一种改性TiNb2O7材料、改性TiNb2O7电极及制备方法与流程

文档序号:20157459发布日期:2020-03-24 20:42阅读:497来源:国知局
一种改性TiNb2O7材料、改性TiNb2O7电极及制备方法与流程
本发明涉及改性tinb2o7材料的
技术领域
,尤其是涉及一种改性tinb2o7材料、改性tinb2o7电极及制备方法。
背景技术
:全球发展对绿色可持续性能源的需求已经刻不容缓,从混合动力、纯动力汽车到个人便携式电子设备,几乎所有产品都应用了锂电子电池,其覆盖面几乎涉及了所有的领域。锂电池技术的发展就成了重中之重,尤其当前电池的性能很大程度上都取决于材料。2011年,goodnough课题组将其在tinb2o7材料方面的研究成果发表于《chemistryofmaterials》杂志上,引起了美国能源部及国内外众多研究者的关注。在后续的继续发展中,tinb2o7材料逐渐被用于锂电池的负极材料。tinb2o7材料以其较高的理论比容量(387mah/g)解决了li4ti5o12材料的低容量问题,较高的嵌锂电位(1.6v-1.7vvs.li/li+),能够有效防止锂枝晶的形成,从根本上提升了电池的安全性。但是,tinb2o7材料较差的电子导电性和离子导电性限制了材料性能的发挥,导致了库伦效率较低和循环性能及倍率性能下降。技术实现要素:本发明的目的是提供一种改性tinb2o7材料,其优势在于,在tinb2o7表面包裹一层导电聚合物,提高了tinb2o7材料的电子导电性和离子导电性。本发明的上述发明目的一是通过以下技术方案得以实现的:一种改性tinb2o7材料,包括tinb2o7基材和包裹在tinb2o7基材表面的高分子导电聚合物层。通过采用上述技术方案,tinb2o7材料以其较高的理论比容量,较高的嵌锂电位,能够有效防止锂枝晶的形成,从根本上提升了电池的安全性;但是tinb2o7材料电子导电性与离子导电性较差,从而影响了tinb2o7材料电极的实际容量以及大电流性能。导电聚合物具有良好电子导电性能和离子导电性,利用导电聚合物包覆tinb2o7形成了改性tinb2o7材料,改性tinb2o7材料不仅具有原本tinb2o7的优点,即较高的理论比容量,较高的嵌锂电位,同时具有良好电子导电性能和离子导电性,能够有效提升tinb2o7材料电极的实际容量以及大电流性能。另外,导电聚合物具有一定的粘性与弹性,有利于降低tinb2o7电极中非活性材料且绝缘的粘结剂的比例,缓解tinb2o7电极在循环过程中的体积膨胀/收缩,进而保证了电极的完整性和可靠性,有利于提高tinb2o7电极的库伦效率和循环性能及倍率性能。作为优选,所述高分子导电聚合物层包括聚苯胺、聚丙胺、聚吡咯、聚噻吩、聚乙炔以及它们的衍生物的一种或几种。通过采用上述技术方案,当高分子导电聚合物层采用聚苯胺、聚丙胺、聚吡咯、聚噻吩、聚乙炔以及它们的衍生物的一种或几种时,其具有良好电子导电性能和离子导电性。作为优选,所述导电聚合物层的厚度为0.1-10μm。通过采用上述技术方案,当高分子导电聚合物的厚度为0.1-10μm时,导电聚合物具有更好的导电性能和离子导电性。本发明的第二个目的是提供一种改性tinb2o7电极,包括以下重量份的组分:导电碳材料2-5份,改性tinb2o7材料92-98份,粘结剂1-3份。通过采用上述技术方案,利用导电碳材料、改性tinb2o7材料、粘结剂制备电极,改性tinb2o7材料不仅具有原本tinb2o7的优点,即较高的理论比容量,较高的嵌锂电位,同时具有良好电子导电性能和离子导电性,能够有效提升tinb2o7材料电极的实际容量以及大电流性能。同时,也减少了粘结剂的用量,从而缓解了tinb2o7电极在循环过程中的体积膨胀/收缩,进而保证了电极的完整性和可靠性,有利于提高tinb2o7电极的库伦效率和循环性能及倍率性能。作为优选,所述粘结剂为ptfe、pvdf、cmc中的一种或几种。通过采用上述技术方案,ptfe、pvdf、cmc可以用于粘结导电碳材料与改性tinb2o7材料,由于改性tinb2o7材料中含有高分子导电聚合物层,而高分子导电聚合物层包括聚苯胺、聚丙胺、聚吡咯、聚噻吩、聚乙炔以及它们的衍生物的一种或几种,高分子导电聚合物层容易与高分子导电聚合物层相融合,提高粘结剂与改性tinb2o7材料及导电碳材料结合的紧密程度,在同等结合的紧密程度下,能够减少粘结剂的用量。同时,ptfe、pvdf、cmc具有耐高温、高强度、耐腐蚀、耐磨损的良好特性,有利于保证改性tinb2o7电极的完整性和可靠性。作为优选,所述导电碳材料为碳纳米管。通过采用上述技术方案,碳纳米管具有良好的弹性,其二维连接结构相较于一维的碳颗粒(如super-p)具有更多的交叉传导路径,而且碳纳米管的筒状结构在多次充-放电循环后不会塌陷,循环性好。碱金属如锂离子和碳纳米管有强的相互作用,有利于提高电池的充放电容量。作为优选,所述导电碳材料为碳纤维。通过采用上述技术方案,碳纤维具有耐高温、耐摩擦、耐腐蚀的特点,同时质地柔软,容易与粘结剂及改性tinb2o7材料粘合,提高了电极的稳定性和可靠性。作为优选,所述导电碳材料为碳球和碳纳米管、碳纤维混合物。通过采用上述技术方案,碳球便宜易得,可以降低电极成本。而电子在碳纳米管、碳纤维为二维传导路径,将一维、二维导体混用,可以连接整个电极内部同时大大降低成本。通过采用上述技术方案,碳球与绝缘性的粘结剂结合后,能够提升耐高压性能,不容易被高压电击穿,因而提高了改性tinb2o7电极的稳定性和可靠性。本发明的第三个目的是提供一种改性tinb2o7电极的制备方法,步骤如下:s1:进行改性tinb2o7材料的制备:s2:将改性tinb2o7材料、导电碳材料及粘结剂进行均匀混合,形成混合物;s3:将s2中的混合物进行挤压成型,得到改性tinb2o7电极。作为优选,所述s1具体包括:s1-1:将高分子导电聚合物层中各组分加入到混料机中进行均匀混合,形成均匀的混合物;s1-2:将均匀混合物加入到内,并利用超声波进行分散,制成导电聚合物分散液;s1-3:将tinb2o7基材加入到导电聚合物分散液中,并进行均匀搅拌形成改性tinb2o7分散液;s1-4:对改性tinb2o7分散液进行烘干,形成改性tinb2o7材料。通过采用上述技术方案,通过s1制备出改性tinb2o7材料;通过s2将改性tinb2o7材料、导电碳材料及粘结剂进行均匀混合,从而使得形成的电极质地均匀,性能稳定;通过s3可以将混合后的改性tinb2o7材料、导电碳材料及粘结剂挤压成型为改性tinb2o7电极,确保了改性tinb2o7电极的致密性与可靠性。综上所述,本发明的有益技术效果为:1.改性tinb2o7材料不仅具有具有原本tinb2o7的优点,即较高的理论比容量,较高的嵌锂电位,同时包覆后具有良好电子导电性能和离子导电性,能够有效提升tinb2o7材料电极的实际容量以及大电流性能;2.导电聚合物具有一定的粘性与弹性,有利于降低tinb2o7电极中非活性材料且绝缘的粘结剂的比例,缓解tinb2o7电极在循环过程中的体积膨胀/收缩,进而保证了电极的完整性和可靠性,有利于提高tinb2o7电极的库伦效率和循环性能及倍率性能。附图说明图1是改性tinb2o7电极的制备工艺流程图。具体实施方式以下结合附图对本发明作进一步详细说明。一、改性tinb2o7电极,包括以下重量份的组分:导电碳材料2-5份,改性tinb2o7材料92-98份,粘结剂1-3份。所用的粘结剂为ptfe、pvdf、cmc中的一种或几种。所用的导电碳材料为碳纳米管或碳纤维或碳球。改性tinb2o7材料,包括tinb2o7基材和包裹在tinb2o7基材表面的高分子导电聚合物层。高分子导电聚合物层包括聚苯胺、聚丙胺、聚吡咯、聚噻吩、聚乙炔以及它们的衍生物的一种或几种。导电聚合物层的厚度为0.1-10μm。二、改性tinb2o7电极的制备方法:s1:进行改性tinb2o7材料的制备:s1-1:将高分子导电聚合物层中各组分加入到混料机中以100r/min持续混料20min的进行均匀混合,形成均匀的混合物;s1-2:将均匀混合物加入到n-甲基吡咯烷酮内,并利用超声波进行分散,制成导电聚合物分散液;s1-3:将tinb2o7基材加入到导电聚合物分散液中,并进行均匀搅拌形成改性tinb2o7分散液;s1-4:对改性tinb2o7分散液进行烘干,烘干温度为60℃,烘干12h,形成改性tinb2o7材料。s2:将改性tinb2o7材料、导电碳材料及粘结剂进行均匀混合,形成混合物。s3:将s2中的混合物在100℃下进行挤压成型,得到改性tinb2o7电极。三、实施例:实施例1、一种改性tinb2o7电极,包括以下重量份的组分:导电碳材料2份,改性tinb2o7材料97份,粘结剂1份。导电碳材料为碳纳米管,粘结剂为pvdf。改性tinb2o7材料包括tinb2o7基材和包裹在tinb2o7基材表面的高分子导电聚合物层,高分子导电聚合物层由聚苯胺组成,导电聚合物层的厚度为0.1μm。改性tinb2o7电极的制备方法如上述制备方法制得。实施例2、本实施例与实施例1的区别在于,导电碳材料为碳纤维。其余制备方法与实施例1中的制备方法一致。实施例3、本实施例与实施例1的区别在于,导电碳材料为碳球。其余制备方法与实施例1中的制备方法一致。实施例4、本实施例与实施例1的区别在于,导电碳材料为碳纳米管碳纤维碳球等质量比混合物。其余制备方法与实施例1中的制备方法一致。实施例5、本实施例与实施例4的区别在于,tinb2o7电极材料占比为92份。其余制备方法与实施例4中的制备方法一致。实施例6、本实施例与实施例4的区别在于,tinb2o7电极材料占比为98份。其余制备方法与实施例4中的制备方法一致。实施例7、本实施例与实施例5的区别在于,导电聚合物层为聚丙胺组成。其余制备方法与实施例5中的制备方法一致。实施例8、本实施例与实施例7的区别在于,导电聚合物层由聚吡咯组成。实施例9、本实施例与实施例7的区别在于,导电聚合物层由聚噻吩组成。实施例10、本实施例与实施例7的区别在于,导电聚合物层由聚乙炔组成。实施例11、本实施例与实施例8的区别在于,导电碳为5份。实施例12、本实施例与实施例8的区别在于,导电碳为10份。实施例13、本实施例与实施例10的区别在于,导电聚合物层为1μm。实施例14、本实施例与实施例10的区别在于,导电聚合物层为5μm。实施例15、本实施例与实施例10的区别在于,导电聚合物层为15μm。实施例16、本实施例与实施例10的区别在于,粘结剂为ptfe。实施例17、本实施例与实施例10的区别在于,粘结剂为cmc。对比例1、本对比例与实施例13的区别在于,采用未改性的tinb2o7材料直接制备tinb2o7电极。四、性能测试:将负极原料均匀涂覆于干净平整的铜箔极片上,将涂覆有负极原料的铜箔极片置于真空干燥箱中,在120℃的温度下干燥12h,冷却至40℃后得到负极;以富锂材料作为以为正极,以lgps硫化物电解质作为中间层,与上述方法制得的负极组装得到全固态锂电池。对全固态锂电池的性能进行测试,用充放电测试仪测试0.1c倍率下首次放电比容量以及200圈的放电比容量,测定锂电池的库伦效率以及大倍率(2c)性能;充电之前测试负极极片的厚度,放电之后测试负极极片的厚度,从而得到负极在嵌锂前后负极的厚度膨胀量;用电化学工作站测试电池的交流阻抗谱,通过拟合得到负极的阻抗。实施例0.1c首次放电容量,mah/g200次循环后的比容量,mah/g库伦效率,%2c大倍率性能,mah/g膨胀系数,%负极阻抗,ω1280.522489.6219173642280.6227.6191.2227.61194163282.3232.0690.3239.06193244290.2246.591.8250.5173005295256.6593.9258.65111896287.8226.7391.5221.73232417293.5240.2689.7249.26193968300.8270.994.6264.9121299296247.890.9260.81528410295.3251.693.1245.61644311301.1271.895.5280.8737912304280.696.9295.6733913306.9291.6599.2293.6522914293.4278.3594.6277.35217115279.8263.289.5256.2115616300.727093.2271837917301.4273.9192268.918144对比例1274.3153.4480.9153.4443916从测试结果中可以看出,改性tinb2o7电极的库伦效率以及倍率性能明显改善,从首次放电容量以及200次循环后的比容量可以看出,采用本发明制备的锂电池具有优异的循环性能以及良好的充放电稳定性;从膨胀系数可以看出,由于导电聚合物具有一定的粘性与弹性,有利于降低tinb2o7电极中非活性材料且绝缘的粘结剂的比例,缓解tinb2o7电极在循环过程中的体积膨胀/收缩;从负极阻抗可以看出,改性tinb2o7材料具有良好的电子导电性和离子导电性。本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1