排列的各向异性导电膜时,这样的绝缘性树脂层厚度分布的控制可通过控制转印模的形状、并将绝缘性树脂填充于该转印模中而使导电颗粒保持于绝缘性树脂来进行,从而想到了本发明。

即,本发明提供各向异性导电膜,该各向异性导电膜具有多个导电颗粒以规定的排列保持于绝缘性树脂层而得的导电颗粒排列层,保持导电颗粒的排列的绝缘性树脂层在各个导电颗粒周围的厚度分布具有相对于该导电颗粒呈非对称的方向。

本发明还提供所述各向异性导电膜的制造方法,该制造方法具有以下工序:

向表面具有多个开口部的转印模填充导电颗粒的工序,

在导电颗粒上层合绝缘性树脂的工序,以及

形成导电颗粒排列层的工序,其中,使多个导电颗粒以规定的排列保持于绝缘性树脂层,从转印模向绝缘性树脂层转印;

且使用如下的转印模:各个开口部的深度分布具有相对于通过开口部最深部中心的铅垂线呈非对称的方向。

本发明进一步提供连接结构体,其中,第1电子部件和第2电子部件通过所述各向异性导电膜而各向异性导电连接。

发明的效果

根据本发明的各向异性导电膜,由于保持导电颗粒的排列的绝缘性树脂层在各个导电颗粒周围的厚度分布具有相对于该导电颗粒呈非对称的方向,因此,使用各向异性导电膜安装电子部件时,导电颗粒的流动方向取决于导电颗粒周围的、保持该导电颗粒的配置的绝缘性树脂层中树脂量少的方向。因此,使用各向异性导电膜安装电子部件时,导电颗粒的流动方向不会集中于特定部位,可以降低电极间导电颗粒的连接导致的短路、或电极间不存在导电颗粒而导致的导通不良。因此,使用该各向异性导电膜的本发明的连接结构体的短路、导通不良降低,连接可靠性优异。

并且,根据本发明的各向异性导电膜的制造方法,制造本发明的各向异性导电膜时,由于使用开口部的深度分布具有方向性的转印模,因此导电颗粒容易向转印模的开口部填充,可防止导电颗粒向开口部填充时导电颗粒的聚集、或导电颗粒在开口部脱落,因此可防止各向异性导电膜中导电颗粒的排列发生缺陷。由此,根据由该方法得到的各向异性导电膜,可以进一步降低在安装电子部件时的短路、导通不良。

另外,根据本发明的各向异性导电膜的制造方法,使用转印模形成导电颗粒排列层后,从该转印模剥离导电颗粒排列层的操作变得容易。因此各向异性导电膜的生产能力提高。

附图说明

[图1a]图1a是本发明的一个实施方案的各向异性导电膜1a的平面图。

[图1b]图1b是本发明的一个实施方案的各向异性导电膜1a的截面图。

[图1c]图1c是本发明的一个实施方案的各向异性导电膜1a的截面图。

[图2a]图2a是在各向异性导电膜1a的制造中使用的转印模10a的斜视图。

[图2b]图2b是在各向异性导电膜1a的制造中使用的转印模10a的俯视图。

[图2c]图2c是在各向异性导电膜1a的制造中使用的转印模10a的截面图。

[图3a]图3a是填充了导电颗粒的转印模10a的俯视图。

[图3b]图3b是填充了导电颗粒的转印模10a的截面图。

[图4a]图4a是各向异性导电膜1a的制造工序的说明图。

[图4b]图4b是各向异性导电膜1a的制造工序的说明图。

[图4c]图4c是各向异性导电膜1a的制造工序的说明图。

[图4d]图4d是各向异性导电膜1a的制造工序的说明图。

[图4e]图4e是各向异性导电膜1a的制造工序的说明图。

[图4f]图4f是各向异性导电膜1a的制造工序的说明图。

[图4g]图4g是各向异性导电膜1a的制造工序的说明图。

[图5a]图5a是各向异性导电膜1a的制造工序的说明图。

[图5b]图5b是各向异性导电膜1a的制造工序的说明图。

[图5c]图5c是各向异性导电膜1a的制造工序的说明图。

[图5d]图5d是各向异性导电膜1a的制造工序的说明图。

[图5e]图5e是各向异性导电膜1a的制造工序的说明图。

[图6a]图6a是各向异性导电膜1a的制造工序的说明图。

[图6b]图6b是各向异性导电膜1a的制造工序的说明图。

[图6c]图6c是各向异性导电膜1a的制造工序的说明图。

[图6d]图6d是各向异性导电膜1a的制造工序的说明图。

[图6e]图6e是各向异性导电膜1a的制造工序的说明图。

[图6f]图6f是各向异性导电膜1a的制造工序的说明图。

[图6g]图6g是各向异性导电膜1a的制造工序的说明图。

[图7a]图7a是本发明的一个实施方案的各向异性导电膜1a’的平面图。

[图7b]图7b是本发明的一个实施方案的各向异性导电膜1a’的截面图。

[图7c]图7c是本发明的一个实施方案的各向异性导电膜1a’的截面图。

[图8]图8是本发明的一个实施方案的各向异性导电膜1a’’的平面图。

[图9a]图9a是填充了导电颗粒的转印模10b的截面图。

[图9b]图9b是使用转印模10b得到的各向异性导电膜1b的截面图。

[图10a]图10a是填充了导电颗粒的转印模10c的截面图。

[图10b]图10b是使用转印模10c得到的各向异性导电膜1c的截面图。

[图11a]图11a是填充了导电颗粒的转印模10d的截面图。

[图11b]图11b是使用转印模10d得到的各向异性导电膜1d的截面图。

[图12a]图12a是填充了导电颗粒的转印模10e的截面图。

[图12b]图12b是使用转印模10e得到的各向异性导电膜1e的截面图。

[图13a]图13a是填充了导电颗粒的比较例的转印模10x的截面图。

[图13b]图13b是使用转印模10x得到的各向异性导电膜1x的截面图。

[图14]图14是各向异性导电连接的玻璃基板与ic芯片的粘合强度的评价方法的说明图。[图15]图15是显示各实施例和比较例所使用的材料以及所得各向异性导电膜的评价结果的表1。

具体实施方式

以下参照附图详细说明本发明。各图中,相同符号表示相同或同等的构成要素。

(1)各向异性导电膜的结构

(1-1)整体结构

图1a是本发明的一个实施方案的各向异性导电膜1a的平面图,图1b是其a-a截面图,图1c是b-b截面图。

如图所示,各向异性导电膜1a的特征在于:具有多个导电颗粒2直接保持于绝缘性树脂层3而得的导电颗粒排列层4,且该绝缘性树脂层3在各个导电颗粒2的周围具有后述的特定的厚度分布。导电颗粒排列层4的一个面平坦,另一面具有凹凸,第2绝缘性树脂层5层合于导电颗粒排列层4的凹凸面,第3绝缘性树脂层6层合于导电颗粒排列层4的平坦面。本发明中,为了使各向异性导电连接的电子部件彼此的粘合性提高,第2绝缘性树脂层5和第3绝缘性树脂层6可分别根据需要设置。

(1-2)导电颗粒排列层

导电颗粒排列层4中,多个导电颗粒2以单层排列成四方点阵。各导电颗粒2是在各导电颗粒排列层4的凸部中保持于绝缘性树脂层3,各导电颗粒2周围的绝缘性树脂层3具有角大致呈圆形的斜圆锥台形状。

本发明中,导电颗粒2的排列并不限定为四方点阵。例如可以是六方点阵等。导电颗粒排列层4的一个凸部中保持于绝缘性树脂层3的导电颗粒数目并不限为1个,可以是多个。

本发明中,形成导电颗粒排列层4的凸部的绝缘性树脂层3的形状并不限为斜圆锥台状,例如可以是斜矩形锥台等锥台形状等。

各向异性导电膜1a中,绝缘性树脂层3的厚度分布具有相对于导电颗粒2的中心轴l1(各向异性导电膜1a厚度方向的中心轴)呈左右非对称的方向x,该方向x在所有的导电颗粒2中是一致的。

即,在通过任意导电颗粒2的中心p、以所述方向x将各向异性导电膜1a切断时,在各向异性导电膜1a的a-a截面(图1b)中,各个导电颗粒2周围q的绝缘性树脂层3的面积为,该导电颗粒2的一侧qa的面积sa比另一侧qb的面积sb小。这里,各个导电颗粒2周围q的绝缘性树脂层3是指在所述截面中,保持有各个导电颗粒2的绝缘性树脂层3的凸部区域,即,在所述截面中,自导电颗粒2和其相邻的导电颗粒2之间绝缘性树脂层3的层厚(绝缘性树脂层3的凸区域侧表面与平坦面侧区域的距离)最薄的部分,至该导电颗粒2和其另一侧相邻的导电颗粒2之间绝缘性树脂层3的层厚最薄的部分的范围。

该截面中,导电颗粒2的一侧qa的侧面3a是呈沿各向异性导电膜1a的厚度方向的悬崖状,与一侧qa的侧面3a相比,另一侧qb的侧面3b相对于各向异性导电性膜1a的厚度方向更为倾斜。

这样,该各向异性导电膜1a中,各导电颗粒2周围的绝缘性树脂层3的厚度分布具有相对于该导电颗粒2的中心轴l1呈非对称的方向x,在该方向x的截面(图1b)中,所述导电颗粒2的一侧qa的面积sa比另一侧qb的面积sb小,保持导电颗粒2的绝缘性树脂层3的树脂量是一侧qa比另一侧qb少,因此使用各向异性导电膜1a安装电子部件时,在加热加压时导电颗粒2容易向保持该导电颗粒2的绝缘性树脂层3的树脂量少的方向xa流动(图1a)。因此可以防止安装时的加热加压导致导电颗粒不规则流动并集中于特定部位,可以降低电极之间由于导电颗粒连接导致的短路、或由于电极间不存在导电颗粒而导致的导通不良。

并且,提高绝缘性树脂层具有上述厚度分布,则形成各向异性导电膜的表面的树脂层具有表面凹凸,与用表面平坦的树脂层形成的情形相比,各向异性导电膜的粘性提高,可望使粘合性提高。

在本发明的各向异性导电膜中,各个导电颗粒2周围的绝缘性树脂层3的厚度分布相对于该导电颗粒2呈非对称的方向可以是至少一个,在其它方向上,导电颗粒2周围的绝缘性树脂层3的厚度分布可以相对于该导电颗粒2为对称的。例如在与上述各向异性导电膜1a的与x方向垂直的y方向的b-b截面中,如图1c所示,导电颗粒2周围的绝缘性树脂层3的厚度分布相对于该导电颗粒2的中心轴l1为对称的。

(1-3)导电颗粒

各向异性导电膜1a中,导电颗粒2可以从以往公知的各向异性导电膜所使用的导电颗粒中适当选择使用。例如可举出:镍、钴、银、铜、金、钯等金属颗粒,金属被覆树脂颗粒等。也可以将2种以上结合使用。

导电颗粒2的平均粒径过小,则无法吸收各向异性导电连接的布线的高度偏差,有电阻升高的倾向,过大则有造成短路的倾向,因此优选为1-10μm,更优选2-6μm。

导电颗粒2在各向异性导电膜1a中的颗粒量过少,则颗粒捕捉数降低,各向异性导电连接变得困难,过多则有发生短路的担忧,因此优选每1平方mm为50-50000个,更优选200-40000个,进一步优选400-30000个。

(1-4)绝缘性树脂层

保持导电颗粒2的绝缘性树脂层3可以适当采用公知的绝缘性树脂层。例如可使用:含有丙烯酸酯化合物和光自由基聚合引发剂的光自由基聚合型树脂层、含有丙烯酸酯化合物和热自由基聚合引发剂的热自由基聚合型树脂层、含有环氧化合物和热阳离子聚合引发剂的热阳离子聚合型树脂层、含有环氧化合物和热阴离子聚合引发剂的热阴离子聚合型树脂层等。这些树脂层可根据需要设为分别聚合得到的树脂层。

其中,优选采用含有丙烯酸酯化合物和光自由基聚合引发剂的光自由基聚合型树脂层作为绝缘性树脂层3。对光自由基聚合型树脂层照射紫外线,使其光自由基聚合,由此可形成导电颗粒2固定于绝缘性树脂层3的导电颗粒排列层4。如后所述,这种情况下,在形成第2绝缘性树脂层5之前,由导电颗粒2一侧对光自由基聚合型树脂层照射紫外线,使其光自由基聚合,则如图4d所示,可以使位于导电颗粒排列层4的平坦面和导电颗粒2之间的绝缘性树脂层3的区域3m的固化率比位于相互相邻的导电颗粒2之间的绝缘性树脂层3的区域3n的固化率低。因此在绝缘性树脂层3中,可以使位于导电颗粒2正下方的、固化率低的区域3m的最低熔融粘度比位于导电颗粒2周围的、固化率高的区域3n的最低熔融粘度低,在进行各向异性导电连接时,导电颗粒2在水平方向上不会位置偏移,而容易压入。因此可以提高颗粒捕捉效率,降低导通电阻值,实现良好的导通可靠性。

这里,固化率是定义为对聚合有贡献的官能团(例如乙烯基)的减少比率的数值。具体来说,如果固化后乙烯基的存在量为固化前的20%,则固化率为80%。乙烯基的存在量的测定可通过红外吸收光谱的乙烯基的特性吸收分析进行。绝缘性树脂层3的固化率低的区域3m的固化率优选为40-80%,固化率高的区域3n的固化率优选为70-100%。

绝缘性树脂层3的最低熔融粘度可以通过流变仪测定,该值过低,则有颗粒捕捉效率降低的倾向,过高则有导通电阻值增大的倾向,因此优选为100-100000mpa·s,更优选500-50000mpa·s。

优选绝缘性树脂层3的最低熔融粘度比第2绝缘性树脂层5和第3绝缘性树脂层6各自的最低熔融粘度高。具体来说,[绝缘性树脂层3的最低熔融粘度(mpa·s)]/[第2绝缘性树脂层5或第3绝缘性树脂层6的最低熔融粘度(mpa·s)]的数值过低,则有颗粒捕捉效率降低、短路发生概率升高的倾向,过高则有导通可靠性降低的倾向。因此,优选使[绝缘性树脂层3的最低熔融粘度(mpa·s)]/[第2绝缘性树脂层5或第3绝缘性树脂层6的最低熔融粘度(mpa·s)]的数值为1-1000,更优选4-400。

第2绝缘性树脂层5和第3绝缘性树脂层6的最低熔融粘度过低,则在制成卷轴时有发生树脂渗出的倾向,过高则有导通电阻值升高的倾向,因此优选为0.1-10000mpa·s,更优选1-1000mpa·s。

绝缘性树脂层3使用的丙烯酸酯化合物可以使用以往公知的自由基聚合性丙烯酸酯。例如可使用单官能(甲基)丙烯酸酯(这里,(甲基)丙烯酸酯包含丙烯酸酯和甲基丙烯酸酯)、双官能以上的多官能(甲基)丙烯酸酯。本发明中,为了使绝缘性树脂层3为热固化性,优选丙烯酸类单体的至少一部分使用多官能(甲基)丙烯酸酯。

单官能(甲基)丙烯酸酯可举出:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸2-甲基丁酯、(甲基)丙烯酸正戊酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸正庚酯、(甲基)丙烯酸2-甲基己酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸2-丁基己酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸异戊酯、(甲基)丙烯酸异壬基酯、(甲基)丙烯酸异癸酯、(甲基)丙烯酸异冰片基酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸苄基酯、(甲基)丙烯酸苯氧基酯、(甲基)丙烯酸正壬基酯、(甲基)丙烯酸正癸基酯、(甲基)丙烯酸月桂基酯、(甲基)丙烯酸十六烷基酯、(甲基)丙烯酸硬脂基酯、(甲基)丙烯酸吗啉-4-基酯等。双官能(甲基)丙烯酸酯可举出:双酚f-eo改性二(甲基)丙烯酸酯、双酚a-eo改性二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、聚乙二醇(甲基)丙烯酸酯、三环癸烷二甲醇二(甲基)丙烯酸酯、二环戊二烯(甲基)丙烯酸酯等。三官能(甲基)丙烯酸酯可举出:三羟甲基丙烷三(甲基)丙烯酸酯、三羟甲基丙烷po改性(甲基)丙烯酸酯、异氰尿酸eo改性三(甲基)丙烯酸酯等。四官能以上的(甲基)丙烯酸酯可举出:二季戊四醇五(甲基)丙烯酸酯、季戊四醇六(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯等。另外,也可以使用多官能氨基甲酸酯(甲基)丙烯酯。具体来说可举出:m1100、m1200、m1210、m1600(以上,东亚合成株式会社)、ah-600、at-600(以上,共荣社化学株式会社)等。

绝缘性树脂层3的丙烯酸酯化合物的含量过少,则有难以获得与第2绝缘性树脂层5的最低熔融粘度差的倾向,过多则固化收缩增大,有操作性降低的倾向,因此优选为2-70质量%,更优选10-50质量%。

光自由基聚合引发剂可以从公知的光自由基聚合引发剂中适当选择使用。例如可举出:苯乙酮类光聚合引发剂、苯偶酰缩酮类光聚合引发剂、磷类光聚合引发剂等。具体来说,苯乙酮类光聚合引发剂可举出:2-羟基-2-环己基苯乙酮(irgacure184,basf日本株式会社制造)、α-羟基-α,α’-二甲基苯乙酮(darocur1173,basf日本株式会社制造)、2,2-二甲氧基-2-苯基苯乙酮(irgacure651,basf日本株式会社制造)、4-(2-羟基乙氧基)苯基(2-羟基-2-丙基)酮(darocur2959,basf日本株式会社制造)、2-羟基-1-{4-[2-羟基-2-甲基-丙酰基]-苄基}苯基}-2-甲基-丙烷-1-酮(irgacure127,basf日本株式会社制造)等。苯偶酰缩酮类光聚合引发剂可举出:二苯甲酮、芴酮、二苯并环庚酮、4-氨基二苯甲酮、4,4’-二氨基二苯甲酮、4-羟基二苯甲酮、4-氯二苯甲酮、4,4’-二氯二苯甲酮等。也可以使用2-苄基-2-二甲基氨基-1-(4-吗啉代苯基)-丁酮-1(irgacure369,basf日本株式会社制造)。磷类光聚合引发剂可举出:双(2,4,6-三甲基苯甲酰)-苯基氧化膦(irgacure819,basf日本株式会社制造)、2,4,6-三甲基苯甲酰-二苯基氧化膦(darocure

tpo,basf日本株式会社制造)等。

光自由基聚合引发剂的使用量相对于100质量份丙烯酸酯化合物过少,则有光自由基聚合不能充分进行的倾向,过多则可能造成刚性降低,因此优选为0.1-25质量份,更优选0.5-15质量份。

由含有丙烯酸酯化合物和热自由基聚合引发剂的热自由基聚合型树脂层构成绝缘性树脂层3时,丙烯酸酯化合物可以采用如先前所说明的丙烯酸酯化合物。热自由基聚合引发剂例如可举出有机过氧化物、偶氮类化合物等,偶氮类化合物在聚合反应时发生分解,产生氮气,可能使气泡混入聚合物中,因此可优选使用有机过氧化物。例如可举出日本油脂株式会社制造的perhexa3m(パーヘキサ3m)或peroyltcp(パーロイルtcp)、peroyll(パーロイルl)等。

有机过氧化物可举出:过氧化甲乙酮、过氧化环己酮、过氧化甲基环己酮、过氧化乙酰丙酮、1,1-双(叔丁基过氧基)3,3,5-三甲基环己烷、1,1-双(叔丁基过氧)环己烷、1,1-双(叔己基过氧)3,3,5-三甲基环己烷、1,1-双(叔己基过氧)环己烷、1,1-双(叔丁基过氧)环十二烷、异丁基过氧化物、过氧化月桂酰、过氧化琥珀酸、3,5,5-三甲基己酰过氧化物、过氧化苯甲酰、过氧化辛酰、过氧化硬脂酰、过氧二碳酸二异丙酯、过氧二碳酸二正丙酯、过氧二碳酸二-2-乙基己酯、过氧二碳酸二-2-乙氧基乙酯、过氧二碳酸二-2-甲氧基丁酯、过氧二碳酸双-(4-叔丁基环己基)酯、(α,α-双-新癸酰过氧)二异丙基苯、过氧新癸酸枯基酯、过氧新癸酸辛基酯、过氧新癸酸己基酯、过氧新癸酸叔丁基酯、过氧特戊酸叔己酯、过氧特戊酸叔丁酯、2,5-二甲基-2,5-双(2-乙基己酰过氧)己烷、过氧-2-乙基己酸1,1,3,3-四甲基丁酯、过氧-2-乙基己酸叔己基酯、过氧-2-乙基己酸叔丁酯、过氧-2-乙基己酸叔丁酯、过氧-3-甲基丙酸叔丁酯、过氧月桂酸叔丁酯、过氧-3,5,5-三甲基己酸叔丁酯、过氧异丙基单碳酸叔己基酯、过氧异丙基碳酸叔丁酯、2,5-二甲基-2,5-双(苯甲酰过氧)己烷、过乙酸叔丁酯、过苯甲酸叔己酯、过苯甲酸叔丁酯等。还可以在有机过氧化物中添加还原剂,作为氧化还原类聚合引发剂使用。

偶氮类化合物可举出:1,1-偶氮二(环己烷-1-甲腈)、2,2’-偶氮二(2-甲基-丁腈)、2,2’-偶氮二丁腈、2,2’-偶氮二(2,4-二甲基-戊腈)、2,2’-偶氮二(2,4-二甲基-4-甲氧基戊腈)、2,2’-偶氮二(2-脒基-丙烷)盐酸盐、2,2’-偶氮二[2-(5-甲基-2-咪唑啉-2-基)丙烷]盐酸盐、2,2’-偶氮二[2-(2-咪唑啉-2-基)丙烷]盐酸盐、2,2’-偶氮二[2-(5-甲基-2-咪唑啉-2-基)丙烷]、2,2’-偶氮二[2-甲基-n-(1,1-二(2-羟基甲基)-2-羟基乙基)丙酰胺]、2,2’-偶氮二[2-甲基-n-(2-羟基乙基)丙酰胺]、2,2’-偶氮二(2-甲基-丙酰胺)二水合物、4,4’-偶氮二(4-氰基-戊酸)、2,2’-偶氮二(2-羟基甲基丙腈)、2,2’-偶氮二(2-甲基丙酸)二甲酯(二甲醇2,2’-偶氮二(2-甲基丙酸酯))、氰基-2-丙基偶氮甲酰胺等。

热自由基聚合引发剂的使用量过少,则有热自由基聚合不能充分进行的倾向,过多则可能造成刚性降低,因此相对于100质量份丙烯酸酯化合物,优选为0.1-25质量份,更优选0.5-15质量份。

由含有环氧化合物和热阳离子聚合引发剂的热阳离子聚合型树脂层构成绝缘性树脂层3时,或者由含有环氧化合物和热阴离子聚合引发剂的热阴离子聚合型树脂层构成绝缘性树脂层3时,环氧化合物可举出分子内具有两个以上环氧基的化合物或树脂。它们可以是液状,也可以是固体状。具体可举出:双酚a、双酚f、双酚s、六氢双酚a、四甲基双酚a、二烯丙基双酚a、氢醌、儿茶酚、间苯二酚、甲酚、四溴双酚a、三羟基联苯、二苯甲酮、双间苯二酚(bisresorcinol)、双酚六氟丙酮、四甲基双酚a、四甲基双酚f、三(羟基苯基)甲烷、联二甲酚、苯酚酚醛清漆树脂(phenolnovolac)、甲酚酚醛清漆树脂等的多元酚与表氯醇反应得到的缩水甘油基醚;甘油、新戊二醇、乙二醇、丙二醇、丁二醇(チレングリコール)、己二醇、聚乙二醇、聚丙二醇等脂族多元醇与表氯醇反应得到的多缩水甘油基醚;对羟基苯甲酸、β-羟基萘甲酸等羟基羧酸与表氯醇反应得到的缩水甘油基醚酯;由邻苯二甲酸、邻苯二甲酸甲酯、间苯二甲酸、对苯二甲酸、四氢邻苯二甲酸、六氢邻苯二甲酸、桥亚甲基四氢邻苯二甲酸、桥亚甲基六氢邻苯二甲酸、偏苯三酸、聚合脂肪酸等多元羧酸得到的多缩水甘油基酯;由氨基苯酚、氨基烷基苯酚得到的缩水甘油基氨基缩水甘油基醚;由氨基苯甲酸得到的缩水甘油基氨基缩水甘油基酯;由苯胺、甲苯胺、三溴苯胺、苯二甲胺、二氨基环己烷、双氨基甲基环己烷、4,4’-二氨基二苯基甲烷、4,4’-二氨基二苯砜等得到的缩水甘油基胺;环氧化聚烯烃等公知的环氧树脂类。还可以使用3’,4’-环氧环己烯甲酸3,4-环氧环己烯基甲基酯等的脂环式环氧化合物。

热阳离子聚合引发剂是通过热产生可使阳离子聚合性化合物进行阳离子聚合的酸的物质。热阳离子聚合引发剂可以采用作为环氧化合物的热阳离子聚合引发剂而公知的物质,例如可使用公知的碘鎓盐、锍盐、鏻盐、二茂铁类等,可优选使用对温度显示良好的潜伏性的芳族锍盐。热阳离子类聚合引发剂的优选例子可举出:二苯基碘鎓六氟锑酸盐、二苯基碘鎓六氟磷酸盐、二苯基碘鎓六氟硼酸盐、三苯基锍六氟锑酸盐、三苯基锍六氟磷酸盐、三苯基锍六氟硼酸盐。具体可举出:株式会社adeka制造的sp-150、sp-170、cp-66、cp-77;日本曹达株式会社制造的ci-2855、ci-2639;三新化学工业株式会社制造的san-aidsi-60(サンエイドsi-60)、si-80;unioncarbidecorporation(ユニオンカーバイド)制造的cyracure-uvi-6990、uvi-6974等。

热阳离子聚合引发剂的配合量过少,则有热阳离子聚合不能充分进行的倾向,过多则可能造成刚性降低,因此相对于100质量份环氧化合物,优选为0.1-25质量份,更优选0.5-15质量份。

热阴离子聚合引发剂是通过热产生可使阴离子聚合性化合物进行阴离子聚合的碱的物质。热阳离子聚合引发剂可以采用作为环氧化合物的热阴离子聚合引发剂而公知的物质,例如可使用:脂族胺类化合物、芳族胺类化合物、仲胺或叔胺类化合物、咪唑类化合物、聚硫醇类化合物、三氟化硼-胺络合物、双氰胺、有机酸酰肼等,可优选使用对温度显示良好的潜伏性的胶囊化咪唑类化合物。

热阴离子聚合引发剂的配合量过少,则有固化不良的倾向,过多则有产品寿命降低的倾向,因此相对于100质量份环氧化合物,优选为0.1-40质量份,更优选0.5-20质量份。

另一方面,第2绝缘性树脂层5和第3绝缘性树脂层6可分别通过从公知的绝缘性树脂中适当选择的树脂来形成。也可以由与绝缘性树脂层3同样的材质形成。

绝缘性树脂层3的最低熔融粘度可以为相对于第2和第3绝缘性树脂层5、6同等以上或以下,由与绝缘性树脂层3同样的材质形成第2绝缘性树脂层5和第3绝缘性树脂层6时,优选绝缘性树脂层3的最低熔融粘度比第2和第3绝缘性树脂层5、6的最低熔融粘度高。

第2绝缘性树脂层5的层厚过薄,则可能由于树脂填充不足导致发生导通不良,过厚则在压接时发生树脂的渗出,可能污染压接装置,因此为40μm以下,优选5-20μm,更优选8-15μm。第3绝缘性树脂层6的层厚过薄,则可能在临时粘贴到第2电子部件上时发生粘贴不良,过厚则有导通电阻值增大的倾向,因此优选为0.5-6μm,更优选1-5μm。

使用各向异性导电膜1a进行各向异性导电连接时,在第2绝缘性树脂层5(层合在导电颗粒排列层4的凹凸面上的绝缘性树脂层)和第3绝缘性树脂层6(层合在导电颗粒排列层4的平坦面上的绝缘性树脂层)中,树脂层的层厚较薄的一方通常配置于玻璃基板的固体电极(ベタ電極)等的相对不要求较高的对准精度的端子一侧,层厚较厚的一方通常配置于ic芯片的凸点(bump)等必须以高的位置精度对准的端子一侧。第2绝缘性树脂层5和第3绝缘性树脂层6中只设置一方时,与导电颗粒距离近的一侧成为对准精度相对较低的一侧。两者均不设置时则没有特别限定。

(2)各向异性导电膜的制造方法

(2-1)转印模

各向异性导电膜1a例如可使用如下的转印模制造。即,图2a是可在各向异性导电膜1a的制造中使用的转印模10a的斜视图,图2b是该转印模10a的俯视图,图2c是转印模10a的截面图。

该转印模10a在表面具有排列成四方点阵的多个开口部11,各个开口部11的深度分布具有相对于通过开口部11的最深部中心r的铅垂线l1’呈非对称的方向x’。更具体地说,在通过开口部11的最深部的中心r以方向x’将转印模10a切断时,在转印模10a的截面(图2c)中,通过开口部11的最深部中心r的铅垂线l1’的一侧qa’的开口部11的面积sa’比另一侧qb’的面积sb’小。

在本发明所使用的转印模中,开口部的排列根据所制造的各向异性导电膜中导电颗粒的排列适当选择,例如在将导电颗粒排列成六方点阵时,转印模的开口部的排列也是六方点阵。

关于该截面中开口部11的相向的侧壁的形状,另一侧qb’的侧壁11b相对于一侧qa’的侧壁11a倾斜。即,一侧qa’的侧壁11a为沿转印模10a的厚度方向竖起的悬崖状,另一侧qb’的侧壁11b相对于转印模10a的厚度方向倾斜。

在各开口部11中填充1个导电颗粒2时,关于开口部11的深度d1,考虑到自转印模10a上取下形成于转印模10a的导电颗粒排列层4的操作的容易性与导电颗粒2的保持性的平衡,优选使填充于该开口部11的导电颗粒2的平均粒径w0与开口部11的深度d1之比(w0/d1)为0.4-3.0,更优选0.5-1.5。

在通过开口部11的最深部的中心r的方向x’的转印模10a的截面(图2c)中,关于开口部11的开口直径w1与导电颗粒2的平均粒径w0的关系,考虑向开口部11填充导电颗粒2的容易程度和向开口部11压入绝缘性树脂的容易程度,优选使开口部11的开口直径w1和导电颗粒2的平均粒径w0之比(w1/w0)为1.2-5.0,更优选1.5-3.0。

在该截面中,关于开口部11的底面直径w2和导电颗粒2的平均粒径w0的关系,从热压接时使各导电颗粒2的流动方向一致的方面考虑,优选使开口部11的底面直径w2和导电颗粒2的平均直径w0之比(w2/w0)为0-1.9,更优选0-1.6。

转印模10a的形成材料例如可使用硅、各种陶瓷、玻璃、不锈钢等金属等的无机材料,或各种树脂等的有机材料,开口部11可通过照相平版印刷法(photolithograph)等公知的开口形成方法形成。

(2-2)各向异性导电膜的制造方法1

在各向异性导电膜1a的制造方法中,首先如图3a、图3b所示,在转印模10a的开口部11中填充导电颗粒2。导电颗粒2的填充方法没有特别限定,例如可以将干燥的导电颗粒2或将其分散于溶剂中形成的导电颗粒2的分散液撒布或涂布于转印模10a的开口部11的形成面上,接着使用刷子或布等擦拭开口部11的形成面。该擦拭是沿着所述方向x’,由开口部11的倾斜的侧壁11b的底部向上部方向进行,由此可以将导电颗粒2顺畅地送入开口部11内。

作为导电颗粒2的填充方法,还可以是首先使其分散在转印模10a的开口部11的形成面上,接着利用磁场等外力将导电颗粒2移动至开口部11中。

接着如图4a所示,在填充了导电颗粒2的开口部11上,使形成于剥离膜7上的绝缘性树脂层3相向而层合,以开口部11底部角落未有绝缘性树脂层3挤入的程度加压,如图4b所示,以导电颗粒2埋入绝缘性树脂层3的方式将导电颗粒2保持于绝缘性树脂层3。将其从转印模10a取出,则如图4c所示,可在剥离膜7上获得导电颗粒排列层4,其中,按照转印模10a的开口部11的排列而排列成四方点阵的导电颗粒2保持于绝缘性树脂层3。

导电颗粒排列层4中,导电颗粒2可以未完全埋入绝缘性树脂层3内,也可以完全埋入。为了使导电颗粒2完全埋入绝缘性树脂层3,可以将位于转印模10a底部的导电颗粒2移动至转印模10a的开口面一侧。该移动可以使用磁力等外力进行。

接着如图4d所示,优选对导电颗粒排列层4的具有表面凹凸的面照射紫外线uv。由此可以将导电颗粒2固定于绝缘性树脂层3。另外,由于uv照射被导电颗粒2遮挡,因此导电颗粒2正下方的绝缘性树脂层区域3m的固化率比其周围相对降低。因此在进行各向异性导电连接时,导电颗粒2不发生水平方向的位置偏移而容易压入。因此可以使颗粒捕捉效率提高,使导通电阻值降低,实现良好的导通可靠性。

接着如图4e所示,在导电颗粒排列层4的具有表面凹凸的面(即绝缘性树脂层3的导电颗粒2转印面)上层合第2绝缘性树脂层5,如图4f所示,将剥离膜7剥离除去,如图4g所示,在剥离了剥离膜7后的面(即与绝缘性树脂层3的导电颗粒2转印面相反一侧的面)上层合第3绝缘性树脂层6,这样即可制造图1a、图1b和图1c所示的各向异性导电膜1a。

(2-3)各向异性导电膜的制造方法2

图1a、图1b和图1c所示的各向异性导电膜1a的制造方法并不限于上述例子。例如在上述制造方法中,可以形成第3绝缘性树脂层6来代替剥离膜7。

即,首先如图3a、图3b所示,在转印模10a的开口部11填充导电颗粒2,接着如图5a所示,将预先贴合了第3绝缘性树脂层6的绝缘性树脂层3相向于开口部11中填充了导电颗粒2的转印模10a的开口部11上层合。

接着如图5b所示,在转印模10a的开口部11的形成面上压入绝缘性树脂层3,使导电颗粒2保持于绝缘性树脂层3,形成导电颗粒排列层4。

然后,如图5c所示,将导电颗粒排列层4和第3绝缘性树脂层6的层合体从转印模10a取出,如图5d所示,由绝缘性树脂层3的凹凸面一侧照射uv,将导电颗粒2固定于绝缘性树脂层3。

接着如图5e所示,在绝缘性树脂层3的凹凸面上层合第2绝缘性树脂层5。这样可制造图1a、图1b和图1c所示的各向异性导电膜1a。

(2-4)各向异性导电膜的制造方法3

在图1a、图1b和图1c所示的各向异性导电膜1a的制造方中,在使用紫外线透过性转印模10a’时,可以穿过转印模10a’对保持有导电颗粒2的绝缘性树脂层3进行紫外线照射。紫外线透过性转印模10a’可由紫外线透过性玻璃等无机材料、或聚甲基丙烯酸酯等有机材料形成。

该方法中,首先如图3a、图3b所示,在紫外线透过性转印模10a’的开口部填充导电颗粒2,接着如图6a所示,使形成于剥离膜7上的光聚合性的绝缘性树脂层3相向于开口部11中填充了导电颗粒2的转印模10a’的开口部11上,将其加压至绝缘性树脂层3未挤入开口部11底部的角落的程度,如图6b所示,以导电颗粒2埋入绝缘性树脂层3的方式使导电颗粒2保持于绝缘性树脂层3,形成导电颗粒排列层4。这种情况下,可以使导电颗粒2完全埋入绝缘性树脂层3,也可以不完全埋入。

接着如图6c所示,自转印模10a’一侧对绝缘性树脂层3照射紫外线uv。由此可使光聚合性的绝缘性树脂层3聚合,将导电颗粒2固定于绝缘性树脂层3,并且可以使紫外线uv被导电颗粒2遮挡的绝缘性树脂层的区域3m的固化率比其周围的绝缘性树脂层的区域3n的固化率相对低。因此在各向异性导电连接时,可防止导电颗粒2水平方向的位置偏移,同时提高导电颗粒2的压入性。由此可以提高颗粒捕捉效率,降低导通电阻值,实现良好的导通可靠性。

接着如图6d所示,从绝缘性树脂层3除去剥离膜7。然后,如图6e所示,在除去了剥离膜7的绝缘性树脂层3的面上层合第3绝缘性树脂层6,如图6f所示,将该层合体从转印模10a’取下,如图6g所示,在导电颗粒排列层4具有表面凹凸的面上层合第2绝缘性树脂层5。这样可以制造图1a、图1b和图1c所示的各向异性导电膜1a。

(3)变形方案

(3-1)导电颗粒周围的绝缘性树脂层厚度分布呈非对称的方向。

本发明的各向异性导电膜中,关于以规定的排列直接保持有多个导电颗粒2的绝缘性树脂层3,各导电颗粒2周围的绝缘性树脂层3的厚度分布可具有多个相对于导电颗粒2的中心轴l1呈非对称的方向。例如如图7a、图7b和图7c所示的各向异性导电膜1a’,可以使各个导电颗粒2周围的绝缘性树脂层3的俯视形状大致为扇形。根据该扇形的张角α,非对称性可以取任意的形状,可以为α=90º的扇形(图7a)、α=180º的半圆形等。而且,如图8所示,也可以是包含圆心角α(例如α=270º)的圆弧和弦的部分圆。

更具体地说,例如图7a、图7b和图7c所示的各向异性导电膜1a’的情形,在图7a所示的x方向和y方向各自中,导电颗粒2周围的绝缘性树脂层3的厚度分布相对于导电颗粒2的中心轴l1呈非对称。使用该各向异性导电膜1a’安装电子部件时的加热加压中,导电颗粒2容易向保持该导电颗粒2的树脂量少的两个方向xa、ya流动。因此通过安装时的加热加压,导电颗粒不规则流动,可以降低产生导电颗粒集中的部位所导致的电极间导电颗粒的连接、或电极间不存在导电颗粒而导致的导通不良。

图8的各向异性导电膜1a’’的情形,导电颗粒2容易沿箭头方向流动。

本发明的各向异性导电膜中,可以使各个导电颗粒2周围的绝缘性树脂层3的厚度分布在各向异性导电膜的整个区域一致,在各向异性导电连接时,使导电颗粒2容易流动的方向对所有的导电颗粒2而言是一致的;也可以使各个导电颗粒2周围的绝缘性树脂层3的厚度分布在各向异性导电膜内的每个规定区域均不同,在各向异性导电连接时使导电颗粒2容易流动的方向在各向异性导电膜的每个规定区域均不同。

而且,各个导电颗粒2周围的绝缘性树脂层3的厚度分布具有相对于导电颗粒2的中心轴l1呈非对称的方向,由此,在各向异性导电连接时,使导电颗粒2容易向特定方向流动之际,只要该流动方向不被相邻的导电颗粒覆盖,则在各向异性导电膜的整个区域,导电颗粒2周围的绝缘性树脂层3的厚度分布可以不一致。

(3-2)导电颗粒周围的绝缘性树脂层的具体形状

本发明的各向异性导电膜中,为了使将多个导电颗粒2保持规定排列的绝缘性树脂层3的厚度分布在各个导电颗粒2的周围以特定的方向呈非对称,绝缘性树脂层3可以采取各种形状。因此,为了形成绝缘树脂层3而使用的转印模也可以制成各种形状,以使开口部11的深度分布具有相对于通过开口部11的最深部的中心r的铅垂线l1’呈非对称的方向x’。

例如,在图2a、图2b和图2c所示的转印模10a中,可以在具有小凹凸的粗糙面上形成开口部11的底面。由此,导电颗粒2与转印模10a相接触的面积减小,将导电颗粒排列层从转印模10a取下的操作变得容易。

在图2a、图2b和图2c所示的转印模10a中,在以通过开口部11的最深部的中心r的方向x’切断该转印模10a时的截面(图2c)中,开口部11的底面具有规定的直径w2,但如图9a所示的转印模10b,也可以使开口部11的底面直径w2为0。通过使用该转印模10b,可以获得具有图9b所示截面的各向异性导电膜1b。

在图2a、图2b和图2c所示的转印模10a中,在以通过开口部11的最深部的中心r的方向x’切断该转印模10a时的截面(图2c)中,在转印模10a的上面,相邻的开口部11相接,但如图10a所示的转印模10c,在转印模的上面,相邻的开口部之间可以具有规定的距离w3。通过使用该转印模10c,可以获得具有图10b所示截面的各向异性导电膜1c。

如图11a所示的转印模10d,在以通过开口部11的最深部的中心r的方向x’切断转印模时的截面中,可以使开口部11的相向的侧壁中的一方沿着转印模10d的厚度方向竖起为悬崖状,使另一方为阶梯状。通过使用该转印模10d,可以获得具有图11b所示截面的各向异性导电膜1d。

转印模的开口部11的侧壁形成阶梯状时,可以适当改变其阶数,例如如图12a所示的转印模10e,可以为3阶。通过使用该转印模10e,可以获得具有图12b所示截面的各向异性导电膜1e。

并且在上述各方案的各向异性导电膜中,导电颗粒2可以部分从绝缘性树脂层3露出。

作为在本发明的各向异性导电膜的制造中使用的转印模,可以使用各开口部的深度分布在包含通过开口部最深部的中心的铅垂线的任意方向的截面中均对称的转印模(例如开口部侧壁全周均为沿转印模厚度方向竖起的悬崖状)。这种情况下,可通过调节在填充于开口部中的导电颗粒上层合的绝缘性树脂的粘度、对该绝缘性树脂的按压分布、对该绝缘性树脂的照射时间安排或照射方向等,在各向异性导电膜中,使保持导电颗粒的绝缘性树脂层的厚度分布相对于导电颗粒呈非对称。

上述本发明的各向异性导电膜分别进行各向异性导电连接时导电颗粒2容易向特定方向流动。与此相对,如图13a所示,转印模10x的开口部11在任意方向上左右对称,则如图13b所示,所得各向异性导电膜1x中,保持有导电颗粒2的绝缘性树脂层3周围的厚度分布在以导电颗粒2为中心的任意方向上左右对称,各向异性导电连接时导电颗粒的流动方向不确定。因此无法避免电极间由于导电颗粒连接导致的短路、或电极间由于不存在导电颗粒而导致的导通不良的发生。

本发明中,上述各向异性导电膜的变形方案可以适当组合。

本发明还包含通过本发明的各向异性导电膜使第1电子部件与第2电子部件各向异性导电连接的连接结构体。

实施例

以下通过实施例具体说明本发明。

实施例1-5和比较例1

(1)各向异性导电膜的制造

准备具有以下(a)-(f)的形状和尺寸的不锈钢制转印模作为各实施例和比较例中使用的转印模,按照图4a-图4g所示的方法制造各向异性导电膜。

(a)实施例1:与图2a-图2c所示的转印模10a为同样形状,具有表1所示尺寸

(b)实施例2:在图2a-图2c所示的转印模10a中,使a-a截面为图10a所示形状,具有表1所示的尺寸

(c)实施例3:与(b)为同样形状,具有表1所示的尺寸

(d)实施例4:在图2a-图2c所示的转印模10a中,使a-a截面为图11a所示形状,具有表1所示的尺寸

(e)实施例5:在图2a-图2c所示的转印模10a中,使a-a截面为图12a所示形状,具有表1所示的尺寸

(f)比较例1:在图2a-图2c所示的转印模10a中,使a-a截面为图13a所示形状,具有表1所示的尺寸

将60质量份苯氧基树脂(yp-50,新日铁住金化学株式会社)、40质量份丙烯酸酯(eb-600,daicel-allnexltd.(ダイセル・オルネクス株式会社))、以及2质量份光自由基聚合引发剂(irugacure369,basf日本株式会社)用乙酸乙酯或甲苯制备混合液,使固体成分为50质量%。另一方面,准备厚度50μm的聚对苯二甲酸乙二醇酯膜(pet膜)作为剥离膜,在该剥离膜上以使干燥厚度为5μm的方式涂布上述混合液,在80℃的烘箱中干燥5分钟,由此形成光自由基聚合型的绝缘性树脂层。

接着将平均粒径3μm的导电颗粒(镀ni/au树脂颗粒,aul703,积水化学工业株式会社)分散于溶剂中,涂布在表1所示的转印模的各开口部,用布擦拭,由此进行填充(图4a)。

接着,对转印模的开口面,使上述绝缘性树脂层相向,在60℃、0.5mpa的条件下由剥离膜一侧加压,由此将导电颗粒压入绝缘性树脂层,形成导电颗粒2保持于绝缘性树脂层3的导电颗粒排列层4(图4b)。

接着,将导电颗粒排列层4由转印模10a上取下(图4c),对绝缘性树脂层3的形成有表面凹凸的面照射波长365nm、累积光量4000mj/cm2的紫外线,由此将导电颗粒2固定于绝缘性树脂层3(图4d)。

将60质量份苯氧基树脂(yp-50,新日铁住金化学株式会社)、40质量份环氧树脂(ier828,三菱化学株式会社)、2质量份热阳离子聚合引发剂(si-60l,三新化学工业株式会社)用乙酸乙酯或甲苯制备混合液,使固体成分浓度为50质量%。将该混合液以使干燥厚度为12μm的方式涂布在厚度50μm的pet膜上,在80℃的烘箱中干燥5分钟,由此形成第2绝缘性树脂层5。通过同样的操作形成干燥厚度3μm的第3绝缘性树脂层6。

在上述的将导电颗粒2固定于绝缘性树脂层3而得到的导电颗粒排列层4的绝缘性树脂层3上,以60℃、0.5mpa的条件层合第2绝缘性树脂层5(图4e),接着除去相反面的剥离膜7(图4f),与第2绝缘性树脂层同样地,在剥离膜7的除去面层合第3绝缘性树脂层6,获得各向异性导电膜(图4g)。

(2)评价

对于各实施例和比较例所得的各向异性导电膜,如下评价(i)接合强度、(ii)连结颗粒数、(iii)绝缘性(短路发生率)。结果示于表1。

(i)接合强度

使用各实施例和比较例所得的各向异性导电膜,将包含以下的ic和玻璃基板的导通评价用构件以180℃、80mpa加热加压5秒,由此制作安装样品。

ic:尺寸1.8×20.0mm,厚度0.5mm,凸块尺寸30×85μm,凸块高度15μm,凸块间距50μm

玻璃基板:康宁(コーニング)公司制造,1737f,尺寸50×30mm,厚度0.5mm

接着使用daisy(デイジ)公司制造的粘合力试验仪,如图14所示,探针22触及玻璃基板20上的ic21,沿箭头方向施加剪切力,测定ic21剥离时的力。

(ii)连结颗粒数

对安装样品的连接区域(端子之间的接合部分除外)40000μm2进行显微镜观察,计数连结的导电颗粒数的最大值。

(iii)绝缘性

使用各实施例和比较例中得到的各向异性导电膜,在与(i)同样的接合条件下将7.5μm间隔的梳齿teg(试验元件组)图案彼此连接,求出短路发生率。实际应用上优选100ppm以下。短路发生率以“短路的发生数/7.5μm间隔总数”计算。

由表1可知,实施例1-5的各向异性导电膜与比较例1的各向异性导电膜相比,连结颗粒数显著减少,短路发生率少。而且,实施例1-5的各向异性导电膜与比较例1的各向异性导电膜相比,接合强度优异,据推测这是由于:实施例1-5的各向异性导电膜中,直接接触导电颗粒的绝缘性树脂层的厚度分布相对于导电颗粒呈非对称,该绝缘性树脂层的凹凸影响各向异性导电膜的表面凹凸,树脂的密合性高。

产业实用性

本发明作为将ic芯片等电离部件与布线基板进行各向异性导电连接的技术有用。

符号说明

1a、1a’、1a’’、1b、1c、1d、1e、1x各向异性导电膜

2导电颗粒

3绝缘性树脂层

3a、3b侧面

3m、3n区域

4导电颗粒排列层

5第2绝缘性树脂层

6第3绝缘性树脂层

7剥离膜

10a、10a’、10b、10c、10d、10e、10x转印模

11开口部

11a、11b开口部的侧壁

20玻璃基板

21ic

22探针

d1开口部的深度

l1导电颗粒的中心轴

l1’通过转印模开口部最深部的中心的铅垂线

p导电颗粒的中心

q导电颗粒的周围

qa导电颗粒的一个侧面

qb导电颗粒的另一侧面

r转印模开口部最深部的中心

sa、sa’、sb、sb’面积

w0导电颗粒的平均粒径

w1开口部的开口直径

w2开口部的底面直径

w3开口部之间的距离

x、xa、x’、y、ya方向。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1