栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法与流程

文档序号:17555022发布日期:2019-04-30 18:33阅读:231来源:国知局
栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法与流程

本发明属于半导体技术领域,涉及一种栅极调控algan基金属-半导体-金属紫外探测器及制备方法。



背景技术:

紫外探测器在在紫外线辐射测量、臭氧监测、大气污染监控、空间通信、飞行器制导、血液分析、水银灯消毒监控等领域有广泛应用。理想的半导体探测器需要具有以下特征:高灵敏度、高响应度、高信噪比、高光谱选择性、高速、高稳定性。

algan基材料为宽带隙半导体材料,通过调节algan中的al组分,algan的禁带宽度可以在3.4ev~6.2ev范围内连续可调,从而使得algan基紫外探测器能够实现对200nm~365nm波段紫外光的本征探测。另外,algan基材料具有化学稳定性和热稳定性,抗辐照能力强等优势,因此,algan基材料是研制紫外及深紫外探测器的理想材料。algan紫外及深紫外探测器具有全固态,体积小,抗辐照能力强,适合在苛刻条件下工作等优势。与传统的si紫外探测器和光电倍增管相比,algan紫外探测器能够本征实现对紫外及深紫外光探测,避免了si紫外探测器复杂的光过滤系统的使用,与传统的光电倍增管相比,algan紫外探测器具有全固态,无需制冷系统等优势。

近年来,国内外已经研制了各种结构的algan基紫外及深紫外探测器,包括金属-半导体-金属结构(msm)、肖特基结构和pin结构的探测器。pin结构的探测器具有响应速度快、暗电流低、便于集成等优势,然而pn结和pin结的缺点在于其生长工艺相对复杂、不灵活,特别对于algan基材料,高al组分和algan基材料的掺杂特别困难。包含两个背靠背肖特基结构的探测器最大特点是暗电流小、工艺简单,由于光从器件正面入射,金属在紫外光区域的强吸收(每1nm厚金属吸收约10%的紫外光),且器件结面积较小,导致探测器响应度降低。金属-半导体-金属结构探测器存在材料设计生长困难,因为衬底如si,sic、缓冲层会吸收大部分紫外光,为得到高质量的algan吸收层,通常需要生长较大厚度,而吸收紫外光产生的载流子对主要集中在吸收层的下边缘,大部分在输运被电极收集过程中被散射损失掉,极大降低探测器的效率。



技术实现要素:

针对现有技术的不足,本发明的目的在于提供一种高响应度、高灵敏度的栅极调控algan基金属-半导体-金属紫外探测器及制备方法,通过栅极实现对探测器特性的调控。

本发明提供的这种栅极调控algan基金属-半导体-金属紫外探测器,包括衬底,所述衬底上方由内至外依次设有aln缓冲层、algan渐变缓冲层、alxga1-xn紫外光吸收层、及与alxga1-xn紫外光吸收层接触的金属叉指电极;

所述alxga1-xn紫外光吸收层的上表面设有栅极绝缘层,栅极绝缘层设置于金属叉指电极之间,栅极绝缘层上设有栅电极,栅电极与金属叉指电极不接触,栅电极和栅极绝缘层形成整体,实现对探测器特性的调控。

作为优选,所述alxga1-xn紫外光吸收层为al0.32ga0.68n紫外光吸收层,紫外光吸收层的厚度为0.2~0.3μm。

作为优选,所述algan渐变缓冲层中al组分从1渐变到0.32,al组分为0.32的algan的禁带宽度对应要探测的紫外光的波长。

作为优选,所述金属叉指电极为ni/au金属叉指电极,金属叉指电极与紫外光吸收层形成肖特基接触。

作为优选,所述衬底采用蓝宝石、二氧化硅、氮化铝、氟化钙、氮化钛中的一种。

作为优选,所述栅极绝缘层的厚度为0.001~0.5μm,栅极绝缘层的材料为二氧化硅、氮化铝、氮化硅、氮氧硅中的一种或多种,通过沉积或者溅射制备而成。

作为优选,所述栅电极为金属单层或者金属复合层,采用ag、al、ni、au、pt和cr中的一种或多种,通过套刻,蒸镀,退火制备而成。

作为一个总的发明构思,本发明提供所述栅极调控algan基金属-半导体-金属紫外探测器的制备方法,包括以下步骤:

(1)在衬底上依次外延生长aln缓冲层、algan渐变缓冲层、alxga1-xn紫外光吸收层;

(2)在alxga1-xn紫外光吸收层上进行光刻,制作金属叉指电极;

(3)在alxga1-xn紫外光吸收层表面,金属叉指电极之间再次进行光刻,然后制作栅极绝缘层;

(4)在栅极绝缘层上制作栅电极,栅电极与金属叉指电极不接触;

(5)对衬底背面进行抛光,得到所述栅极调控algan基金属-半导体-金属紫外探测器。

进一步,步骤(1)中,所述外延生长采用金属有机气相外延(mocvd)、分子束外延(mbe)、物理气相外延(pvd)和离子束外延(ibe)中的任意一种。

进一步,步骤(5)中,所述衬底背面抛光方法采用物理机械研磨抛光、化学抛光中的一种。

与现有技术相比,本发明的有益技术效果为:

本发明提供的这种栅极调控algan基金属-半导体-金属紫外探测器,通过栅极绝缘层及栅电极,利用外加电场,调控器件内电场,提高载流子的迁移速度和收集效率,从而提高探测器的响应度,降低响应时间。本发明通过外延结构的设计,紫外光背入射避免金属电极吸收,减少甚至避免aln缓冲层、衬底、金属电极对紫外光的吸收,与此同时,利用al0.32ga0.68n层实现了对紫外光的高质量吸收,减少载流子的迁移距离和散射损失,从而提高紫外探测器的响应度。

本发明提供的栅极调控algan基金属-半导体-金属紫外探测器的制备方法,制备工艺简单,成本低,易于实施,可以大规模推广。

附图说明

图1为实施例中栅极调控algan基金属-半导体-金属紫外探测器的俯视图。

图2为图1沿a-a面的剖视图。

图中:1—衬底;2—aln缓冲层;3—algan渐变缓冲层;4—alxga1-xn紫外光吸收层;5—金属叉指电极;6—栅极绝缘层;7—栅电极。

具体实施方式

下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

下面结合附图和实施例对本发明方案作进一步的阐述。

本发明提供一种栅极调控algan基金属-半导体-金属紫外探测器,如图1~2所示,包括衬底1,所述衬底1上方由内至外依次设有aln缓冲层2、algan渐变缓冲层3、alxga1-xn紫外光吸收层4、及与alxga1-xn紫外光吸收层4接触的金属叉指电极5;

alxga1-xn紫外光吸收层4的上表面设有栅极绝缘层6,栅极绝缘层6设置于金属叉指电极5之间,栅极绝缘层6上设有栅电极7,栅电极7与金属叉指电极5不接触,栅电极7和栅极绝缘层6形成整体,实现对探测器特性的调控。

alxga1-xn紫外光吸收层4为al0.32ga0.68n紫外光吸收层,紫外光吸收层的厚度为0.2~0.3μm。

algan渐变缓冲层3中al组分从1渐变到0.32,al组分为0.32的algan的禁带宽度对应要探测的紫外光的波长。

金属叉指电极5为ni/au金属叉指电极,金属叉指电极与紫外光吸收层形成肖特基接触。

衬底1采用蓝宝石、二氧化硅、氮化铝、氟化钙、氮化钛中的一种。

栅极绝缘层6的厚度为0.001~0.5μm,栅极绝缘层的材料为二氧化硅、氮化铝、氮化硅、氮氧硅中的一种或多种,通过沉积或者溅射制备而成。

栅电极7为金属单层或者金属复合层,采用ag、al、ni、au、pt和cr中的一种或多种,通过套刻,蒸镀,退火制备而成。

本发明的原理:紫外光从衬底背面入射,经过衬底、aln缓冲层和algan渐变缓冲层,被紫外光吸收层吸收,光生载流子被正面的金属叉指电极收集,栅极能实现对探测器特性的调控,且栅极绝缘层以及栅电极不会对光吸收造成损失,通过栅极能实现对探测器特性的调控,比如施加栅压,将能使光生载流子迁移速率加快,提高叉指电极的灵敏度,响应速度。

本发明提供一种栅极调控algan基金属-半导体-金属紫外探测器的制备方法,包括以下步骤:

(1)在衬底1上依次外延生长aln缓冲层2、algan渐变缓冲层3、alxga1-xn紫外光吸收层4;

(2)在alxga1-xn紫外光吸收层4上进行光刻,制作金属叉指电极5;

(3)在alxga1-xn紫外光吸收层4表面,金属叉指电极5之间再次进行光刻,然后制作栅极绝缘层6;

(4)在栅极绝缘层6上制作栅电极7,栅电极7与金属叉指电极5不接触;

(5)对衬底1背面进行抛光,得到栅极调控algan基金属-半导体-金属紫外探测器。

外延生长采用金属有机气相外延(mocvd)、分子束外延(mbe)、物理气相外延(pvd)和离子束外延(ibe)中的任意一种。

衬底背面抛光方法采用物理机械研磨抛光、化学抛光中的一种。

实施例1

本发明提供一种栅极调控algan基金属-半导体-金属紫外探测器的制备方法,包括以下步骤:

(1)选择直径为2英寸的平面(0001)面蓝宝石作为衬底,厚度约为400μm,采用mocvd方法在蓝宝石上生长aln缓冲层,厚度约为1.5μm,tmal作为al源,载气为氢气,生长温度为1200℃,压力为50mbar;

(2)在aln缓冲层上继续生长algan渐变缓冲层,其中al组分从1渐变到0.32,al组分为0.32的algan的禁带宽度对应要探测的紫外光的波长,tmal和tmga分别作为al源和ga源;

(3)在algan渐变缓冲层上生长厚度约为0.2μm的al0.32ga0.68n紫外光吸收层,al0.32ga0.68n的禁带宽度对应为要探测的紫外光的波长,约为280nm,aln缓冲层和algan渐变缓冲层,以及所用蓝宝石衬底对目标探测280nm紫外光透明,有利于al0.32ga0.68n层对紫外光的高质量吸收,硅烷sih4作为si源,实现了对al0.32ga0.68n紫外光吸收层的掺杂;

(4)在al0.32ga0.68n紫外光吸收层表面进行光刻,用电子束蒸发沉积ni/au金属叉指电极(20/100nm),金属叉指电极与紫外光吸收层形成肖特基接触,叉指电极宽度、间距为5μm,长度为200μm,对数为20对,然后剥离光刻胶;

(5)在al0.32ga0.68n紫外光吸收层上,ni/au金属叉指电极之间再次进行光刻,沉积sio2栅极绝缘层,栅极绝缘层的厚度为0.12μm,采用光刻湿法刻蚀去除金属叉指电极区的sio2;

(6)采用套刻、电子束蒸发、退火的方法,在栅极绝缘层上制作栅电极,栅电极为金属复合层ni/au(20/100nm),然后剥离光刻胶,使栅电极与金属叉指电极不接触;

(7)采用机械研磨方法将蓝宝石背面抛光,减少粗糙表面对入射紫外光的散射,得到栅极调控背入射algan基金属-半导体-金属紫外探测器。

实施例2

本发明提供一种栅极调控algan基金属-半导体-金属紫外探测器的制备方法,包括以下步骤:

(1)选择直径为2英寸的平面(0001)面蓝宝石作为衬底,厚度约为400μm,采用pvd方法在蓝宝石上生长aln缓冲层,厚度约为1.5μm,tmal作为al源,载气为氢气,生长温度为1200℃,压力为50mbar;

(2)在aln缓冲层上继续生长algan渐变缓冲层,其中al组分从1渐变到0.32,al组分为0.32的algan的禁带宽度对应要探测的紫外光的波长,tmal和tmga分别作为al源和ga源;

(3)在algan渐变缓冲层上生长厚度约为0.3μm的al0.32ga0.68n紫外光吸收层,al0.32ga0.68n的禁带宽度对应为要探测的紫外光的波长,约为280nm,aln缓冲层和algan渐变缓冲层,以及所用蓝宝石衬底对目标探测280nm紫外光透明,有利于al0.32ga0.68n层对紫外光的高质量吸收,硅烷sih4作为si源,实现了对al0.32ga0.68n紫外光吸收层的掺杂;

(4)在al0.32ga0.68n紫外光吸收层表面进行光刻,用电子束蒸发沉积ni/au金属叉指电极(20/100nm),金属叉指电极与紫外光吸收层形成肖特基接触,叉指电极宽度、间距为5μm,长度为200μm,对数为20对,然后剥离光刻胶;

(5)在al0.32ga0.68n紫外光吸收层上,ni/au金属叉指电极之间再次进行光刻,沉积sio2栅极绝缘层,栅极绝缘层的厚度为0.12μm,采用光刻湿法刻蚀去除金属叉指电极区的sio2;

(6)采用套刻、电子束蒸发、退火的方法,在栅极绝缘层上制作栅电极,栅电极为金属复合层ni/au(20/100nm),然后剥离光刻胶,使栅电极与金属叉指电极不接触;

(7)采用化学方法将蓝宝石背面抛光,减少粗糙表面对入射紫外光的散射,得到栅极调控背入射algan基金属-半导体-金属紫外探测器。

以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。对于本技术领域的技术人员来说,在不脱离本发明技术构思前提下所得到的改进和变换也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1