具有经选择性掺杂导电氧化物层的太阳能电池及其制备方法与流程

文档序号:15940676发布日期:2018-11-14 03:06阅读:206来源:国知局

相关申请的交叉引用

本申请要求2013年3月12日提交的美国临时申请no.61/777,316的优先权,其通过引用以其全文并入本文。

发明背景

1.发明领域

本发明大体涉及太阳能电池(例如光伏(pv)电池),且更具体地涉及具有经选择性掺杂透明导电氧化物层的太阳能电池及其制备方法。

2.技术考虑

太阳能电池或光伏(pv)电池是将太阳光直接转换成电的电子器件。照在太阳能电池上的光产生电流及电压二者来产生电力。在太阳能电池中,来自太阳光的光子击中太阳能电池并被半导体材料吸附。电子自其原子被撞散,从而产生电位差。电流流经材料来消除电位差。由于太阳能电池的特殊组成,仅允许电子在单方向上移动。

常规非晶硅薄膜太阳能电池通常包括在其上方提供底层的玻璃基板(盖板)、透明导电氧化物(tco)接触层及具有p-n结的非晶硅薄膜活性层。后金属层起反射器和背接触的作用。tco层优选具有不规则表面以增加光散射。在太阳能电池中,使用光散射或“雾度”来捕获电池作用区中的光。电池中捕获的光越多,可获得的效率越高。然而,雾度不可大至对光穿过tco层的透明度造成不利影响。因此,光捕获是尝试改进太阳能电池效率时的重要问题且在薄膜电池设计中尤为重要。还期望tco层高度透明以容许最大量的太阳能辐射传至硅层。作为通用规则,到达半导体材料的光子越多,电池的效率越高。此外,tco层应高度导电以允许电池中的电子容易转移。该导电性可通过向tco材料中添加掺杂物材料来增强。

tco层是太阳能电池性能的重要因素。tco材料优选应具有高导电率(即,低薄层电阻)、电磁波谱期望区域中的高透明度,且应具有高雾度以促进光散射。然而,这些因素彼此交织。例如,导电率取决于掺杂物浓度及tco层的厚度。然而,增加掺杂物浓度或tco层厚度通常会减小tco层的透明度。此外,表面粗糙度(光散射)通常随涂层厚度而增加。然而,增加涂层厚度通常会减小穿过涂层的透射率(尤其是可见光透射率)。因此,在选择太阳能电池的tco层时必须衡量这些因素中每一者的影响及相互作用。

期望提供其中可更容易地选择导电率、透射率和光散射的tco层。还期望提供这样的方法,该方法提供了太阳能电池的其中可更容易地控制这些因素的tco层。还期望提供具有该tco层的太阳能电池。

发明概述

太阳能电池包括具有第一表面和第二表面的第一基板。在第二表面的至少一部分上方提供第一导电层,其中第一导电层包括掺入掺杂物材料的透明导电氧化物层。掺杂物材料选择性分布在导电层中。在透明第一导电层上方提供半导体层。在半导体层的至少一部分上方提供第二导电层。

制备具有透明导电氧化物层且掺杂物在该层中选择性分布的经涂覆基板的方法包括,将氧化物前体材料和掺杂物前体材料选择性供应至多单元化学气相沉积涂覆机的每一涂覆单元,其中选择所供应掺杂物材料的量以改变所得涂层中的掺杂物含量对涂层深度。

化学气相沉积系统包括至少一台具有多个涂覆单元的涂覆机,其中将涂覆单元连接至一个或多个包含至少一种氧化物前体材料和至少一种掺杂物材料的涂料供应源。在优选实施方式中,将涂覆单元单独地连接至各自包含至少一种氧化物前体材料和至少一种掺杂物材料的涂料供应源。

制备具有涂层且掺杂物在该涂层中选择性分布的经涂覆基板的方法包括:将涂层前体材料供应至多单元化学气相沉积涂覆机的涂覆单元;将掺杂物前体材料供应至多单元化学气相沉积涂覆机的涂覆单元;控制涂层前体材料和掺杂物前体材料中至少一者的供应以在涂覆单元处限定具有掺杂物前体材料对涂层前体材料的所选比率的涂料组合物;和将涂料组合物沉积至基板上以形成经掺杂涂层。选择掺杂物前体材料对涂层前体材料的比率,以限定所得经掺杂涂层的期望的掺杂物含量对涂层深度的情况(profile)。

可将涂覆单元的至少一部分单独地连接至涂层前体供应和掺杂物前体供应。

附图简述

在结合附图考虑时,由以下描述将获得本发明的完整理解。

图1是包含本发明特征的太阳能电池的侧面剖视图(未按比例);

图2是包含本发明特征的化学气相沉积(cvd)涂覆系统的侧面透视图(未按比例);

图3是实施例1的tfa流(lb/hr)对单元编号的图;

图4是实施例1的f/sn比率对涂层深度的图;

图5是实施例2的tfa流(lb/hr)对单元编号的图;

图6是实施例2的f/sn比率对涂层深度的图;

图7是实施例3的tfa流(lb/hr)对单元编号的图;

图8是实施例3的f/sn比率对涂层深度的图;

图9是实施例4的tfa流(lb/hr)对单元编号的图;

图10是实施例4的f/sn比率对涂层深度的图;

图11是实施例5的氟及锡含量对涂层深度的图;

图12是实施例5的f/sn比率对涂层深度的图;

图13是实施例6样品1的锡、氧及氟含量对涂层深度的图;

图14是实施例6样品2的锡、氧及氟含量对涂层深度的图;

图15是实施例6样品3的锡、氧及氟含量对涂层深度的图;

图16是实施例6的雾度%对涂层厚度的图;

图17是实施例6的薄层电阻对涂层厚度的图;

图18是实施例6的雾度对波长的图。

优选实施方式的描述

如本文所使用,空间或方向术语(例如“左”、“右”、“内部”、“外部”、“上方”、“下方”等)是指如图式中所示的本发明。然而,应理解本发明可设想多种备选定向,且因此这样的术语不应视为限制。此外,如本文所使用,用于本说明书及权利要求中的表示尺寸、物理性质、加工参数、成份量、反应条件等的所有数值在所有情况下均应理解为被术语“约”修饰。因此,除非指明相反的情形,否则下列说明书及权利要求中所述的数值可根据本发明寻求获得的期望性质而变化。最起码,且并非企图将等同原则的应用限于权利要求的范围,各数值应至少根据所报告有效数位的数值且通过使用普通舍入技术来解释。此外,本文所公开的所有范围应理解为涵盖其中所包含的开始及结束范围值以及任何和所有子范围。例如,所述范围“1至10”应视为包含介于(且包含)最小值1与最大值10之间的任何和所有子范围;即,以最小值1或较大值开始且以最大值10或较小值结束的所有子范围,例如,1至3.3、4.7至7.5、5.5至10等。此外,如本文所使用,术语“在上方形成”、“在上方沉积”、“在上方提供”或“位于上方”意指在表面上形成、沉积、提供或位于表面上但未必与表面直接接触。例如,在基板“上方形成”的涂层并不排除存在位于所形成涂层与基板间的一个或多个相同或不同组成的其他涂层或膜。如本文所使用,术语“聚合物”或“聚合型”包括低聚物、均聚物、共聚物和三元共聚物,例如由两种或更多种类型的单体或聚合物形成的聚合物。术语“可见区”或“可见光”是指具有介于380nm至760nm范围内的波长的电磁辐射。术语“红外区”或“红外辐射”是指具有介于大于760nm至100,000nm范围内的波长的电磁辐射。术语“紫外区”或“紫外辐射”意指具有介于200nm至小于380nm范围内的波长的电磁能。术语“微波区”或“微波辐射”是指具有介于300兆赫至300吉赫范围内的频率的电磁辐射。另外,本文中所提及的所有文件(例如但不限于已颁布的专利和专利申请)应视为其全文“通过引用并人本文中”。在以下讨论中,折射率值是参考波长为550纳米(nm)的那些。术语“膜”是指具有期望或所选组成的涂层的区域。“层”包括一个或多个“膜”。“涂层”或“涂层堆栈”包含一个或多个“层”。

尽管将针对太阳能电池的用途阐述本发明,但应理解本发明并不限于太阳能电池的用途,且可用于其他应用,例如建筑上釉、有机发光二极管或太阳能控制透明度。

包含本发明特征的示例性太阳能电池10展示于图1中。太阳能电池10包括具有第一(外)主表面14及第二(内)主表面16的第一(外)基板12。“外”意指表面面向入射辐射,例如太阳光。任选的底涂层18可位于第二表面16上方。第一导电层20(例如tco层)位于第二表面16上方(例如在底涂层18上,若存在)。半导体层22位于tco层20上方。第二导电层24位于半导体层22上方。例如,第二导电层24可为金属层或含金属的层。任选的第二(内)基板26位于第二导电层24上方。

在本发明的广泛实践中,第一基板12(和任选的第二基板26,若存在)可包括具有任何期望特征的任何期望材料。例如,第一基板12可对可见光透明或半透明。“透明”意指具有大于0%至100%的可见光透射率。备选地,第一基板12可半透明。“半透明”意指允许电磁能(例如可见光)穿过但使此能量扩散以使得观察者相对侧的物体并不清晰可见。适宜材料的实例包括但不限于塑料基板(例如丙烯酸类聚合物,例如聚丙烯酸酯;聚甲基丙烯酸烷基酯,例如聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚甲基丙烯酸丙酯等;聚氨酯;聚碳酸酯;聚对苯二甲酸烷基酯,例如聚对苯二甲酸乙二酯(pet)、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二酯等;含有聚硅氧烷的聚合物;或用于制备这些材料的任何单体的共聚物或其任何混合物);玻璃基板;或上述任一者的混合物或组合。例如,第一基板12可包括常规钠钙硅酸盐玻璃、硼硅酸盐玻璃或含铅玻璃。玻璃可为透明玻璃。“透明玻璃”意指无色或无色彩玻璃。备选地,玻璃可为有色或彩色玻璃。玻璃可为退火或热处理玻璃。如本文所使用的术语“热处理”意指回火或至少部分回火。玻璃可具有任何类型(例如常规浮法玻璃),且可为具有任何光学特性(例如任何值的可见光透射率、紫外光透射率、红外光透射率和/或总太阳能透射率)的任何组成。“浮法玻璃”意指通过其中将熔融玻璃沉积至熔融金属浴(例如熔融锡)上的常规浮法工艺形成的玻璃。玻璃的底侧(即与熔融锡浴接触的一侧)通常称为“锡侧”,且玻璃的顶侧通常称为“空气侧”。玻璃的锡侧可具有少量并入玻璃表面中的锡。可用于本发明实践的玻璃的非限制性实例包括gl-gl-35tmsolarphire玻璃,其均可商购自pittsburgh,pennsylvania的ppgindustries公司。

第一基板12可具有任何期望尺寸,例如长度、宽度、形状或厚度。例如,第一基板12可为平坦、弯曲,或具有平坦及弯曲部分二者。在一种非限制性实施方式中,第一基板12可具有介于以下范围内的厚度:0.5mm至10mm,例如1mm至5mm,例如2mm至4mm,例如3mm至4mm。

第一基板12可在550纳米(nm)的参考波长及2mm的参考厚度下具有高可见光透射率。“高可见光透射率”意指在550nm下的可见光透射率大于或等于85%,例如大于或等于87%,例如大于或等于90%,例如大于或等于91%,例如大于或等于92%,例如大于或等于93%。

任选的底涂层18(若存在)可为单层,或具有第一层和第一层上方的第二层的多层涂层。底涂层18可在第一基板12与上覆涂层之间提供障壁。已知二氧化硅可提供良好障壁特性,尤其作为钠离子扩散出玻璃基板的障壁。备选地,底涂层18可以是两种或更多种氧化物(例如选自硅、钛、铝、锡、锆、磷的氧化物)的混合物。氧化物可以任何期望比例存在。底涂层18(若存在)的第二层可为均质涂层。备选地,第二层可为梯度涂层,且该涂层的至少两种成份的相对比例随涂层厚度而变化。

tco层20包含至少一个导电氧化物层,例如经惨杂氧化物层。例如,tco层20可包括一种或多种氧化物材料,例如但不限于zn、fe、mn、al、ce、sn、sb、hf、zr、ni、zn、bi、ti、co、cr、si、in中一或多者的一种或多种氧化物,或这些材料中两种或更多种的合金的一种或多种氧化物,例如锡酸锌。tco层20还可包括一种或多种掺杂物材料,例如但不限于f、in、al、p、cu、mo、ta、ti、ni、nb、w和/或sb。

tco层20可具有以下厚度:大于200nm,例如大于250nm,例如大于350nm,例如大于380nm,例如大于400nm,例如大于420nm,例如大于470nm,例如大于500nm,例如大于600nm。例如,tco层可具有介于以下范围内的厚度:350nm至1,000nm,例如400nm至800nm,例如500nm至700nm,例如600nm至700nm。

tco层20可具有以下表面电阻率(薄层电阻):小于20欧姆每平方(ω/平方),例如小于15ω/平方,例如小于14ω/平方,例如小于13.5ω/平方,例如小于13ω/平方,例如小于12ω/平方,例如小于11ω/平方,例如小于10ω/平方。

tco层20可具有介于以下范围内的表面粗糙度(rms):5nm至60nm,例如5nm至40nm,例如5nm至30nm,例如10nm至30nm,例如10nm至20nm,例如10nm至15nm,例如11nm至15nm。第一底涂层的表面粗糙度将小于tco层20的表面粗糙度。

在优选实施方式中,tco层20是经氟掺杂锡氧化物涂层,且氟以下列量存在:基于涂层的总重量计小于20wt.%,例如小于15wt.%,例如小于13wt.%,例如小于10wt.%,例如小于5wt.%,例如小于4wt.%,例如小于2wt.%,例如小于1wt.%。tco层20可为非晶、结晶或至少部分结晶。然而,与先前tco层不同,本发明的tco层在整个涂层厚度内不必具有均匀的掺杂分布。在本发明实践中,可通过下文所阐述的tco层形成工艺选择或改变tco层的所选区域中的掺杂物含量。

在一种优选实施方式中,tco层20包含经氟掺杂锡氧化物且具有介于以下范围内的厚度:350nm至1,000nm,例如400nm至800nm,例如500nm至700nm,例如600nm至700nm,例如650nm。

半导体层22可以是任何常规太阳能电池半导体材料,例如结晶硅。实例包括单晶硅、多晶硅及非晶硅。半导体材料的其他实例包括碲化镉及铜铟硒化物/硫化物。在典型硅太阳能电池中,磷掺杂(n型)硅的层处于较稠硼掺杂(p型)硅的顶部。在小p-n结处产生电场,从而在将电池连接至电负载时产生电流的流动。非晶硅层22可具有介于以下范围内的厚度:200nm至1,000nm,例如200nm至800nm,例如300nm至500nm,例如300nm至400nm,例如350nm。

第二导电层24可以是金属层或含金属的层,且可包括一种或多种金属氧化物材料。适宜金属氧化物材料的实例包括但不限于zn、fe、mn、al、ce、sn、sb、hf、zr、ni、zn、bi、ti、co、cr、si、in中一或多者的氧化物或这些材料中两种或更多种的合金的氧化物,例如锡酸锌。含金属的层24可具有介于以下范围内的厚度:50nm至500nm,例如50nm至300nm,例如50nm至200nm,例如100nm至200nm,例如150nm。

任选的第二基板26(若存在)可具有上文针对第一基板12阐述的任何材料。第一基板12与第二基板26可具有相同或不同材料且可具有相同或不同厚度。

底涂层18、tco层20、半导体层22和第二导电层24可通过任何常规方法在基板12的至少一部分上方形成,这些方法例如但不限于喷雾热解、化学气相沉积(cvd)或磁控溅镀真空沉积(msvd)。各层均可通过相同方法形成或不同层可通过不同方法形成。例如,任选的底涂层18和tco层20可通过cvd方法形成。在cvd方法中,将前体组合物携载于载体气体(例如氮气)中,且引导至加热基板。在本发明的一种实践中,tco层20通过如下文所阐述的熔融锡浴中的cvd涂覆系统来形成。

tco层的选择性沉积

在本发明且在图2中说明的一种优选实践中,使用位于常规浮法玻璃工艺的熔融金属(锡)锡浴52中的cvd涂覆系统50来沉积tco层20。cvd涂覆系统50可具有一台涂覆机或多台涂覆机。在图2所展示的实施方式中,涂覆系统具有第一cvd涂覆机54和第二cvd涂覆机54。然而,可使用任何期望数量的涂覆机。每一涂覆机52及54具有多个涂覆单元(例如,涂覆狭槽),以在玻璃基板56沿熔融金属浴中的熔融金属顶部移动时将涂层材料供应至下伏(underlying)玻璃基板56上。本领域技术人员将充分理解cvd涂覆机及常规浮法玻璃工艺的大体结构及操作,且因此未进行详细阐述。

在所示的实施方式中,第一涂覆机52具有三个涂覆单元al-a3,且第二涂覆机54具有七个涂覆单元b1-b7。该单元编号随意且经呈现仅用于帮助论述下文所阐述的工艺。可将每一涂覆单元连接至歧管以将涂料组合物供应至玻璃。备选地,可将一个或多个单元或一组单元单独地连接至涂层前体的供应和/或掺杂物前体材料的供应。这些连接可经由管道、导管或任何其他常规方法来实施。在图2中,第二涂覆机54的涂覆单元b1-b7各自单独地连接至分别的涂层前体供应60和掺杂物前体供应62。第一涂覆机52还可以类似方式来配置。在本发明的一种实践中,可使用第一涂覆机52将底涂层施加在玻璃上,且可使用第二涂覆机54来供应具有所选掺杂物分布的顶涂层(例如tco涂层),如下文所阐述。尽管在图2所示的优选实施方式中,每一涂覆单元单独地连接至涂层前体供应60和掺杂物前体供应62,但应理解若期望用于具体涂层配置(coatingconfiguration),则可例如通过歧管将两个或更多个单元连接至相同的涂层前体供应60。此外,若期望,若为期望最终涂料组合物可接受,则可将掺杂物前体供应62操作地连接至两个或更多个涂层前体供应60导管。

涂层前体供应60是含有前体材料的来源或容器,这些前体材料在引导至热玻璃56上时反应或分解以形成期望组成的涂层。为形成氧化物涂层,涂层前体材料可包括在引导至热玻璃56上时与氧反应或组合以形成氧化物的材料。材料的实例包括:zn、fe、mn、al、ce、sn、sb、hf、zr、ni、zn、bi、ti、co、cr、si、in中一或多者的氧化物或这些材料中两种或更多种的合金的氧化物(例如锡酸锌)的前体。这些前体材料是商购的且可基于期望涂覆组成来选择。例如,单丁基三氯化锡(mbtc)是锡氧化物涂层的前体,正硅酸四乙酯(teos)是二氧化硅涂层的前体,三异丁基铝(tibal)是氧化铝涂层的前体。

掺杂物前体供应62是含有欲在将涂层材料沉积至玻璃表面上之前与涂层前体材料混合的材料或掺杂物的来源或容器。常用掺杂物材料包括f、in、al、p、cu、mo、ta、ti、ni、nb、w和/或sb。例如,六氟化钨是钨的前体,三氟乙酸(tfa)是氟的前体。这些前体材料是商购的且可基于期望掺杂物来选择。

可在各涂覆单元通过选择或改变供应至涂覆机的单独单元的涂层前体材料(来自多个涂料供应)与掺杂物前体材料的量或比率来改变供应至玻璃56上的涂料组合物。例如且为了说明的目的,可将各单元连接至氧化锡前体材料(例如mbtc)的供应作为涂层前体供应60和氟前体材料(例如tfa)的供应作为掺杂物前体供应62。如将领会,还可将这些单元连接至典型用于cvd涂覆工艺的其他供应,例如载体气体供应(例如氮或氧)和水源供应等。然而,为易于论述,未具体显示这些其他来源。可根据特别目的之需要,通过改变在各单元的涂层组分(例如涂层前体与掺杂物前体)的比率来控制所得涂层的掺杂物浓度。

例如,对于常规太阳能电池,期望tco层的外表面导电(即具有低薄层电阻)。在先前方法中,这是通过将导电掺杂物添加至涂层前体材料中以形成涂料组合物并然后将涂料组合物施加至玻璃表面上达成。所得涂层具有在整个涂层中均匀分布的掺杂物。尽管该涂层的确具有导电外表面,但远离外表面定位于涂层较深处的掺杂物对涂层的表面导电率贡献极小且实际上对整体涂层透明度有害。在本发明中,掺杂物浓度可偏向(skewed)或选择性限于tco涂层的外部(上部分)以提供期望薄层电阻,但不存在于涂层的深度中以防对该层的透射率造成不利影响。

备选地,若期望氧化锡涂层的外表面具有高薄层电阻但该涂层的导电的,则可优先添加掺杂物材料以靠近涂层底部且不存在于该层顶部附近。

或若期望具有比其他区域更多掺杂物材料的涂层的几个区域,这还可通过将掺杂物材料选择性添加至cvd涂覆机的所选单元达成。

尽管在上述优选实施方式中,各个涂层前体供应60和掺杂物前体供应62与涂覆单元流体连通,但还可将各个涂覆单元各自连接至单一涂层来源,该涂层来源具有涂层前体材料和掺杂物前体材料的混合物,在连接至不同涂覆单元的不同涂层来源之间这些组分的比率不同。

提供以下实施例来说明本发明的多个非限制性方面。然而,应理解本发明并不限于这些特定实施例。

实施例

以下实施例说明使用氧化锡涂层前体材料(mbtc)和氟掺杂物前体材料(tfa)形成的氟掺杂氧化锡涂层。然而,应理解这仅为说明本发明的一般概念且本发明并不限于这些特定材料。

以下实施例中的每一者使用具有3.2mm厚度的透明玻璃基板。通过如上文所阐述的第二涂覆机54沉积tco涂层以具有665nm的厚度。使用单元b1-b7。每一单元均具有52.3磅/小时(lb/hr)的锡前体(mbtc)流速和14.6lb/hr的水流速。每一单元的氟前体(tfa)的量是如每一实施例中所阐述来变化。在实施例中,在图2中玻璃移动为左至右。即,单元b7是玻璃56所遇到的第二涂覆机54的第一作用单元,且单元b1是玻璃所遇到的最后单元。形成涂层后,使用x射线光电子能谱对涂层实施溅镀探测以确定氟浓度对涂层深度的变化。溅镀时间指示深度,且1秒的溅镀时间等于约1.5埃。

实施例1

tfa如图3所阐释供应至每一单元。该实施例对每一单元使用均一的tfa流速。对涂层实施溅镀探测且结果展示于图4中。如图4所示,氟浓度在整个涂层深度上相对均匀。tco涂层具有8.6ω/平方的薄层电阻、82.6%的光透射率和0.96%的雾度。

实施例2

tfa如图5中所阐释供应至每一单元。该实施例使用较低的初始tfa流速。对涂层实施溅镀探测且结果展示于图6中。如所示,氟浓度在涂层的底部较低且在涂层的顶部较高。tco涂层具有8.8ω/平方的薄层电阻、82.8%的光透射率和0.79%的雾度。

实施例3

tfa如图7中所阐释供应至每一单元。该实施例使用较高的初始tfa流速和较低的最终流速。对涂层实施溅镀探测且结果展示于图8中。如所示,氟浓度在涂层的底部较高且在涂层的顶部较低。tco涂层具有9.4ω/平方的薄层电阻、82.1%的光透射率和1.09%的雾度。

实施例4

tfa如图9中所阐释供应至每一单元。该实施例使用低初始tfa流速、中间流速及随后高流速。对涂层实施溅镀探测且结果展示于图10中。如所示,氟浓度在涂层的底部较低且在涂层的顶部较高,并在涂层中间附近具有过渡区。tco涂层具有9.0ω/平方的薄层电阻、82.7%的光透射率和0.80%的雾度。

实施例5

该实施例展示氟组合物的离散步阶变化随涂层深度变化的tco涂层。基板是3.2mm透明玻璃且涂层具有385nm的厚度。使用六个涂覆机单元。mbtc流速为43.6lb/hr,且水流速为7.9lb/hr。tfa流速在单元5中为8.2lb/hr,在单元1和3中为14.03lb/hr,且在单元2、4和6中为0lb/hr。涂层具有图11中所展示的组成分布(compositionprofile)。图12展示涂层的f/sn比率对深度。在涂层中形成氟组合物的离散区域。tco涂层具有21.0ω/平方的薄层电阻、84.1%的光透射率和0.70%的雾度。

实施例6

该实施例说明具有氟组合物的步阶变化随深度变化的tco能够控制雾度,同时维持恒定薄层电阻。玻璃为具有4.0mm厚度的低铁玻璃。使用八个涂覆单元。第一涂覆机的单元a3在该实施例中表示为“单元8”,且单元1-7是指上文所阐述的单元b1-b7。每一单元均具有如表1中所展示的mbtc、水及tfa流速。所有值均以lbs/hr表示。

表1

这些涂层具有表2中所展示的雾度和薄层电阻值。厚度值以nm表示,雾度以%表示,且薄层电阻以欧姆每平方表示。

表2

图13是展示样品1的氧、锡和氟对深度的图。图14是展示样品2的氧、锡和氟含量对深度的图。图15是展示样品3的氧、锡和氟含量对深度的图。

图16展示样品1-3的总层厚度对雾度。如所示,随着厚度增加,雾度增加。图17展示了样品1-3的涂层厚度对薄层电阻。如所示,薄层电阻甚至在涂层厚度增加时仍保持相对恒定。图18是样品1-3的透射雾度对波长的图。

本领域技术人员将容易地了解,可在不背离上述描述中所公开的概念下对本发明作出修改。因此,本文详细阐述的具体实施方式仅仅是说明性的且不限于本发明的范围,该范围是附加的权利要求和其任何和全部等价物所给出的全范围(fullbreadth)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1