一种氧化亚铜-氧化锌异质结太阳能电池及其制备方法与流程

文档序号:18403387发布日期:2019-08-10 00:07阅读:1258来源:国知局
一种氧化亚铜-氧化锌异质结太阳能电池及其制备方法与流程

本发明属于太阳能电池技术领域,特别是涉及一种氧化亚铜-氧化锌异质结太阳能电池及其制备方法。



背景技术:

铜氧化时可形成三种氧化物:氧化亚铜(cu2o)、氧化铜(cuo)和cu4o3,这三种形式的铜氧化物都是半导体,其中cu2o的光伏效应是最显著和最早被发现和应用,金属/cu2o形成的肖特基结曾在20世纪初期曾被广泛应用太阳能电池和整流器。由于cu空位及其他缺陷的存在,未经掺杂的cu2o材料是典型p型氧化物半导体。cu2o为直接带隙半导体,吸收系数为105cm-1,其带隙宽度与薄膜沉积条件有关,一般为1.7~2.0ev。cu2o太阳能电池的理论光电转换效率可以超过20%,但是目前其电池的实际最高效率仅为6.1%,造成这种巨大差距的主要原因是制备p-cu2o/n-cu2o同质结太阳能电池非常困难,而cu2o异质结电池的界面缺陷密度大,从而造成较大的界面复合电流。

目前许多新型半导体材料,如钙钛矿、铜铟镓硒、碲化镉、砷化镓等,已经成功地应用于太阳能电池时,并获得大于20%的转换效率,那么为什么像氧化铜这样古老的半导体仍然吸引人们的兴趣?在全球最新发布的太阳能电池效率图以及太阳能电池方面教科书中,已经很难找到铜氧化物电池。铜和氧都是像硅一样丰富的元素,从长远来看不存在供应问题,表明铜氧化物是可持续的光伏材料,因此,可持续性是人们关注铜氧化物电池的主要原因。此外,铜氧化物都是无毒的,可以相对简单地以较低的成本沉积成薄膜。

cu2o与另一种n型半导体形成交错型异质结,只有一种半导体的导带或价带位于形成异质结的另一种半导体的带隙内。p-cu2o/n-zno(氧化锌)为典型的cu2o异质结电池结构,cu2o既作为衬底又作为电池吸收层,在其上面沉积宽带隙的n型zno薄膜,然后再沉积透明导电氧化物(tco)薄膜。虽然具有cu2o/zno结构的电池的效率为0.14%,但光伏效应不是由于zno-cu2o异质结产生的,而是在zno溅射沉积过程中还原cu2o表面形成的cu薄膜之间的肖特基势垒造成的。后来人们在玻璃基片上采用反应磁控溅射的方法沉积cu2o和zno薄膜,制备p-cu2o/n-zno异质结电池。人们发现薄膜的沉积顺序对电池的性能影响很大,先生长cu2o后生长zno的tco玻璃/p-cu2o/n-zno结构的电池,反向漏电流很高,很难观察到光伏效应。如果把zno和cu2o薄膜的生长顺序对调一下,即具有tco玻璃/n-zno/p-cu2o结构的电池具有更明显的整流效应,转换效率达到0.4%。这两种生长顺序的差异是由于氧化锌晶体结构中的原子排列相似,在zno薄膜上生长cu2o薄膜,使得cu2o晶体结构中的原子排列与zno的排列更相似,导致界面态缺陷相对另一种结构的缺陷相对较少。但是,具有两种不同顺序结构的电池的短路电流(jsc)和开路电压(voc)都很小,这主要是由于zno与cu2o之间的界面态缺陷较大造成的。为了提高cu2o电池效率,人们一直在努力寻找适合的cu2o薄膜的生长方法(如磁控溅射、激光脉冲沉积、真空电弧等离子体蒸发等),以及沉积在其上的n型半导体材料(如in2o3,zno,zno-in2o3等),但是电池的效率仍然较低。

2011年,日本金泽工业大学(kanazawainstituteoftechnology)的minami等人报道的cu2o异质结电池效率为3.83%,他们采用三步氧化法降低cu2o的电阻率,以及采用脉冲激光沉积法在cu2o薄膜之上依次生长未掺杂的zno和铝掺杂的zno(azo),以减少cu2o与zno之间的界面态缺陷密度。2013年,minami等人利用未掺杂的n型ga2o3替代未掺杂的zno,获得的azo/ga2o3/cu2o/au结构的cu2o异质结电池效率为5.38%。2015年,minami等人利用nai在500~1000℃温度和惰性气体氛围中退火,对cu2o进行钠掺杂,获得其电阻率显著降低为15ω.cm,但与其他掺杂剂相比,在降低电阻率的同时霍尔迁移率并未下降。利用激光脉冲沉积alxga1-xo、azo和mgf2,具有mgf2/azo/al0.025ga0.975o/cu2o:na结构的cu2o异质结电池的效率为6.1%。

近年来在多晶cu2o异质结太阳能电池中取得了实质性进展,主要表现在如下三个方面。首先是cu高温热氧化工艺(如三步氧化法)的改善,导致cu2o的晶化性能得到很大提高;其次,在n型半导体沉积之前生长缓冲层和蚀刻cuo,从而减少了界面缺陷;第三,采用与cu2o能带更匹配的n型氧化物半导体,以及采用采用激光脉冲沉积法生长,对提高异质结界面起着至关重要的作用。然而,激光脉冲沉积法生长的薄膜面积很小(一般小于1cm2),生长大面积的薄膜的均匀性很难实现,此外,激光脉冲沉积在工业化量产中的成本也比较高。

cu2o异质结太阳能电池的效率仍然比较低,其主要原因是cu2o与n型氧化物之间的界面存在具有深能级缺陷态的cuo,从而导致很高的界面态缺陷密度,因此如何减少界面缺陷是提高cu2o异质结电池的关键。



技术实现要素:

本发明的第一个目的是为了解决上述问题,提供一种氧化亚铜-氧化锌异质结太阳能电池。

本发明的第二个目的提供一种氧化亚铜-氧化锌异质结太阳能电池的制备方法。

为了实现第一个目的,本发明的技术方案是:一种氧化亚铜-氧化锌异质结太阳能电池,其特征在于:具有如下的电池结构:以康宁玻璃为衬底,依次生长有金属钛层、银层、氮掺杂氧化亚铜薄膜、n型微晶氧化硅薄膜、铝掺杂氧化锌薄膜、银电极。

为实现第二个发明目的,所采用的技术方案是:一种氧化亚铜-氧化锌异质结太阳能电池的制备方法,包括如下步骤:

1)衬底的清洗与底电极制备:康宁玻璃清洗吹干,利用磁控溅射法生长金属钛,随后在钛薄膜上溅射银电极;

2)氮掺杂cu2o薄膜制备:利用反应磁控溅射法生长氮掺杂cu2o薄膜;

3)微晶氧化硅薄膜制备:采用等离体子化学气相沉积法在氮掺杂cu2o薄膜表面生长微晶氧化硅薄膜;

4)铝掺杂zno制备:利用磁控溅射法生长铝掺杂zno薄膜;

5)顶电极制备:采用磁控溅射法生长,利用掩膜板在zno薄膜上溅射一层ag电极。

本发明利用微晶氧化硅中的非晶氧化硅钝化cu2o表面的cuo深能级缺陷,掺杂的硅纳米晶输运光生载流子,同时在生长过程中引入的氢在随后退火温度下扩散到cu2o之中,减少其缺陷密度,从而提高cu2o太阳能电池的效率。

附图说明

以下结合附图和本发明的实施方式来作进一步详细说明

图1为本发明的电池结构示意图。

具体实施方式

参见附图。本实施例所述的太阳能电池,具有如下的电池结构:以康宁玻璃1为衬底,依次生长有金属钛层2(~10nm)、银层3(~300nm)、氮掺杂氧化亚铜薄膜4(~800nm)、n型微晶氧化硅薄膜5(~15nm)、铝掺杂氧化锌薄膜6(~200nm)、银电极7。

制备时:

1.衬底的清洗与底电极制备

衬底为康宁玻璃1,光学透过率大于92%,软化温度大于600℃,厚度0.55mm,面积3×3cm2。依次采用去污粉、去离子水、异丙醇、乙醇盐酸、丙酮对衬底进行10min超声清洗,除去表面有机及无机杂质。为了增加电池底部金属银电极与玻璃之间的结合强度,提高其附着性能,将清洗好的玻璃放入70℃、1mol/l的ticl4溶液浸泡15min,并用去离子水和无水乙醇润洗,再用去离子水反复冲洗3~5遍,最后用氮气吹干待用。

利用磁控溅射法生长厚度为10nm金属钛层2(ti),随后在ti薄膜上溅射300nm厚的银层3。具体工艺为:溅射靶材为金属钛和银,当腔体的真空优于5×10-5pa以后,通入氩气作为溅射工作气体,氩气流量为30sccm,工作气压为0.5pa,溅射功率为30w,衬底温度为200℃,薄膜厚度由石英晶体振荡器监控。2.氮掺杂氧化亚铜薄膜4制备

利用反应磁控溅射法生长氮掺杂cu2o薄膜,厚度为800nm。具体工艺为:靶材为金属铜靶,氧气和氮气为反应气体,氩气为工作气体,它们纯度均大于99.999%。在薄膜生长之前,真空腔只通入氩气,对铜靶进行10min的预溅射,去除靶材表面氧化层和吸附的杂质。氩气和氧气的流量分别为60和16sccm,氮气流量为6~9sccm,衬底温度为200~230℃,工作气压为0.3~0.5pa,溅射功率为50w。薄膜的电学测量表明,氮掺杂cu2o薄膜的电阻率为1.5~6.2ω.cm。

3.微晶氧化硅薄膜5制备

采用等离体子化学气相沉积法在氮掺杂cu2o薄膜生长微晶氧化硅薄膜,厚度为15nm,具体工艺为:以sih4、h2、co2为生长气源,在混合气体中加入ph3作为n型掺杂剂。h2与sih4质量流量比为150~200,co2与sih4质量流量比1.0~2.0,ph3与sih4质量流量比为0.001~0.005,生长温度200~250℃,生长气压200~300pa,射频功率0.2~0.5w/cm2。随后,在氮气保护下进行退火处理,退火温度550~600℃,时间60~120min,微晶氧化硅薄膜中的氢通过扩散进入氧化亚铜薄膜中,减少其体内缺陷密度。

4.铝掺杂氧化锌薄膜6制备

利用磁控溅射法生长铝掺杂zno薄膜,厚度为200nm。具体工艺为:靶材为铝掺杂的氧化锌(zno与al2o3的质量分数比98:2,纯度大于99.99%),氩气为工作气体。氩气流量为30sccm,衬底温度为200℃,工作气压为1.0pa,溅射功率为50w。

5.顶电极制备

采用磁控溅射法生长,利用掩膜板在zno薄膜上溅射一层指叉状、厚度为500nm的ag电极7,生长温度为200℃。

6.电池光电性能测试

标准测试条件(am1.5,100mw/cm2,25℃)下,电池的开路电压为0.53v,短路电流密度为7.2ma/cm2,填充因子为58%,光电转换效率为2.2%。目前制备的微晶氧化硅钝化cu2o与zno异质结界面的新型电池效率比较低,是因为电池的各部分参数还有优化,比如微晶氧化硅的光电性能、cu2o/微晶氧化硅的界面特性等需要进一步优化设计。尽管如此,本发明提出的微晶氧化硅钝化异质结界面的设计思路,为提高cu2o-zno异质结太阳能电池提供可借鉴的指导意义。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1