一种碲化镉太阳能电池及其制备方法与流程

文档序号:16261584发布日期:2018-12-14 21:35阅读:1112来源:国知局
一种碲化镉太阳能电池及其制备方法与流程

本发明涉及薄膜太阳能电池技术领域,具体涉及一种碲化镉太阳能电池及其制备方法。

背景技术

随着传统能源的日渐匮乏,新能源的开发与利用成为了解决能源危机的重要手段。在众多新能源中,包括太阳能、海洋能、地热能、潮汐能、生物质能等,太阳能以其洁净无污染,储量丰富等优势,成为了新能源的领头军。经过多年的发展,第二代化合物薄膜电池已得到很多研究机构和公司的关注,部分已实现产业化。cdte电池作为化合物薄膜太阳能电池的一个分支,具备很大的研究价值与商业价值,受到行业内的广泛关注。cdte禁带宽度约1.45ev,是一种很重要的薄膜材料,其禁带宽度非常接近光伏材料的理想禁带宽度,具有很高的光吸收系数。研究发现,几微米厚的cdte薄膜便可吸收90%以上的太阳光,其理论转换效率高达29%左右,是非常有潜力的光伏材料。

cdte薄膜电池主要由导电衬底、cds窗口层、cdte吸收层以及金属背电极层四部分组成。由于p型cdte具有较高的功函数,很难使其与金属背电极之间形成稳定的欧姆接触。为了解决这个问题,现有技术通常采用对碲化镉进行p型重掺杂和在cdte和背电极之间引入半导体背接触层。p型重掺杂的技术方法主要是在碲化镉背部进行铜扩散掺杂,主要的制备方法有湿化学法、蒸镀等。铜元素是目前发现对碲化镉掺杂效果最好的元素,可以很有效的提高电池的性能,但是由于铜在碲化镉中的扩散较快,当铜在碲化镉和硫化界面出现富集时,会形成大量缺陷能级,很容易造成电池的衰减。背接触层的技术方案通常采用在cdte和背电极之间引入半导体背接触层,来减小接触势垒对空穴传输的阻碍。目前背接触层材料采用最多的是znte/znte:cu复合背接触层,这种复合背接触层制备工艺复杂,控制困难,工艺步骤繁杂,且得到的太阳能电池转化效率不高。



技术实现要素:

有鉴于此,本申请提供一种碲化镉太阳能电池及其制备方法,该电池使用铜掺杂氧化钼为背接触层的材料,与光吸收层形成良好的欧姆接触,解决了铜掺杂过程扩散引起的电池衰减、背接触材料制备工艺复杂、太阳能电池转化效率不高的问题。

为解决以上技术问题,本发明提供的技术方案是一种碲化镉太阳能电池,所述碲化镉太阳能电池由下至上依次包括衬底层、窗口层、光吸收层、背接触层和背电极层,所述背接触层的材料为铜掺杂氧化钼,所述光吸收层为碲化镉薄膜。

优选的,所述衬底层的材料为fto导电玻璃、ito导电玻璃或azo导电玻璃

中的任意一种。

优选的,所述窗口层的材料为硫化镉薄膜。

优选的,所述光吸收层的厚度为2~3μm。

优选的,所述背接触层的厚度为15~25nm,所述背电极层的厚度为200~250nm。

优选的,所述铜掺杂氧化钼中moo:cu的重量之比为9:1。

优选的,所述背电极层的材料为金属钼、金属镍。

本发明还提供了一种碲化镉太阳能电池的制备方法,其特征在于,所述制备方

法包括以下步骤:

(1)提供衬底层,在所述衬底层上沉积硫化镉,得窗口层;

(2)在所述窗口层上沉积碲化镉,得光吸收层;

(3)在所述光吸收层上磁控溅射铜掺杂氧化钼,得背接触层;

(4)使用酸溶液对所述背接触层进行刻蚀,形成具有绒面结构的背接触层;

(5)在所述背接触层上沉积背电极层;

(6)退火处理。

优选的,所述背电极层的材料为金属钼或金属镍。

优选的,所述的步骤(4)中的沉积方法为磁控溅射法。

本申请与现有技术相比,其详细说明如下:

本发明采用铜掺杂氧化钼的化合物(moo:cu)作为背接触层的材料,该材料可以与碲化镉光吸收层形成良好的欧姆接触,降低界面损失,提高界面电流的收集与传递能力。

由于所含的各金属层之间金属原子扩散小,铜掺杂氧化钼背接触层不仅可以实现铜元素的掺杂效果,同时可以避免传统的掺铜过程中铜元素的富集造成的缺陷,使碲化镉薄膜太阳能电池的开路电压和填充因子高,长期稳定性优异,转换效率高。

本发明的制备方法中背接触层通过酸的刻蚀形成绒面结构,该背接触层薄膜结构致密、晶粒尺寸适宜。

附图说明

图1为本发明提供的具有绒面背接触层的碲化镉薄膜太阳能电池的结构示意图,其中,1-衬底层;2-窗口层;3-层光吸收层;4-背接触层;5-背电极层。

具体实施方式

为了使本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明的优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点而不是对本发明专利要求的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明提供了一种碲化镉太阳能电池,所述碲化镉太阳能电池由下至上依次包括衬底层、窗口层、光吸收层、背接触层和背电极层,所述背接触层的材料为铜掺杂氧化钼,所述光吸收层为碲化镉薄膜。

所述衬底层的材料为fto导电玻璃、ito导电玻璃或azo导电玻璃中的任意一种。

所述窗口层的材料为硫化镉薄膜,所述窗口层的厚度为50nm-100nm。

优选的,所述光吸收层的厚度为2~3μm。

优选的,所述背接触层的厚度为15~25nm,所述背电极层的厚度为200~250nm。

优选的,所述铜掺杂氧化钼中moo:cu的重量之比为9:1。

优选的,所述背电极层的材料为金属钼、金属镍。

本发明还提供了一种碲化镉太阳能电池的制备方法,其特征在于,所述制备方法包括以下步骤:

(1)提供衬底层,在所述衬底层上沉积硫化镉,得窗口层;

(2)在所述窗口层上沉积碲化镉,得光吸收层;

(3)在所述光吸收层上磁控溅射铜掺杂氧化钼,得背接触层;

(4)使用酸溶液对所述背接触层进行刻蚀,形成具有绒面结构的背接触层;

(5)在所述背接触层上沉积背电极层;

(6)退火处理。

优选的,所述背电极层的材料为金属钼或金属镍。

优选的,所述的步骤(4)中的沉积方法为磁控溅射法。

优选的,步骤(3)中所述背接触层的厚度为15~25nm。

样品1:无背接触层,样品2:氧化镁掺铜,样品3:氧化钼掺铜,样品4:碲化锌掺铜。

表1背接触层材料对碲化镉薄膜电池的性能影响

其中,eff为充放电效率,voc为开路电压,jsc为短路电流,ff为填充因子。

由表1可以看出,采用氧化钼掺铜作为背接触层的电池的充放电效率,开路电压,电流密度和填充因子与其他几种电池相比都有明显的提高。

表2背接触层氧化钼掺铜的比例对碲化镉薄膜电池的性能影响

由表2可以看出,当背接触层氧化钼掺铜的比例为moo:cu=90.17:9.83wt%时,开路电压,电流密度和填充因子与其他几种电池相比都有明显的提高。

实施例

绒面背电极的厚度对碲化镉薄膜电池的性能影响

1、实验样品:碲化镉薄膜电池样品1、样品2、样品3、样品4、样品5,五个样品除背接触层厚度不同外其他制备方法及参数均相同;

2、实验方法:采用gb/t6495.1-1996中所述方法进行性能测试;

3、实验结果:见表2。

表3背接触层厚度对碲化镉薄膜电池的性能影响

由表3可以看出,背接触层厚度为20nm时,该电池的充放电效率,开路电压,短路电流和填充因子均达到最大值,此时电池的光电转化效率最高。

实施例

退火处理时间对碲化镉薄膜电池的性能影响

1、实验样品:碲化镉薄膜电池样品1、样品2、样品3、样品4、样品5、样品6,六个样品除退火处理时间不同外其他制备方法及参数均相同;

2、实验方法:采用gb/t6495.1-1996中所述方法进行性能测试;

3、实验结果:见表3。

表4背接触层退火时间对碲化镉薄膜电池的性能影响

由表4可以看出,退火时间为50分钟,该电池的充放电效率,开路电压,短路电流和填充因子均达到最大值,此时电池的光电转化效率最高。

表5背接触层退火温度对碲化镉薄膜电池的性能影响

由表5可以看出,退火温度为210℃时,该电池的充放电效率,开路电压,短路电流和填充因子均达到最大值,此时电池的光电转化效率最高。

以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1