循环渐变贴片仿生阵列超宽频带天线的制作方法

文档序号:17636939发布日期:2019-05-11 00:26阅读:254来源:国知局
循环渐变贴片仿生阵列超宽频带天线的制作方法

本发明涉及一种循环渐变贴片仿生阵列超宽频带天线。



背景技术:

多网合一技术是21世纪以来,伴随着无线通信技术高速发展而产生的一项新技术。多网合一技术将多个工作原理相似的无线通信应用系统整合在一起,最大限度的实现通信频段与通信设备的兼容和复用。目前,在微波频段,最为成熟的无线通信应用系统是移动通信系统、射频识别系统、超宽带通信系统、移动数字电视系统,它们工作频段接近,对基站设备和终端设备的要求相似,有望通过整合得到微波频段多网合一系统。

负责收发无线通信电磁波信号的天线是无线通信设备的关键核心部件,天线的性能直接决定着无线通信系统的性能。微波频段多网合一系统需要天线实现微波频段的多频段兼容,我国目前使用的第二代移动通信频段为gsm制式0.905~0.915ghz、0.950~0.960ghz、1.710~1.785ghz、1.805~1.880ghz频段;第三代移动通信频段为td-scdma制式1.880~1.920ghz、2.010~2.025ghz、2.300~2.400ghz频段和wcdma制式1.920~1.980ghz、2.110~2.170ghz频段;第四代移动通信频段为td-lte制式2.570~2.620ghz频段。即将投入使用的第五代移动通信有三个候选频段,分别为:3.300~3.400ghz、4.400~4.500ghz、4.800~4.990ghz。射频识别系统有三个主要的工作频段:0.902~0.928ghz、2.400~2.4835ghz、5.725~5.875ghz。超宽带系统的工作频段为3.100~10.600ghz。移动数字电视系统工作频段为11.700~12.200ghz。微波频段多网合一天线需要完全覆盖上述所有工作频段,现有天线尺寸大、辐射强度低、工作性能不稳定。



技术实现要素:

鉴于现有技术的不足,本发明所要解决的技术问题是提供一种循环渐变贴片仿生阵列超宽频带天线。

为了解决上述技术问题,本发明的技术方案是:一种循环渐变贴片仿生阵列超宽频带天线,包括基板、贴覆在基板背面的天线接地板和贴覆在基板正面的循环渐变贴片仿生阵列辐射贴片,天线接地板为全导电接地结构,所述循环渐变贴片仿生阵列辐射贴片是由48个循环渐变贴片天线按照蝶形仿生阵列结构排列组成的天线阵列。

优选的,所述循环渐变贴片天线的大小为0.9mm±0.01mm×0.9mm±0.01mm。

优选的,所述循环渐变贴片天线由位于中央的1个馈电方形贴片和位于四周的8个感应方形贴片构成。

优选的,所述循环渐变贴片天线的馈电方形贴片的大小为0.1mm±0.01mm×0.1mm±0.01mm,8个感应方形贴片的大小循环渐变,从位于左上角的感应方形贴片开始,按照顺时针的顺序,8个感应方形贴片的大小依次为:0.1mm±0.01mm×0.1mm±0.01mm、0.2mm±0.01mm×0.2mm±0.01mm、0.3mm±0.01mm×0.3mm±0.01mm、0.2mm±0.01mm×0.2mm±0.01mm、0.1mm±0.01mm×0.1mm±0.01mm、0.2mm±0.01mm×0.2mm±0.01mm、0.3mm±0.01mm×0.3mm±0.01mm、0.2mm±0.01mm×0.2mm±0.01mm。

优选的,所述循环渐变贴片仿生阵列辐射贴片使用蝶形仿生阵列结构作为基本阵列排布结构,在蝶形仿生阵列结构的每个大小为1.1mm±0.01mm×1.1mm±0.01mm的阵元天线区域中心,放置一个循环渐变贴片天线。

优选的,所述蝶形仿生阵列结构是在一个由11行15列共165个方形区域组成的矩形区域中,在第1行第1列、第2列、第3列、第4列、第5列、第11列、第12列、第13列、第14列、第15列,第3行第3列、第4列、第5列、第6列、第10列、第11列、第12列、第13列,第5行第5列、第6列、第7列、第9列、第10列、第11列,第7行第5列、第6列、第7列、第9列、第10列、第11列,第9行第3列、第4列、第5列、第6列、第10列、第11列、第12列、第13列,第11行第1列、第2列、第3列、第4列、第5列、第11列、第12列、第13列、第14列、第15列,共48个方形区域放置阵元天线。

优选的,每个循环渐变贴片天线的馈电方形贴片中心位置设有馈电点。

优选的,所述基板为低损耗微波陶瓷基板,其相对介电常数为70-75。

优选的,所述基板的形状为矩形,尺寸是16.5mm±0.1mm×12.1mm±0.1mm,厚度为1mm±0.1mm。

优选的,所述天线辐射贴片和天线接地板由石墨烯导电墨水印制而成。

与现有技术相比,本发明具有以下有益效果:该循环渐变贴片仿生阵列超宽频带天线尺寸小、辐射强度高、工作性能稳定,具有优异的超宽频带工作能力和较大的性能冗余,可以完全覆盖第二代至第五代移动通信频段、射频识别频段、超宽带通信频段和移动数字电视频段的循环渐变贴片仿生阵列超宽频带天线。

下面结合附图和具体实施方式对本发明做进一步详细的说明。

附图说明

图1为循环渐变贴片天线的结构图。

图2为蝶形仿生阵列的结构图。

图3为循环渐变贴片仿生阵列辐射贴片的结构图。

图4为本发明实施例的回波损耗(s11)性能图。

具体实施方式

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图,作详细说明如下。

如图1~4所示,一种循环渐变贴片仿生阵列超宽频带天线,包括基板、贴覆在基板背面的天线接地板和贴覆在基板正面的循环渐变贴片仿生阵列辐射贴片,天线接地板为全导电接地结构,所述循环渐变贴片仿生阵列辐射贴片是由48个循环渐变贴片天线按照蝶形仿生阵列结构排列组成的天线阵列。

在本发明实施例中,所述循环渐变贴片天线的大小为0.9mm±0.01mm×0.9mm±0.01mm。

在本发明实施例中,所述循环渐变贴片天线由位于中央的1个馈电方形贴片和位于四周的8个感应方形贴片构成。循环渐变贴片天线由位于中央的馈电贴片和位于四周的感应贴片构成,利用叠加原理同时获得较高的辐射强度和较大的工作带宽。馈电贴片的辐射能量,会被其四周的感应贴片吸收,产生感应射频电流,从而产生感应二次辐射,合理调整馈电贴片和感应贴片之间的距离,可以使它们的射频电流有相同或相近的相位,这时馈电辐射和感应辐射同相叠加,使循环渐变贴片天线具有较强的辐射强度。感应方形贴片的大小不同,工作频率也不同,多个不同的工作频段叠加,使循环渐变贴片天线具有较大的工作带宽。

在本发明实施例中,所述循环渐变贴片天线的馈电方形贴片的大小为0.1mm±0.01mm×0.1mm±0.01mm,8个感应方形贴片的大小循环渐变,从位于左上角的感应方形贴片开始,按照顺时针的顺序,8个感应方形贴片的大小依次为:0.1mm±0.01mm×0.1mm±0.01mm、0.2mm±0.01mm×0.2mm±0.01mm、0.3mm±0.01mm×0.3mm±0.01mm、0.2mm±0.01mm×0.2mm±0.01mm、0.1mm±0.01mm×0.1mm±0.01mm、0.2mm±0.01mm×0.2mm±0.01mm、0.3mm±0.01mm×0.3mm±0.01mm、0.2mm±0.01mm×0.2mm±0.01mm。

在本发明实施例中,所述循环渐变贴片仿生阵列辐射贴片使用蝶形仿生阵列结构作为基本阵列排布结构,在蝶形仿生阵列结构的每个大小为1.1mm±0.01mm×1.1mm±0.01mm的阵元天线区域中心,放置一个循环渐变贴片天线。多个阵元天线组成天线阵列可以有效提高天线的辐射强度。蝶形仿生阵列结构是一种基于仿生学原理设计的阵列天线排布方式,可以在利用叠加原理增强阵列天线辐射强度的同时,使阵列天线整体具有和阵元天线一样的宽频带工作特性。

在本发明实施例中,所述蝶形仿生阵列结构是在一个由11行15列共165个方形区域组成的矩形区域中,在第1行第1列、第2列、第3列、第4列、第5列、第11列、第12列、第13列、第14列、第15列,第3行第3列、第4列、第5列、第6列、第10列、第11列、第12列、第13列,第5行第5列、第6列、第7列、第9列、第10列、第11列,第7行第5列、第6列、第7列、第9列、第10列、第11列,第9行第3列、第4列、第5列、第6列、第10列、第11列、第12列、第13列,第11行第1列、第2列、第3列、第4列、第5列、第11列、第12列、第13列、第14列、第15列,共48个方形区域放置阵元天线。

在本发明实施例中,每个循环渐变贴片天线的馈电方形贴片中心位置设有馈电点。

在本发明实施例中,所述基板为低损耗微波陶瓷基板,其相对介电常数为70-75。

在本发明实施例中,所述基板的形状为矩形,尺寸是16.5mm±0.1mm×12.1mm±0.1mm,厚度为1mm±0.1mm。

在本发明实施例中,所述天线辐射贴片和天线接地板由石墨烯导电墨水印制而成。石墨烯具有很高的电子迁移率,制作成导电墨水后能通过的射频电流强度大,以石墨烯导电墨水印制天线辐射贴片,可以增强天线内部的射频电流强度,提高天线辐射强度。石墨烯导电墨水不含金属,印制天线辐射贴片可以有效防止腐蚀。

该款天线使用循环渐变贴片天线作为阵元天线,馈电辐射和感应辐射叠加,保证了阵元天线具有较强的辐射强度,多个大小不同的感应贴片的中心频率不同的工作频段互相叠加,保证了阵元天线具有较大的工作带宽;多个阵元天线按照蝶形仿生阵列结构排列组成天线阵列,在增强天线辐射强度的同时,保证阵列天线具有优异的宽频带工作能力。使用石墨烯导电墨水印制天线的接地板和辐射贴片,可以有效防止腐蚀并提高天线辐射强度。

天线实测结果显示,该款天线的工作频带范围为0.367~17.282ghz,工作带宽为16.915ghz,带宽倍频程为47.09,在整个工作频带内天线回波损耗都低于-10db,回波损耗最小值为-48.21db。实测结果显示,该款天线完全覆盖了0.902~0.928ghz、0.905~0.915ghz、0.950~0.960ghz、1.710~1.785ghz、1.805~1.880ghz、1.880~1.920ghz、1.920~1.980ghz、2.010~2.025ghz、2.110~2.170ghz、2.300~2.400ghz、2.400~2.4835ghz、2.570~2.620ghz、3.300~3.400ghz、4.400~4.500ghz、4.800~4.990ghz、5.725~5.875ghz、3.100~10.600ghz、11.700~12.200ghz等第二代至第五代移动通信所有制式所有工作频段、射频识别频段、超宽带通信频段和移动数字电视频段。

与用于移动通信系统、射频识别系统、超宽带通信系统、移动数字电视系统的常规天线比较,该款天线具有突出的优点和显著的效果:该款天线有突出的超宽频带工作能力,工作带宽接近17ghz,带宽倍频程高达47.09,其工作带宽远远大于现有的移动通信系统、射频识别系统、超宽带通信系统、移动数字电视系统的常规天线;该款天线的性能冗余充足,在工作频带内的大部分区域,天线回波损耗都低于-45db,天线回波损耗最小值低达-48.21db,能够保证微波段无线通信信号有较好的传输质量;该款天线的抗破坏性较好,蝶形仿生阵列结构的上下左右都具有对称性,当天线辐射贴片被破坏时,只需剩下四分之一,天线就能够工作。

说明书附图4给出了本发明实施例的回波损耗(s11)性能图。从图4可以看出,实测结果显示,该款天线的工作频带范围为0.367~17.282ghz,工作带宽为16.915ghz,带宽倍频程为47.09,在整个工作频带内天线回波损耗都低于-10db,回波损耗最小值为-48.21db。该款天线尺寸小、辐射强度高、工作性能稳定,具有优异的超宽频带工作能力和较大的性能冗余,可以完全覆盖第二代至第五代移动通信频段、射频识别频段、超宽带通信频段和移动数字电视频段,在微波频段多网合一系统不断发展和普及的今天,有望得到广泛的应用。

本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可以得出其他各种形式的循环渐变贴片仿生阵列超宽频带天线。凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1