一种优异性能的硒化钨-胶原蛋白衍生多孔碳复合物钠离子电池负极材料的合成方法和应用与流程

文档序号:18733558发布日期:2019-09-21 00:52阅读:367来源:国知局
一种优异性能的硒化钨-胶原蛋白衍生多孔碳复合物钠离子电池负极材料的合成方法和应用与流程

本发明属于钠离子电池材料领域,尤其涉及一种优异性能的硒化钨-胶原蛋白衍生多孔碳复合物的合成方法和应用。



背景技术:

锂离子电池(LIBs)具有高能量和高功率密度等优点,已广泛应用于便携式电子设备和电动汽车等。然而,锂资源稀缺,分布不均,而且成本高,在很大程度上制约了大规模应用的发展。同时,锂电池的安全问题一直是锂电池领域的一大难题。所以,作为替代能源,具有低成本、高性能、高安全性等优点的储能设备钠离子电池应运而生。然而,由于Na+半径比Li+半径大,导致钠离子电池的发展面临着挑战,如大体积膨胀、动力学性能差等。因此,设计具有优异性能的钠离子电池负极材料具有重要的意义。

而近年来二维层状过渡金属如MoS2、MoSe2等由于具有类石墨烯的二维层状结构且有较大的层间距,有利于较大半径的Na+ 的传输和存储,同时它们具有良好的导电性,表现出较为优异的电化学性能。虽然WSe2具有和它们相同的物理化学性质,但是它的密度相对较重,在理论质量比容量上比MoS2、MoSe2低。然而,WSe2的过电位较低,且WSe2的密度更大因此体积比容量更高,在体积空间受限的动力电池、潜艇电池和航空电池等领域具有良好的应用前景,是具有潜力的下一代钠离子负极材料。

本发明利用从制革工业的废弃牛皮毛中提取的胶原蛋白粉作为前驱体碳源合成硒化钨-胶原蛋白衍生多孔碳复合物。其和一般方法相比区别在于:1、胶原蛋白衍生的多孔纳米碳复合物具有高空隙率,高比表面积等特点,可提供大量的储钠活性位点,有利于钠离子和电子的传输,同时促进电解液渗透到活性物质的内部,提升反应动力学;2、胶原蛋白是从废弃的牛皮毛中提取的,属于制革工业的废弃物绿色高值化利用,变废为宝,有利于减少环境污染;3、废弃牛皮毛中的胶原蛋白是一种天然的高分子材料,由多种氨基酸组成,富含有机基团,胶原蛋白中大量的N, S元素在煅烧过程中可原位转化成N, S杂原子掺杂,可调控衍生碳内部的电子结构,提高复合物的导电性,且可有效加强衍生碳和硒化钨的结合,使结构更加稳定,进而提高其电化学性能;4、胶原蛋白衍生的多孔纳米碳将硒化钨粒子限域在多孔结构中,使结构稳定,可缓冲充放电过程中的体积变化;5、通过胶原蛋白活化衍生多孔碳和一步硒化法合成材料,工艺简单,可操作性强,同时变废为宝,高值转化,成本低廉,具有大规模生产的前景。而且结果表明,该钠离子电池负极材料具有优异的电化学性能,有一定的应用前景。



技术实现要素:

本发明的目的在于提供一种性能优异的硒化钨-胶原蛋白衍生多孔碳复合物及其合成方法和应用,工艺简单,可操作性强,制革工业的废弃物高值化利用,成本低廉,可大规模生产,符合环境要求。

为实现上述目的,本发明采用如下技术方案:

本发明采用简单易行的活化和硒化法合成出硒化钨-胶原蛋白衍生多孔碳复合物。其具体步骤如下:

1)称取一定质量的废弃牛皮毛(指有毛的牛皮),先在乙醇中超声预处理,再用剪刀剪碎,加入占原料质量0.5% - 1%的酶制剂溶解,所述的酶制剂采用胃蛋白酶/木瓜蛋白酶/胰蛋白酶,接着盐析,最后冷冻干燥磨碎得到胶原蛋白粉。

2)胶原蛋白粉和氯化锌按照质量比1:(0.2-2)称量到聚四氟乙烯内衬中,加入适量的水搅拌4-8 h,烘干后在N2气氛管式炉中以升温速率5-10 ºC/min在500-900 ºC活化1-2 h,,洗涤烘干后,收集黑色固体样品;

3)称取一定质量的步骤(2)所得的样品和钨源于烧杯中再加入一定量的蒸馏水,剧烈搅拌6-12 h,离心烘干,最后收集固体样品;

4)将步骤3)所得黑色样品研磨成粉末并与Se粉以质量比为1:(1.5-3)分别放置在两个刚玉舟中,在10% vol H2/90 vol %Ar气氛管式炉中于500-800 ºC煅烧2-5小时,最后收集黑色粉末样品,即得到硒化钨-胶原蛋白衍生多孔碳复合物;

步骤2)中,所述的胶原蛋白是从制革工业的废弃牛皮毛中提取得到的,含有丰富的有机基团和氨基酸,可活化成N,S共掺杂的多孔碳,并将硒化钨纳米粒子限域在多孔结构中;所述的钨源可为系列含钨盐,包括并不局限于钨酸钠、氯化钨、磷钨酸;所述的活化后的样品与钨源的质量比为1:2-5,所述的搅拌时间为6-12 h,烘干温度为80-100 °C;步骤4)中,所述步骤3)所得黑色样品与硒粉的质量比为1:1.5-3,煅烧温度为500-800 °C,煅烧时间为2-5小时。

所述的硒化钨-胶原蛋白衍生多孔碳复合物中的复合碳为氮硫共掺杂的多孔纳米碳,具有高孔隙率和高比表面积,有利于储钠。所述的硒化钨-胶原蛋白衍生多孔碳复合物应用于钠离子电池负极中,在电压为0.01-3.0 V、电流密度为100 mA/g时充放电循环50次,比容量高达368.2 mAh/g, 在大电流密度1 A/g时充放电循环500次后,比容量仍保持在185.5 mAh/g,具有较高的库伦效率,同时也具有优异的倍率性能。

一种钠离子电池,包括工作电极和对电极,其特征在于:按质量比为:上述的合成方法制得的硒化钨-胶原蛋白衍生多孔碳复合物:导电剂乙炔黑:粘结剂 CMC=80 : 10 : 10混合研磨后均匀地涂在铜箔上作为工作电极,金属钠片为对电极,1 mol/L 的 NaPF6/碳酸乙烯酯(EC) + 碳酸二乙酯(DEC) 为电解液组装成2032型纽扣型电池。上述硒化钨-胶原蛋白衍生多孔碳复物的应用是将硒化钨-胶原蛋白衍生多孔碳复合物应用于钠离子电池负极中。钠离子电池组装:按质量比为硒化钨-胶原蛋白衍生多孔碳复合物:导电剂乙炔黑:粘结剂 CMC=80 : 10 : 10混合研磨后均匀地涂在铜箔上做工作电极,金属钠片为对电极,1 mol/L 的 NaPF6/碳酸乙烯酯(EC) + 碳酸二乙酯(DEC)为电解液组装成扣式电池;所有组装均在惰性气氛手套箱里进行。

本发明的显著优点在于:

1)本发明从制革工业的废弃牛皮毛中提取的胶原蛋白粉活化衍生氮硫共掺杂的多孔纳米碳作为载体,一方面多孔纳米结构有利于钠离子/电子的传输和电解液的渗透,提高反应动力学,另一方面氮硫共掺杂可调控其衍生碳的内部电子结构,进而提高复合物的导电性。

2)胶原蛋白是从制革工业的废弃的牛皮毛中提取的,属于制革工业的废弃物高值化利用,变废为宝,有利于减少环境污染,其作为前驱体碳源,成本低廉。

3)硒化钨纳米粒子限域在多孔结构中,可有效抑制硒化钨产生团聚,同时结构稳定,为充放电过程中的体积膨胀提供一定的缓冲空间。

4)本发明的硒化钨-胶原蛋白衍生多孔碳复合物是一种全新的钠离子电池负极,本发明实施例1得到的硒化钨-胶原蛋白衍生多孔碳复合物应用于钠离子电池负极中,在电压为0.01-3.0 V、电流密度为100 mA/g时充放电循环50次,比容量高达368.2 mAh/g, 在大电流密度1 A/g时充放电循环500次后,比容量仍保持在185.5 mAh/g,具有较高的库伦效率,同时也具有优异的倍率性能。

5)硒化钨-胶原蛋白衍生多孔碳复合物是一种优良的钠离子电池负极材料,本发明首次提供了一种合成硒化钨-胶原蛋白衍生多孔碳复合物的方法,该制备工艺简单,可操作性强,制革工业的废弃物高值化利用,成本低廉,可大量生产,符合环境要求。

附图说明

图1是实施例1所得的硒化钨-胶原蛋白衍生多孔碳复合物的XRD图。

图2是实施例1所得的硒化钨-胶原蛋白衍生多孔碳复合物作为钠离子电池负极材料时在100 mA/g电流密度下的循环性能曲线图。

图3是实施例1所得的硒化钨-胶原蛋白衍生多孔碳复合物作为钠离子电池负极材料时在100 mA/g电流密度下的充放电曲线图。

图4是实施例1所得的硒化钨-胶原蛋白衍生多孔碳复合物作为钠离子电池负极材料时在1 A/g电流密度下的长寿命循环性能图及库伦效率图。

图5是实施例1所得的硒化钨-胶原蛋白衍生多孔碳复合物作为钠离子电池负极材料时在不同电流密度下的倍率性能图。

具体实施方式

实施例1

1)称取一定质量的废弃牛皮毛(指有毛的废弃牛皮),先在乙醇中超声预处理,再用剪刀剪碎,加入占原料质量0.5% 的胃蛋白酶溶解,接着盐析,最后冷冻干燥磨碎得到胶原蛋白粉。

2)分别称取1g胶原蛋白粉和1g氯化锌到聚四氟乙烯内衬中,加入适量的水搅拌4 h,烘干后在N2气氛管式炉中以5 ºC/min的升温速率在600 ºC活化1 h,洗涤烘干后,收集黑色固体样品;

3)按质量比1:2称取步骤2)所得的样品和磷钨酸于烧杯中再加入一定量的蒸馏水,剧烈搅拌6 h,离心烘干,最后收集固体样品;

4)将步骤3)所得固体样品研磨成粉末并与Se粉以质量比为1: 1.5分别放置在两个刚玉舟中,在10% vol H2/90 vol %Ar气氛管式炉中于500 ºC煅烧4小时,最后收集黑色粉末样品,即得到具有优异性能的硒化钨-胶原蛋白衍生多孔碳复合物钠离子电池负极材料——硒化钨-胶原蛋白衍生多孔碳复合物;

经XRD实验获得图1的硒化钨-胶原蛋白衍生碳复合物的X射线衍射图谱,由图可知,2θ为26.0°的衍射峰对应胶原蛋白衍生多孔碳的 (002) 晶面,而2θ为13.7°、31.4°、37.9°、56.0°、69.6°的位置出现较宽的衍射峰分别对应着WSe2 (JCPDS:71-0600) 中的(002)、 (100)、 (103) 、 (110)及(203)晶面,说明所合成的硒化钨为纳米结构, 具有较小的粒径。采用本实施例合成的硒化钨-胶原蛋白衍生多孔碳复合物:导电剂乙炔黑:粘结剂 CMC按照质量百分比 80 : 10 : 10 混合研磨后均匀地涂在铜箔上作为工作电极,金属钠片为对电极,1 mol/L 的 NaPF6/碳酸乙烯酯(EC) + 碳酸二乙酯(DEC) 为电解液组装成扣式电池;所有组装均在惰性气氛手套箱里进行。在100 mA/g电流密度下,测试循环性能如图2所示,硒化钨-胶原蛋白衍生多孔碳复合物作为钠离子电池负极材料时,在电压为0.01-3.0 V、电流密度为100 mA/g时充放电循环50次比容量高达368.2 mAh/g。图3是该材料在100 mA/g电流密度下的充放电曲线,从图中可以看出该电极材料在首次循环之后,充放电曲线基本重合在一起,说明其在充放电过程中具有较高的电化学稳定性。图4是在1 A/g电流密度下的长寿命循环性能图及库伦效率图,由图可知,该电极材料即使在大电流密度1 A/g时充放电循环500次后,仍保持在185.5 mAh/g的比容量,说明该材料具有稳定的长寿命循环性能。另外,从图中右纵坐标轴对应的库伦效率曲线可得,在循环10圈之后,库伦效率一直稳定在接近100%左右,电极材料放电容量的几乎没有衰减,说明该复合物表现出良好的库伦效率和稳定的循环性能。图5是在电压为0.01-3.0 V,不同电流密度下的倍率性能图,由图可知,该电极在0.05 A/g, 0.1 A/g, 0.2 A/g, 0.5 A/g, 1 A/g, 2 A/g的电流密度下的比容量分别为392.9 mAh/g, 378.1 mAh/g, 330.8 mAh/g, 289.9 mAh/g, 253.7 mAh/g, 219.2 mAh/g, 而且当电流回到0.1 A/g循环100圈后比容量仍然保持在370 mAh/g,说明在循环过程中硒化钨-胶原蛋白衍生多孔碳复合物保持较好的形貌和结构,材料并没有发生坍塌和粉化,因此具有优异的倍率性能。

因此,硒化钨-胶原蛋白衍生多孔碳复合物不仅在小电流密度下具有高比容量,在大电流密度下具有稳定的循环性能,而且具有优异的倍率性能,是环境友好型的高性能钠离子电池负极材料,具有良好的应用前景。

实施例2

1)称取一定质量的废弃牛皮毛(指有毛的废弃牛皮),先在乙醇中超声预处理,再用剪刀剪碎,加入占原料质量0.8% 的木瓜蛋白酶溶解,接着盐析,最后冷冻干燥磨碎得到胶原蛋白粉。

2)分别称取2 g胶原蛋白粉和4 g氯化锌到聚四氟乙烯内衬中,加入适量的水搅拌8 h,烘干后在N2气氛管式炉中以10 ºC/min的升温速率在700 ºC活化2 h,洗涤烘干后,收集黑色固体样品;

3)按质量比1:3称取步骤2)所得的样品和钨酸钠于烧杯中再加入一定量的蒸馏水,剧烈搅拌8 h,离心烘干,最后收集固体样品;

4)将步骤3)所得黑色样品研磨成粉末并与Se粉以质量比为1: 2分别放置在两个刚玉舟中,在10% vol H2/90 vol %Ar气氛管式炉中于600 ºC煅烧3小时,最后收集黑色粉末样品,即得到硒化钨-胶原蛋白衍生多孔碳复合物;

采用本实施例合成的硒化钨-胶原蛋白衍生多孔碳复合物:导电剂乙炔黑:粘结剂 CMC按照质量百分比 80 : 10 : 10混合研磨后均匀地涂在铜箔上做工作电极,金属钠片为对电极,1 mol/L 的 NaPF6/碳酸乙烯酯(EC) + 碳酸二乙酯(DEC) 为电解液组装成扣式电池;所有组装均在惰性气氛手套箱里进行。

实施例3

1)称取一定质量的废弃牛皮毛(指有毛的牛皮),先在乙醇中超声预处理,再用剪刀剪碎,加入占原料质量0.7% 的胰蛋白酶溶解,接着盐析,最后冷冻干燥磨碎得到胶原蛋白粉。

2)分别称取2 g胶原蛋白粉和0.5 g氯化锌到聚四氟乙烯内衬中,加入适量的水搅拌6 h,烘干后在N2气氛管式炉中以5 ºC/min的升温速率在800 ºC活化1 h,洗涤烘干后,收集黑色固体样品;

3)按质量比1:4称取步骤2)所得的样品和氯化钨于烧杯中再加入一定量的蒸馏水,剧烈搅拌10 h,离心烘干,最后收集固体样品;

4)将步骤3)所得黑色样品研磨成粉末并与Se粉以质量比为1: 3分别放置在两个刚玉舟中,在10% vol H2/90 vol %Ar气氛管式炉中于700 ºC煅烧2小时,最后收集黑色粉末样品,即得到硒化钨-胶原蛋白衍生多孔碳复合物;

采用本实施例合成的硒化钨-胶原蛋白衍生多孔碳复合物:导电剂乙炔黑:粘结剂 CMC按照质量百分比 80 : 10 : 10 混合研磨后均匀地涂在铜箔上做工作电极,金属钠片为对电极,1 mol/L 的 NaPF6/碳酸乙烯酯(EC) + 碳酸二乙酯(DEC) 为电解液组装成扣式电池;所有组装均在惰性气氛手套箱里进行。

实施例4

1)称取一定质量的废弃牛皮毛(指有毛的牛皮),先在乙醇中超声预处理,再用剪刀剪碎,加入占原料质量1% 的胃蛋白酶溶解,接着盐析,最后冷冻干燥磨碎得到胶原蛋白粉。

2)分别称取3 g胶原蛋白粉和2 g氯化锌到聚四氟乙烯内衬中,加入适量的水搅拌8 h,烘干后在N2气氛管式炉中以10 ºC/min的升温速率在900 ºC活化2 h,洗涤烘干后,收集黑色固体样品;

3)按质量比1:3称取步骤2)所得的样品和磷钨酸于烧杯中再加入一定量的蒸馏水,剧烈搅拌12 h,离心烘干,最后收集固体样品;

4)将步骤3)所得黑色样品研磨成粉末并与Se粉以质量比为1: 2分别放置在两个刚玉舟中,在10% vol H2/90 vol %Ar气氛管式炉中于800 ºC煅烧5小时,最后收集黑色粉末样品,即得到硒化钨-胶原蛋白衍生多孔碳复合物;

采用本实施例合成的硒化钨-胶原蛋白衍生多孔碳复合物::导电剂乙炔黑:粘结剂 CMC按照质量百分比 80 : 10 : 10混合研磨后均匀地涂在铜箔上做工作电极,金属钠片为对电极,1 mol/L 的 NaPF6/碳酸乙烯酯(EC) + 碳酸二乙酯(DEC) 为电解液组装成扣式电池;所有组装均在惰性气氛手套箱里进行。

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1